BIOLÓGIA ALAPJAI. Anyagcsere folyamatok 2. (Felépítő folyamatok)
|
|
- Ákos Vincze
- 7 évvel ezelőtt
- Látták:
Átírás
1 BIOLÓGIA ALAPJAI Anyagcsere folyamatok 2. (Felépítő folyamatok) A molekuláris biológiai alapjai DNS replikáció RNS transzkripció Fehérje szintézis (transzláció) (Az ábrák többsége Dr. Lénárd Gábor Biológia 11. c. könyvéből való) Dr. Bakos Vince /18. ősz 1
2 KLOROPLASZTISZ - szerkezet Külső és belső membrán Tilakoid: lapos korong alakú zsák, belső folyadék Gránum: egymáson fekvő tilakoidok ( pénztekercs szerkezet) 2
3 A fotoszintézis két szakasza 3
4 Fotoszintézis A fotoszintézis két szakaszra bontható: Fényreakciók: a fotonok befogása, energiájuk hasznosítása (két fotorendszer!) Színes molekulák gerjesztése (klorofillok, karotinoidok) Vízbontás, O 2 termelés Sötétreakciók: a kémiai energia felhasználásával CO 2 beépítése cukrokba Calvin ciklus: bonyolult, áthidalt körfolyamat, különböző szénatomszámú cukrok átalakulása lánchosszabbítással 4
5 Fotoszintézis 5
6 Fotoszisztéma 1. és 2. 6
7 Fényreakciók Az 2. fotorendszer a foton energiájával vizet bont és ATP-t termel Az 1. fotorendszer újabb foton energiájával NADP-t redukál (3 ATP-nek megfelelő energia) 7
8 A fényreakciók lokalizációja 8
9 Sötétreakciók Calvin ciklus 9
10 A fotoszintézis két szakasza 10
11 Zsírsavak bioszintézise 1. A zsírsavak bioszintézise a β oxidáció megfordításával megy végbe, a citoszólban játszódik le db acetil-coa 2. Multienzimkomplex, centrumában: ACP (acil carrier protein) 3. A) Acil-transzferáz enzim: Egy acetil-scoa kapcsolódik az ACP perifériás SH csoportjához B) egy másik acetil-scoa ból biotin tartalmú enzim segítségével malonil-scoa jön létre (CO 2 fixálás). Ez a malonil-scoa kötődik az ACP centrális SH csoportjához. 4. Az acetil csoport megtámadja a malonil csoportot (CO 2 kilép) és ketoacil-acp (acetoacetil-acp) jön létre. 11
12 Zsírsavak bioszintézise 2. A β-oxidáció lépései fordított sorrendben követik egymást. A lépések ciklikusan ismétlődnek, mindig két szénatommal hosszabbodik a szénlánc. A természetes zsírsavak emiatt páros szénatomszámúak. Körfolyamat: Acetil-csoport beépítése β-ketosav Redukció (NADPH + H + ) β-hidroxi-karbonsav Vízelvonás kettős kötés a szénláncban Redukció (NADPH + H + ) telített szánláncú zsírsav 12
13 Zsírsavak bioszintézise 3. Az egyes enzimek egymás mellett, körben helyezkednek el ( óramutató - számlap szerkezet). 13
14 Fehérje bioszintézis Minden funkcionális fehérjének rögzített aminosavsorrendje van. A bioszintézisnél ezt kell (pontosan) reprodukálni. Az aminosav-sorrendet a DNS tartalmazza. A kódolt információ ( genetikai kód, 64 féle bázis triplet) mrns-re íródik át a sejtmagban (transzkripció), majd onnan kijutva a riboszómák felületén (DER) történik a fehérjeszintézis (transzláció). 14
15 A molekuláris biológia centrális dogmája Dogma (gör., dokein ige, jel.: hisz, vél, helyesnek tűnik, elhatároz; dogma főnév, jel.: ami helyesnek bizonyult, teológiai értelemben egy vallás megkérdőjelezhetetlen meggyőződése) Francis Crick a hipotézis szinonimájaként használta (nem volt tisztában a szó jelentésével) Genotípus és fenotípus potenciális képesség megjelenő tulajdonság Enzim konstitutív induktív 15
16 DNS replikáció Átírás DNS-ről DNS-re: DNS replikáció a sejtmagban - szétcsavarás (helikáz) - replikációs villa - komplementer szálak szintézise - ellentétes irányú szintézis (a másolandó minta, templát - DNS szálak lefutásának megfelelően mindkét szálon 3 5 irányban halad. - Vezető szál és követő szál - Okazaki fragmensek 16
17 A DNS replikációs gépezet Vezető szál mintaként Utoljára szintetizált szál Csúszó gyűrű DNS polimeráz a vezető szálon VEZETŐ SZÁL Szülői DNS kettős hélix új Okazaki szakasz RNS primer KÖVETŐ SZÁL primáz DNS helikáz (ez a fehérje tekeri ki a DNS-t) Követő szál mintaként Egy szálú DNS-t stabilizáló fehérje DNS polimeráz a követő szálon (amint éppen befejez egy Okazaki szakaszt) 17
18 REPAIR (újrapárosító, javító, reparáló) mechanizmusok olyan enzimrendszerek, amelyek képesek a DNS hibáit kijavítani. Hibák (mutációk): - másolási hibák - környezeti hatások Egy enzimkomplex csak egy bizonyos hibát ismer fel és tud kijavítani. Minél fejlettebb egy faj, annál többféle repair enzimrendszere van. Már a prokariótáknál is megjelenik. A repair hatékonysága szabályozás alatt áll, állandó a mutációs ráta. (klíma hőmérséklet) 18
19 Átírás DNS-ről RNS-re: transzkripció Átírás DNS-ről mrns-re: a fehérjeszintézis első lépése (transzkripció) - kodogén (kódoló) szál, - néma szál A sejtmagban történik. Átírás DNS-ről más RNS-re, (riboszóma RNS, transzfer RNS) ezek bázissorrendje is itt tárolódik, szintézisük direkt átírással történik DNS (Adenin, timin, citozin, guanin) RNS (Adenin, uracil, citozin, guanin) Messenger RNS (mrns) Riboszomális RNS (rrns) Transzfer RNS (trns) 19
20 Átírás mrns-re: transzkripció 20
21 Riboszóma A riboszómák két alegységből álló részecskék, anyaguk rrns és fehérje. A két alegységet Mg 2+ ionok kapcsolják össze. Az alegységek nagyságát a Swedberg féle ülepedési számmal jellemezzük (30 S és 50 S). A riboszómán kötődik a mrns, ezen kívül még két kötőhelye van, a aminoacilés a peptidil-kötőhely. 21
22 Fehérjeszintézis riboszómán Aminoacil kötőhely Peptidil kötőhely 22
23 Transzfer-RNS, trns A transzfer RNS kis mérete ( bázis) ellenére három igen szelektív kötőhelyet tartalmaz: 1. Antikodon: bázishármas, amely a mrns bázistriplettjével (kodon) komplementer, ez olvassa le a soron következő aminosavat. A genetikai kódban 64 triplett szerepel, de a három stop kód UAA, UAG, UGA) miatt csak 61 féle, aminosavat szállító trns létezik. A start kód: AUG = metionin 23
24 Transzfer-RNS, trns 2 2. Aminosav felismerő-, és kötőhely: minden trns csak egyféle aminosavat szállít (a kötődés egyúttal aktiválás is, ATP) 3. Riboszóma-kötőhely: ez a felület támaszkodik a riboszóma kötőhelyeihez, rögzíti és pozícionálja az aminosavat 24
25 Transzláció a riboszómán 25
26 Poliriboszóma - poliszóma Egy mrns-en több riboszóma is haladhat egyszerre, ezt nevezik poliriboszómának, röviden poliszómának. A mrns élettartama véges és szabályozott: percektől napokig terjedhet. Ez megszabja, hogy hány fehérjemolekula keletkezhet. 26
27 (Gén)polarizáció: Egy mrns több gént, több fehérjét is tartalmazhat. Ezeket stop kódok választják el egymástól. Ahogy a riboszóma egy ilyen stop kódhoz ér, p valószínűséggel leválik, (1-p) valószínűséggel folytatja a kiírást. Emiatt a sorban egymás után következő fehérjék kópiaszáma csökken, pl. 100 : 80 : 75 : 40 : 20 arányban 27
A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai
A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi
A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai
A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 2 ZH: november 5, december 3 dr. Bakos Vince Elérhetőség: CH
transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék
Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti
Tel: ;
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Környezetmérnök (63) és műszaki menedzser (240) hallgatók számára (Hé 10.15-11.45; QAF15.) 2 + 0 + 0 óra, félévközi számonkérés 2 ZH: november 3. (9. hét), december
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1)
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Környezetmérnök (50 fő) és műszaki menedzser (259 fő) hallgatók számára Előadások időpontja és helyszíne: Ke 08.15-09.45; QAF14. 2 + 0 + 0 óra, félévközi számonkérés
A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI
A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI Műszaki menedzser MSc hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: március 06?, április 10?, május 02?. dr. Pécs Miklós egyetemi docens
NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag
NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak
A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
Transzláció. Szintetikus folyamatok Energiájának 90%-a
Transzláció Transzláció Fehérje bioszintézis a genetikai információ kifejeződése Szükséges: mrns: trns: ~40 Riboszóma: 4 rrns + ~ 70 protein 20 Aminosav aktiváló enzim ~12 egyéb enzim Szintetikus folyamatok
Biológus MSc. Molekuláris biológiai alapismeretek
Biológus MSc Molekuláris biológiai alapismeretek A nukleotidok építőkövei A nukleotidok szerkezete Nukleotid = N-tartalmú szerves bázis + pentóz + foszfát N-glikozidos kötés 5 1 4 2 3 (Foszfát)észter-kötés
RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek
RNS-ek RNS-ek 1. Az ősi RNS Világ: - az élet hajnalán 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek 3. Egy újonnan felfedezett RNS Világ: - szabályozó RNS-ek 4. Transzkripció Ősi
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása
A replikáció mechanizmusa
Az öröklődés molekuláris alapjai A DNS megkettőződése, a replikáció Szerk.: Vizkievicz András A DNS-molekula az élőlények örökítő anyaga, kódolt formában tartalmazza mindazon információkat, amelyek a sejt,
Az eukarióta sejt energiaátalakító organellumai
A mitokondrium és a kloroplasztisz hasonlósága Az eukarióta sejt energiaátalakító organellumai mitokondrium kloroplasztisz eukarióta sejtek energiaátalakító és konzerváló organellumai Működésükben alapvető
CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI
A GENETIKAI INFORMÁCI CIÓ TÁROLÁSA ÉS S KIFEJEZŐDÉSE A DNS SZERKEZETE Két antiparalel (ellentétes lefutású) polinukleotid láncból álló kettős helix A két lánc egy képzeletbeli közös tengely körül van feltekeredve,
A glükóz reszintézise.
A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt
A biokémiai folyamatokat enzimek (biokatalizátorok) viszik véghez. Minden enzim. tartalmaz fehérjét. Két csoportjukat különböztetjük meg az enzimeknek
1 A biokémiai folyamatokat enzimek (biokatalizátorok) viszik véghez. Minden enzim tartalmaz fehérjét. Két csoportjukat különböztetjük meg az enzimeknek a./ Csak fehérjébıl állók b./ Fehérjébıl (apoenzim)
A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
Fehérje szintézis 2. TRANSZLÁCIÓ Molekuláris biológia kurzus 7. hét. Kun Lídia Genetikai, Sejt- és immunbiológiai Intézet
Fehérje szintézis 2. TRANSZLÁCIÓ Molekuláris biológia kurzus 7. hét Kun Lídia Genetikai, Sejt- és immunbiológiai Intézet Gén mrns Fehérje Transzkripció Transzláció A transzkriptum : mrns Hogyan mutatható
Az élő szervezetek felépítése I. Biogén elemek biomolekulák alkotóelemei a természetben előforduló elemek közül 22 fordul elő az élővilágban O; N; C; H; P; és S; - élő anyag 99%-a Biogén elemek sajátosságai:
A citoszolikus NADH mitokondriumba jutása
A citoszolikus NADH mitokondriumba jutása Energiaforrásaink Fototróf: fotoszintetizáló élőlények, szerves vegyületeket állítanak elő napenergia segítségével (a fényenergiát kémiai energiává alakítják át)
A géntechnológia genetikai alapjai (I./3.)
Az I./2. rész (Gének és funkciójuk) rövid összefoglalója A gének a DNS információt hordozó szakaszai, melyekben a 4 betű (ATCG) néhány ezerszer, vagy százezerszer ismétlődik. A gének önálló programcsomagként
TÉMAKÖRÖK. Ősi RNS világ BEVEZETÉS. RNS-ek tradicionális szerepben
esirna mirtron BEVEZETÉS TÉMAKÖRÖK Ősi RNS világ RNS-ek tradicionális szerepben bevezetés BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek
A TRANSZLÁCIÓ Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak?
A TRANSZLÁCIÓ Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? mrns, trns, riboszómák felfedezése A GENETIKAI KÓD 20 AS és csak 4 bázis, a kódolás hogy lehetséges?
13. RNS szintézis és splicing
13. RNS szintézis és splicing 1 Visszatekintés: Az RNS típusai és szerkezete Hírvivő RNS = mrns (messenger RNA = mrna) : fehérjeszintézis pre-mrns érett mrns (intronok kivágódnak = splicing) Transzfer
DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár.
Az endoplazmatikus membránrendszer Részei: DER /durva (szemcsés) endoplazmatikus retikulum/ SER /sima felszínű endoplazmatikus retikulum/ Golgi készülék Lizoszómák Peroxiszómák Szekréciós granulumok (váladékszemcsék)
DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál
DNS replikáció DNS RNS Polipeptid Amino terminus Templát szál Karboxi terminus Szuper-csavarodott prokarióta cirkuláris DNS Hisztonok komplexe DNS hisztonokra történő felcsvarodása Hiszton-kötött negatív
15. Fehérjeszintézis: transzláció. Fehérje lebontás (proteolízis)
15. Fehérjeszintézis: transzláció Fehérje lebontás (proteolízis) 1 Transzláció fordítás A C G T/U A C D E F G H I K L M N P Q R S T V W Y 4 betűs írás (nukleinsavak) 20 betűs írás (fehérjék) 2 Amit már
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.
TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak?
TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? mrns, trns, riboszómák felfedezése A GENETIKAI KÓD 20 AS és csak 4 bázis,
Nanotechnológia. Nukleinsavak. Készítette - Fehérvári Gábor
Nanotechnológia Nukleinsavak Készítette - Fehérvári Gábor Bevezető A nukleinsavak az élő anyag alapvetően fontos komponensei. Meghatározó szerepet töltenek be az átöröklésben, a fehérjék szintézisében
Hamar Péter. RNS világ. Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. www.meetthescientist.hu 1 26
Hamar Péter RNS világ Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. 1 26 Főszereplők: DNS -> RNS -> fehérje A kód lefordítása Dezoxy-ribo-Nuklein-Sav: DNS az élet kódja megkettőződés (replikáció)
I. A sejttől a génekig
Gén A gének olyan nukleinsav-szakaszok a sejtek magjainak kromoszómáiban, melyek a szervezet működését és növekedését befolyásoló fehérjék szabályozásához és előállításához szükséges információkat tartalmazzák.
3. Sejtalkotó molekulák III.
3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció
A BIOLÓGIA ALAPJAI. Az előadás vázlata. A sejtek felépítése és működése
A BIOLÓGIA ALAPJAI Az 1.- 3. előadás vázlata (dr. Pécs Miklós előadásait szorgalmasan jegyzetelte és gépre vitte Péter Éva környezetmérnök hallgató, 2001 őszén. Köszönet érte.) A sejtek felépítése és működése
2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód)
2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2.1 Nukleotidok, nukleinsavak Információátadás (örökítőanyag) Információs egység
, mitokondriumban (peroxiszóma) citoplazmában
-helye: máj, zsírszövet, vese, agy, tüdő, stb. - nem a β-oxidáció megfordítása!!! β-oxidáció Zsírsav-szintézis -------------------------------------------------------------------------------------------
Transzláció. Leolvasás - fehérjeszintézis
Transzláció Leolvasás - fehérjeszintézis Fehérjeszintézis DNS mrns Transzkripció Transzláció Polipeptid A trns - aminosav kapcsolódás 1 A KEZDETEK ELŐTT Az enzim aktiválja az aminosavat azáltal, hogy egy
Sejtmag, magvacska magmembrán
Sejtmag, magvacska magmembrán Láng Orsolya Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Kompartmentalizáció Prokaryóta Cytoplazma Eukaryóta Endomembrán Kromatin Plazma membrán Eredménye
Biomolekulák kémiai manipulációja
Biomolekulák kémiai manipulációja Bioortogonális reakciók Bio: biológiai rendszerekkel kompatibilis, ortogonális: kizárólag egymással reagáló funkciókat alkalmaz, melyek nem lépnek keresztreakcióba különböző
Poligénes v. kantitatív öröklődés
1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé
Szerkesztette: Vizkievicz András
A mitokondrium Szerkesztette: Vizkievicz András Eukarióta sejtekben a lebontó folyamatok biológiai oxidáció - nagy része külön sejtszervecskékben, a mitokondriumokban zajlik. A mitokondriumokban folyik
BIOLÓGIA ALAPJAI. Sejttan. Anyagcsere folyamatok 1. (Lebontó folyamatok)
BIOLÓGIA ALAPJAI Sejttan Anyagcsere folyamatok 1. (Lebontó folyamatok) (Az ábrák egy része Dr. Lénárd Gábor Biológia 11. c. könyvéből való) Dr. Bakos Vince 2017/18. ősz 1 Prokarióták és eukarióták Karyon
Nukleinsavak. Szerkezet, szintézis, funkció
Nukleinsavak Szerkezet, szintézis, funkció Nukleinsavak, nukleotidok, nukleozidok 1869-ben Miescher a sejtmagból egy savas természetű, lúgban oldódó foszfortartalmú anyagot izolált, amit később, eredetére
A felépítő és lebontó folyamatok. Biológiai alapismeretek
A felépítő és lebontó folyamatok Biológiai alapismeretek Anyagforgalom: Lebontó Felépítő Lebontó folyamatok csoportosítása: Biológiai oxidáció Erjedés Lebontó folyamatok összehasonlítása Szénhidrátok
Molekuláris biológiai alapok
Biokémiai és Molekuláris Biológiai Intézet Molekuláris biológiai alapok Sarang Zsolt Dimenziók a biológiában Fehérjék (kb. 50 ezer különböző fehérje a szervezetben 21 féle aminosavból épül fel) Élő szervezetek
sejt működés jovo.notebook March 13, 2018
1 A R É F Z S O I B T S Z E S R V E Z D É S I S E Z I N E T E K M O I B T O V N H C J W W R X S M R F Z Ö R E W T L D L K T E I A D Z W I O S W W E T H Á E J P S E I Z Z T L Y G O A R B Z M L A H E K J
CzB 2010. Élettan: a sejt
CzB 2010. Élettan: a sejt Sejt - az élet alapvető egysége Prokaryota -egysejtű -nincs sejtmag -nincsenek sejtszervecskék -DNS = egy gyűrű - pl., bactériumok Eukaryota -egy-/többsejtű -sejmag membránnal
A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik.
Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA BIOENERGETIKA I. 1. kulcsszó cím: Energia A termodinamika első főtétele kimondja, hogy a különböző energiafajták átalakulhatnak egymásba ez az energia megmaradásának
BIOMOLEKULÁK KÉMIÁJA. Novák-Nyitrai-Hazai
BIOMOLEKULÁK KÉMIÁJA Novák-Nyitrai-Hazai A tankönyv elsısorban szerves kémiai szempontok alapján tárgyalja az élı szervezetek felépítésében és mőködésében kulcsfontosságú szerves vegyületeket. A tárgyalás-
A sejtes szervezıdés elemei (sejtalkotók / sejtorganellumok)
A sejtes szervezıdés elemei (sejtalkotók / sejtorganellumok) 1 Sejtorganellumok vizsgálata: fénymikroszkóp elektronmikroszkóp pl. scanning EMS A szupramolekuláris struktúrák további szervezıdése sejtorganellumok
CHO H H H OH H OH OH H CH2OH HC OH HC OH HC OH CH 2
4. Előadás ukleozidok, nukleotidok, nukleinsavak Történeti háttér Savas karakterű anyagok a sejtmagból 1869-71 DS a sejtmag fő komponense F. Miescher (Svájc) 1882 Flemming: Chromatin elnevezés Waldeyer:
,:/ " \ OH OH OH - 6 - / \ O / H / H HO-CH, O, CH CH - OH ,\ / "CH - ~(H CH,-OH \OH. ,-\ ce/luló z 5zer.~ezere
- 6 - o / \ \ o / \ / \ () /,-\ ce/luló z 5zer.~ezere " C=,1 -- J - 1 - - ---,:/ " - -,,\ / " - ~( / \ J,-\ ribóz: a) r.yílt 12"('.1, b) gyürus íormája ~.. ~ en;én'. fu5 héli'(ef1e~: egy menete - 7-5.
A piruvát-dehidrogenáz komplex. Csala Miklós
A piruvát-dehidrogenáz komplex Csala Miklós szénhidrátok fehérjék lipidek glikolízis glukóz aminosavak zsírsavak acil-koa szintetáz e - piruvát acil-koa légz. lánc H + H + H + O 2 ATP szint. piruvát H
RNS SZINTÉZIS ÉS ÉRÉS
RNS SZINTÉZIS ÉS ÉRÉS A genom alapvetõ funkciója, hogy a sejt mûködéséhez esszenciális gépek (fehérjék) elõállí tására vonatkozó információt tartalmazza. A DNS-ben rejlõ információ egy kétlépéses folyamatban
A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.
1 Az anyagcsere Szerk.: Vizkievicz András Általános bevezető Az élő sejtekben zajló biokémiai folyamatok összességét anyagcserének nevezzük. Az élő sejtek nyílt anyagi rendszerek, azaz környezetükkel állandó
2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód)
2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2.1 Nukleotidok, nukleinsavak Információátadás (örökítőanyag) Információs egység
A kloroplasztok és a fotoszintézis
A kloroplasztok és a fotoszintézis A mikroorganizmusok többsége és állati sejtek szerves vegyületeket használnak a növekedéséhez. A szerves vegyületeket hasznosító sejteket heterotrófoknak nevezzük, és
Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i
Zsírsav szintézis Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P 2 i A zsírsav szintáz reakciói Acetil-CoA + 7 Malonil-CoA + 14 NADPH + 14 H = Palmitát + 8 CoA-SH + 7 CO 2 + 7
11. előadás: A génektől a fehérjékig A genetikai információ áramlása
11. előadás: A génektől a fehérjékig A genetikai információ áramlása A DNS információtartalma specifikus nukleotidsorrend formájában van jelen Az átörökített DNS fehérjék szintézisét szabályozva tulajdonságok
ZSÍRSAVAK OXIDÁCIÓJA. FRANZ KNOOP német biokémikus írta le először a mechanizmusát. R C ~S KoA. a, R-COOH + ATP + KoA R C ~S KoA + AMP + PP i
máj, vese, szív, vázizom ZSÍRSAVAK XIDÁCIÓJA FRANZ KNP német biokémikus írta le először a mechanizmusát 1 lépés: a zsírsavak aktivációja ( a sejt citoplazmájában, rövid zsírsavak < C12 nem aktiválódnak)
MOLEKULÁRIS GENETIKA A DNS SZEREPÉNEK TISZTÁZÁSA
MOLEKULÁRIS GENETIKA A DNS SZEREPÉNEK TISZTÁZÁSA A DNS-ről 1869-ben Friedrich Mischer német orvos írt először. A gennyben talált sejtekben egy foszforban gazdag, de ként nem tartalmazó anyagot talált.
Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei)
Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei) Az antiszenz elv története Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje
Bevezetés a biokémiába fogorvostan hallgatóknak
Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 14. hét METABOLIZMUS III. LIPIDEK, ZSÍRSAVAK β-oxidációja Szerkesztette: Jakus Péter Név: Csoport: Dátum: Labor dolgozat kérdések 1.) ATP mennyiségének
Tel: ;
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Előadói: Dr. Bakos Vince, Kormosné Dr. Bugyi Zsuzsanna, Dr. Török Kitti, Nagy Kinga (BME ABÉT) Előadások anyaga: Dr. Pécs Miklós, Dr. Bakos Vince, Kormosné Dr.
Biológia. Stromájer Gábor Pál
Biológia Stromájer Gábor Pál 2 Az öröklődő információ A nukleinsavak és a fehérjék anyagcseréjének szerepe alapvetően eltér a szénhidrátok és a lipidek anyagcseréjétől. Amíg az utóbbiak elsősorban energiaszolgáltatók
A KOLESZTERIN SZERKEZETE. (koleszterin v. koleszterol)
19 11 12 13 C 21 22 20 18 D 17 16 23 24 25 26 27 HO 2 3 1 A 4 5 10 9 B 6 8 7 14 15 A KOLESZTERIN SZERKEZETE (koleszterin v. koleszterol) - a koleszterin vízben rosszul oldódik - szabad formában vagy koleszterin-észterként
RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek
RNS-ek RNS-ek 1. Az ősi RNS Világ: - az élet hajnalán 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek 3. Egy újonnan felfedezett RNS Világ: - szabályozó RNS-ek 4. Transzkripció 5.
I. Az örökítő anyag felfedezése
1 I. Az örökítő anyag felfedezése Az alábbi feladatokban az egy vagy több helyes választ kell kiválasztanod! 1. Mendel egyik legfontosabb meglátása az volt, hogy (1) A. tiszta származéksorokat hozott létre,
Kromoszómák, Gének centromer
Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két
Farmakológus szakasszisztens Farmakológus szakasszisztens 2/34
-06 Farmakológus szakasszisztens feladatok A 0/007 (II. 7.) SzMM rendelettel módosított /006 (II. 7.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés
Kun Ádám. Növényrendszertani, Ökológiai és Elméleti Biológiai Tanszék, ELTE MTA-ELTE-MTM Ökológiai Kutatócsoport. Tudomány Ünnepe,
Kun Ádám Növényrendszertani, Ökológiai és Elméleti Biológiai Tanszék, ELTE MTA-ELTE-MTM Ökológiai Kutatócsoport Tudomány Ünnepe, 2016.11.22. Miskolc Kun Ádám: A víz szerepe az élet keletkezésében. Tudomány
A METABOLIZMUS ENERGETIKÁJA
A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2014.10.01. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag
A METABOLIZMUS ENERGETIKÁJA
A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2013.10.02. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag
a III. kategória (11-12. évfolyam) feladatlapja
2009/2010. tanév I. forduló a III. kategória (11-12. évfolyam) feladatlapja Versenyző neve:... évfolyama: Iskolája : Település : Felkészítő szaktanár neve:.. Megoldási útmutató A verseny feladatait nyolc
Fotoszintézis. 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége
Fotoszintézis 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége Szerves anyagok képzıdése energia felhasználásával Az élıvilág szerves anyag és oxigénszükségletét biztosítja H2 D
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Előadói: Dr. Bakos Vince, Kormosné Dr. Bugyi Zsuzsanna, Dr. Török Kitti, Nagy Kinga (BME ABÉT)
BIOLÓGIA ALAPJAI (BMEVEMKAKM1; BMEVEMKAMM1) Előadói: Dr. Bakos Vince, Kormosné Dr. Bugyi Zsuzsanna, Dr. Török Kitti, Nagy Kinga (BME ABÉT) Előadások anyaga: Dr. Pécs Miklós, Dr. Bakos Vince, Kormosné Dr.
Biokémiai kutatások ma
Nyitray László Biokémiai Tanszék Hb Biokémiai kutatások ma Makromolekulák szerkezet-funkció kutatása Molekuláris biológia minden szinten Redukcionista molekuláris biológia vs. holisztikus rendszerbiológia
Nukleinsavak építőkövei
ukleinsavak Szerkezeti hierarchia ukleinsavak építőkövei Pirimidin Purin Pirimidin Purin Timin (T) Adenin (A) Adenin (A) Citozin (C) Guanin (G) DS bázisai bázis Citozin (C) Guanin (G) RS bázisai bázis
CHO H H H OH H OH OH H CH2OH CHO OH H HC OH HC OH HC OH CH 2 OH
4. Előadás ukleozidok, nukleotidok, nukleinsavak Történeti háttér Savas karakterű anyagok a sejtmagból 1869-71 DS a sejtmag fő komponense nuclein Friedrich Miescher (Svájc, 1844-1895) 1970: FM Insitute
BIOLÓGIA VERSENY 10. osztály 2016. február 20.
BIOLÓGIA VERSENY 10. osztály 2016. február 20. Kód Elérhető pontszám: 100 Elért pontszám: I. Definíció (2x1 = 2 pont): a) Mikroszkopikus méretű szilárd részecskék aktív bekebelezése b) Molekula, a sejt
MITOCHONDRIUM. Molekuláris sejtbiológia: Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet
Molekuláris sejtbiológia: MITOCHONDRIUM külső membrán belső membrán lemezek / crista matrix Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Tudomány-történet
09. A citromsav ciklus
09. A citromsav ciklus 1 Alternatív nevek: Citromsav ciklus Citrát kör Trikarbonsav ciklus Szent-Györgyi Albert Krebs ciklus Szent-Györgyi Krebs ciklus Hans Adolf Krebs 2 Áttekintés 1 + 8 lépés 0: piruvát
A Biotechnológia természettudományi alapjai
A Biotechnológia természettudományi alapjai Műszaki Menedzser MSc hallgatók számára Hallgatói előadás-jegyzet Előadó: Dr. Pécs Miklós egyetemi docens pecs@eik.bme.hu Lejegyezte: Koroncz Eszter, lelkes
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,
BIOKÉMIA. Simonné Prof. Dr. Sarkadi Livia egyetemi tanár.
BIOKÉMIA Simonné Prof. Dr. Sarkadi Livia egyetemi tanár e-mail: sarkadi@mail.bme.hu Tudományterületi elhelyezés Alaptudományok (pl.: matematika, fizika, kémia, biológia) Alkalmazott tudományok Interdiszciplináris
Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia
Fehérje expressziós rendszerek Gyógyszerészi Biotechnológia Expressziós rendszerek Cél: rekombináns fehérjék előállítása nagy tisztaságban és nagy mennyiségben kísérleti ill. gyakorlati (therapia) felhasználásokra
1b. Fehérje transzport
1b. Fehérje transzport Fehérje transzport CITOSZÓL Nem-szekretoros útvonal sejtmag mitokondrium plasztid peroxiszóma endoplazmás retikulum Szekretoros útvonal lizoszóma endoszóma Golgi sejtfelszín szekretoros
BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA
BIOKÉMIA, GENETIKA 1. Nukleinsavak keresztrejtvény (12+1 p) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1. A nukleinsavak a.-ok összekapcsolódásával kialakuló polimerek. 2. Purinvázas szerves bázis, amely az
3. A w jelű folyamat kémiailag kondenzáció. 4. Ebben az átalakulásban hasonló kémiai reakció zajlik le, mint a zsírok emésztésekor a vékonybélben.
FEHÉRJÉK 1. Fehérjék bioszintézisére csak az autotróf szervezetek képesek. Széndioxidból, vízből és más szervetlen anyagokból csak autotróf élőlények képesek szerves vegyületeket előállítani. Az alábbi
Integráció. Csala Miklós. Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet
Integráció Csala Miklós Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet Anyagcsere jóllakott állapotban Táplálékkal felvett anyagok sorsa szénhidrátok fehérjék lipidek
Kémiai reakció aktivációs energiájának változása enzim jelenlétében
Kémiai reakció aktivációs energiájának változása enzim jelenlétében 1 A szubsztrátok belépnek az aktív centrumba; Az enzim alakja megváltozik, hogy az aktív hely beburkolja a szubsztrátokat. 2 A szubsztrátok
A molekuláris biológia eszközei
A molekuláris biológia eszközei I. Nukleinsavak az élő szervezetekben Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje DNS feladata: információ tárolása és a transzkripció
TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301)
Biokémia és molekuláris biológia I. kurzus (bb5t1301) Tematika 1 TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) 0. Bevezető A (a biokémiáról) (~40 perc: 1. heti előadás) A BIOkémia tárgya
Mire költi a szervezet energiáját?
Glükóz lebontás Lebontó folyamatok A szénhidrátok és zsírok lebontása során széndioxid és víz keletkezése közben energia keletkezik (a széndioxidot kilélegezzük, a vizet pedig szervezetünkben felhasználjuk).
A biokémia alapjai. Typotex Kiadó. Wunderlich Lívius Szarka András
A biokémia alapjai Wunderlich Lívius Szarka András Összefoglaló: A jegyzet elsősorban egészségügyi mérnök MSc. hallgatók részére íródott, de hasznos segítség lehet biomérnök és vegyészmérnök hallgatók
Génexpresszió prokariótákban 1
β-galaktozidáz-szint laktóz elfogy a laktóz Génexpresszió prokariótákban 1 14. A GÉNEXPRESSZIÓ SZABÁ- LYOZÁSA PROKARIÓTÁKBAN Enzimindukció, indukálható operon. Policisztronos. Katabolit represszió, represszálható
POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK
POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK Dr. Pécs Miklós Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 Glikozilálás A rekombináns fehérjék
BIOKÉMIA. levelezõ MSc számára A TANTÁRGY KÖVETELMÉNYRENDSZERE
levelezõ MSc számára A TANTÁRGY KÖVETELMÉNYRENDSZERE MKK 2009/2010. tanév, 1. félév KÖVETELMÉNYRENDSZER A TÁRGY KÖVETELMÉNYRENDSZERE ÉS VIZSGARENDJE 1. A félév elismerésének feltétele S Az összes gyakorlat
Genetika. Tartárgyi adatlap: tantárgy adatai
Genetika Előadás a I. éves Génsebészet szakos hallgatók számára Tartárgyi adatlap: tantárgy adatai 2.1. Tantárgy címe Genetika 2.2. Előadás felelőse Dr. Mara Gyöngyvér, docens 2.3. Egyéb oktatási tevékenységek