A matematikai modellalkotás folyamatáról
|
|
- Alíz Ráczné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Máté László A matematikai modellalkotás folyamatáról 1. A felsőoktatás tömegessé válása olyan problémákat vet fel a matematika oktatásában amelyek a matematikai ismeretszerzés folyamatának az átgondolására inspirálja a felsőoktatásban résztvevő matematikust. Az egyik probléma az, hogy a hallgatóság növekedésével nem tart lépést azok száma akiknek kellő érzékük van a matematikához, a másik pedig, ami nem ujkeletű probléma, hogy a matematikai modellalkotás háttérbe szorul az oktatásban. A matematikai modellalkotás keretében, a lényeges információk szóban, képben majd formulákban történő regisztrálásától eljutunk a matematikai elméletig és eközben a megismerésnek különböző szintjeit és tipusait járjuk be. Matematikai modellalkotáskor szabályosságokat kell észrevenni, a szabályokat szokásos grafikonokban vagy más vizuális formában ábrázolni és végül a matematika nyelvén kell kifejezni. Ez a folyamat különböző megismerési képességeket mozgósit és gazdagabb információt ad a modellről mint a modell pusztán matematikai vizsgálata. Igy többen és jobban értik meg a matematikai elméletet a hallgatóság köréből mint a modellalkotás ismerete nélkül. A matematikai modellalkotást és a matematikai megismerés különböző szintjeit egy egyszerű, a DNS láncok feltérképezésével kapcsolatos modell keretében tárgyaljuk. A probléma igy szól, adott négy jelnek egy sokmilliós hosszúságú láncolata és keresendő ennek egy olyan ábrázolása, amelyből gyors áttekintéssel megállapitható, hogy milyen szavak (jelcsoportok) hiányoznak, vagy szignifikánsan alulreprezentáltak a láncban. Vagyis egy nagyon hosszú jelsorozatot, a DNS lánc szekvenciális modelljét, egyetlen pillantással áttekinthető képpé óhajtunk átalakitani. Ennek egyik megoldását adja a kódok vezérelte káoszjáték, amit Jeffrey-Hao modellnek fogunk nevezni. A következőkben a Jeffrey-Hao modell legegyszerübb változatát épitjük fel, amely csupán az alulreprezentált szavakat mutatja meg. 2. Ebben a modellalkotásban a DNS láncot az a, g, t, c betűkből (a DNS 1
2 láncot alkotó négyféle aminósav nevének kezdőbetűjéből) alkotott nagyon hosszú jelsorozatnak tekintjük. Ezeket a betűket a 0, 1, 2, 3 jelekkel, a négyes számrendszer alapjeleiként fogjuk jelölni. Mivel ekkor a DNS lánc négy külónböző jelnek több milliós láncolata, ezért ezt végtelen jelsorozatnak tekintjük és kódnak nevezzük. Egy véges hosszú jelsorozatot szónak és a kód első n jeléből álló szót a kód n hosszú prefixének nevezzük. A modellalkotás folyamatát a következő lépésekben fogjuk leirni, amelyek egyben megfelelnek a folyamat egyre absztraktabb, matematikusabb szintjeinek. 1. Megadjuk azt az algoritmust, amely a DNS lánc fenti szekvenciális alakját képpé alakitja. 2. Megadjuk adott alulreprezentált szavakhoz tartozó mintahalmaznak a konstrukcióját. Abból tudjuk meg azt, hogy vannak-e és melyek a hiányzó ill. alulreprezentált szavak a DNS láncban, hogy az 1. szerkesztésből nyert halmazt összevetjük a 2. konstrukciójával Megvizsgáljuk a 2.-ben szerkesztett halmazok matematikai tulajdonságait. 4. Megadjuk az eljárás néhany lehetséges általánositását arra az esetre, amikor a különböző jelek száma négynél több. A négyjelű kód képi megjelenitése az egységnégyzetben történik. Az egységnégyzet csúcsai reprezentálják a 0, 1, 2, 3 jeleket és a kódot a következőképpen szerkesztett {P n ; n = 1, 2,...} pontsorozat jeleniti meg (1. ábra). A négyzet θ középpontját összekötjük a kód első jelét reprezentáló k (k {0, 1, 2, 3}) csúcspontjával. Az [θ, k] egyenesszakasz P 1 középpontja lesz a kód első jelének (egyelemű prefix) a képe. Ezután a kód első két jeléből álló prefix képét úgy kapjuk meg, hogy a P 1 pontot összekötjük a kód második jelét reprezentáló k (k {0, 1, 2, 3}) csúcsponttal. A [P 1, k] egyenesszakasz P 2 középpontja lesz a kód első két jeléből álló prefix képe. 2
3
4 Ha már a kód n 1 hosszú prefixének a P n 1 képét megkaptuk, akkor P n, az n hosszúságú prefix képe, a [P n 1, k] egyenesszakasz középpontja lesz. Összegezve: a kód vezérelte káoszjáték a (*) P n+1 = [P n, k] középpontja szerkesztés ismétlése az aktuális k értékekkel (2. ábra). A káoszjáték végeredménye akkor érdekes, ha majdnem üres foltok maradnak a négyzetben (3. ábra). Ezek a (majdnem) üres foltok jelzik, hogy bizonyos szavak nem (alig) fordulnak elő a kódban. Annak felderitésére, hogy melyek ezek a szavak egy másik, ezzel a káoszjátékkal rokon konstrukció szolgál, amely megadja a szavakhoz tartozó mintahalmazokat és amelyeket a szavak portréjának nevezünk. 4. Egy szó portréjának a megrajzolása azzal kezdődik, hogy megszerkesztünk egy négyzetlapot, amely majd meghatározza a szó portréját. Ez a konstrukció is abból áll, hogy a (*) szerkesztést ismételjük ujra meg ujra az aktuális k értékekre de egy négyzetlap minden pontjára. Részletezve: Az egységnégyzet minden P pontját összekötjük a négyzetnek a szó első jelét reprezentáló k csúcspontjával. (Most és a továbbiakban, nyilván elegendő a négyzet negy sarkára elvégezni a szerkesztést.) A kapott négyzetlap a szó első jelének (egyelemű prefix) a képe. Ha már a szó n 1 hosszú prefixének az N n 1 képét megkaptuk, akkor az n hosszú prefix N n képe az a négyzetlap, amelyet úgy kapunk, hogy az N n 1 négyzetlap minden P pontját összekötjük a szó n-edik jelét reprezentáló k csúcsponttal. A szerkesztés eredménye egy 2 l oldalú T 0 négyzetlap, ahol l a szó hosszúsága. T 0 meghatározza a szó portréját (4. ábra). Ismétljük meg a (*) szerkesztést a T 0 pontjaira a k = 0, 1, 2, 3 értékekre. Az igy kapott négy négyzetlap a T 0 -al együtt alkotják a szó 1-portréját (5. ábra). Megismételve m-szer ezt a konstrukciót, az igy kapott négyzetlapok és a T 0 uniója adja a szó m-portréját (6-7 ábra). 3
5
6 Több szó m-portréja az egyes szavak m-portréinak az uniója (8. ábra). Ha m nagy, akkor a négyzetlapokból kialakult mintázat jellemzi a szó hiányát. Ha a kód képében a fehér foltok mintázata megegyezik (nagymértékben hasonlit) bizonyos szavak m-portréjával nagy m esetén, akkor ezek a hiányzó (alulreprrezentált) szavak a kódban. Ilyen például a human immunoglobulin kódja és a 20 m-portréja, ha m > 6 (c=0, g=2 3, 7. ábra). 5. Milyen az m-portrék struktúrája? Úgy látszik, hogy az m-portrék fejlesztése során egymáshoz hasonló, egyre kisebb foltok bukkannak fel, amit határtalan nagyithatóságnak nevezünk és m > 6 értékre az m-portrék már nem változnak. Igy beszélhetünk egy szó, vagy szavak (m-től független) portréjáról (9. ábra). Eddig elemi geometriai eszközöket használtunk. A felsorolt és további tulajdonságok pontos leirására és a portrék részletesebb, pontosabb vizsgálatára szükségünk van egy absztraktabb matematikára, többek között a függvénytan fogalomkörére is. Legyen F k az a függvény, amely az R 2 sik P pontjához a [P, k] egyenesszakasz középpontját rendeli hozzá és ha B az R 2 egy részhalmaza, akkor legyen F k (B) = {F k (P ); P B}. legyen továbbá 3 W (B) = F k (B) k=0 és jelentse a kompoziciót. Ekkor az ω 1... ω n szó portréjában T 0 = F ω1... F ωn ( ), W (T 0 ) a szó 1-portréja és a szó m-portréja m W [k] (T 0 ) k=0 ahol W [k] a W halmazfüggvény k-szoros alkalmazását jelenti. (W [0] (T 0 ) = T 0.) 4
7
8 Ezzel tömören, a függvénytan nyelvén irtuk le az m-portré szerkesztését. Figyelembe véve, hogy m > 6 értékre az m-portrék szemmel láthatóan már nem változnak és hogy végtelen sok halmaz uniója jól meghatározott fogalom a matematikában, egy szó portréját ( ) S = W [k] (T 0 ) k=0 módon értelmezzük. Közvetlen számolással belátható, hogy (**) a következő rekurziv sorozattal is előáll P 0 = P n = W (P n 1 ) T 0 n = 1, 2,... és ezzel magyarázható a határtalan nagyithatóság. Ugyancsak közvetlen számolással W (S) = W (S) T 0 ami azt magyarázza, hogy a portrék nagy m-re már nem változnak szemmel láthatóan. A kapott formulákat, a Jeffrey-Hao modell függvénytani leirását elemezve a portrék olyan fontos tulajdonságait fedezhetjük fel, amelyek elemi geometriai eszközökkel nem is észlelhetők. Ezek közül megemlitjük, hogy az S az egységnégyzet sűrű részhalmaza és az S az egységnégyzettől csupán egy nullamértékű halmazban különbözik és ezeknek a látszatra meglepő tulajdonságoknak is megvan a praktikus vonzatuk. Azt még meg szeretném emliteni, hogy olyan absztrakt tulajdonság, mint a határtalan nagyithatóság, számitógépes grafikai eszközökkel jól szemléltethető, mégpedig úgy hogy m > 6-ra az iterációt és a képernyő ZOOM operációját párhuzamosan működtetjük. 6. Az eljárásnak két féle természetes általánositása van arra az esetre, amikor négynél több különböző jelből álló kóddal van dolgunk. Az egyik általánositás arra épül, hogy a szerkesztés helyett egyszerű aritmetikával is előállithatjuk a kód vezérelte káoszjátékot. Ugyanis ha az n 1 hosszú prefixet reprezentáló P n 1 X-koordinátája (bináris törtben) 0.c 1... c n..., akkor a P n X-koordinátája 5
9 0.0c 1... c n..., ha k = 0, 1 0.1c 1... c n... ha k = 2, 3. Ezt figyelembe véve akárhány dimenzióban (ill. 2 k ) végrehajthatók a szerkesztések abban az értelemben, hogy a pontok koordinátáit állitjuk elő. Ebben az általánositásban különösen érdekes az, amikor a kód nyolc különböző jelet tartalmaz. Ekkor három dimenzióban, az egységkockában történik a káoszjáték és az eredmény a 3D grafika ismert módszereivel tehető egyetlen pillantással áttekinthető képpé. Praktikus szempontból érdekesebb általánositás az amikor nem lépünk ki az R 2 sikból. A jeleket 4-es számrendszerbe irjuk. Legyen a jelek száma 4 m. Ekkor a megfelelő szerkesztésben csak minden m-edik pontot jelöljük be (a szerkesztés m 1 lépese után), mivel ekkor csak minden m-edik pont értelmezhető. Hátránya ennek az általánositásnak, hogy ekkor a k-portré nagyon pici részekből áll és ezért a képernyő ZOOM operációja is szükségeltetik. MEGJEGYZÉS. Érdekes lenne leirt matematikai modellalkotási folyamatot didaktikai szempontból is megvizsgálni. Az elemi geometriától kezdve a halmazfüggvényeken át az n-dimenziós Euklideszi térig különböző absztrakciós szintek szerepelnek. Ezen kivül geometriai, globális jellegű gondolatmenet éppúgy szerepet kap a tárgyalásban, mint algoritmikus konstrukciók és hagyományos levezetések, igy ez a munka más és más kognitiv képességeket és gondolkodási stilust igényel és mozgósit a tanulókban. LINKEK 1. hao/haoleechaos.pdf 2. frame/ima Fractals 3. mate 6
Gráfelméleti alapfogalmak-1
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett
Fraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék
Fraktálok Klasszikus fraktálpéldák I Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 86 Bevezetés. 2 of 86 TARTALOMJEGYZÉK Bevezetés. Az önhasonlóságról intuitív módon Klasszikus
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
Fraktáldimenziókról egyszer en
Máté László Fraktáldimenziókról egyszer en http://matek.fazekas.hu/portal/tanitasianyagok/ A modern matematikának csak nagyon kevés része illeszthet be a középiskolai matematikaoktatásba. Ezen kevesek
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
Segédanyagok. Formális nyelvek a gyakorlatban. Szintaktikai helyesség. Fordítóprogramok. Formális nyelvek, 1. gyakorlat
Formális nyelvek a gyakorlatban Formális nyelvek, 1 gyakorlat Segédanyagok Célja: A programozási nyelvek szintaxisának leírására használatos eszközök, módszerek bemutatása Fogalmak: BNF, szabály, levezethető,
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
FRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar
Példák fraktálokra I Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. február 1. Vázlat 1 Mi a fraktál? 2 A konstrukció Egyszerű tulajdonságok Triadikus ábrázolás Transzlációk
Fraktálok. Löwy Dániel Hints Miklós
alkalmazott erjedéses folyamat sajátságait. Továbbá nemcsak az alkoholnak az emberi szervezetre gyakorolt hatását tudjuk megfigyelni (például a szomszéd dülöngélését és kurjongatását), hanem az alkoholnak
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Shannon és Huffman kód konstrukció tetszőleges. véges test felett
1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián 2. gyakorlat Ismétlés: Megjegyzés: Az ismétlés egy része nem szerepel a dokumentumban, mivel lényegében a teljes 1.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Számalakzatok Sorozatok 3. feladatcsomag
Számalakzatok Sorozatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 13 18 év négyzetszámok háromszögszámok teljes indukció különbségi sorozatok Az ókori görögök szívesen játszottak a pozitív egész számokkal,
IFJÚSÁG-NEVELÉS. Nevelés, gondolkodás, matematika
IFJÚSÁG-NEVELÉS Nevelés, gondolkodás, matematika Érdeklődéssel olvastam a Korunk 1970. novemberi számában Édouard Labin cikkét: Miért érthetetlen a matematika? Egyetértek a cikk megállapításaival, a vázolt
11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet
7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan
Ramsey-féle problémák
FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:
Számítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
Automaták és formális nyelvek
Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt
Példa a report dokumentumosztály használatára
Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............
Deníciók és tételek a beugró vizsgára
Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10.
Matematika J a v í t ó k u l c s 8. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. IEA, 2011 1/1. feladat 1/2. feladat : B : B Item: M032757 Item: M032721
Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg.
Halmazelmélet A matematikai halmazelmélet megalapítója Georg Cantor (1845 1918) matematikus. Cantor Oroszországban született, de életét Németországban töltötte. Egy halmazt elemei megadásával tekintünk
Halmazelméleti alapfogalmak
Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,
A Peano-görbe. Besenyei Ádám ELTE
A Peano-görbe Besenyei Ádám ELTE A folytonos görbe kifejezés hallatán hajlamosak vagyunk először egy, a szó szoros értelmében egybefüggően megrajzolható vonalra gondolni. A görbe fogalma azonban a vártnál
MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA
MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal
Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén
Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén Pék Johanna Budapesti Műszaki és Gazdaságtudományi Egyetem Építészmérnöki Kar Építészeti Ábrázolás
A szabályos sokszögek közelítő szerkesztéséhez
1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
A tér lineáris leképezései síkra
A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása
Elemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012
2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,
A figurális számokról (III.)
A figurális számokról (III.) Tuzson Zoltán, Székelyudvarhely Az el részekben megismerkedhettünk a gnómonszámokkal is, amelyek a következ alakúak voltak: Ezeknek általános alakjuk Gn. Ezután megismerkedtünk
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Rekurzió. Dr. Iványi Péter
Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
MATEMATIKA 5 8. ALAPELVEK, CÉLOK
MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
Algoritmusok tervezése
Az ember legfontosabb energiaforrására a cukorra is ugyanez érvényes, csak fordítva, hiszen az él szervezet csak jobbra forgató cukrokat gyárt és képes felhasználni, míg a balra forgatók az él szervezetben
11. előadás. Konvex poliéderek
11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos
Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1
Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok
2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA matematika 9. évfolyam 1. Számtan, algebra 15 óra 2. Gondolkodási módszerek, halmazok, kombinatorika, valószínűség, statisztika 27 óra 3. Függvények, sorozatok,
Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására
Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
3. Függelék 101 3.1. El ismeretek... 102 3.2. Feladatmegoldások... 110
Tartalomjegyzék 1. Motivációs példák 4 1.1. A geometriai sor egy különös ábrázolása és kibontása...... 5 1.2. Geometriai sor egy tábla szelvényes csokoládéban........ 7 1.3. A halmazelmélet viharos születése:
Matematika (alsó tagozat)
Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára
6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)
6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz
Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
MATEMATIKA. 1. osztály
MATEMATIKA 1. osztály Gondolkodás tudjon egyszerű tárgyakat, elemeket sorba rendezni, összehasonlítani, szétválogatni legyen képes a halmazok számosságának megállapítására (20-as számkörben) használja
JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM
Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim
Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
DiMat II Végtelen halmazok
DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy
Hamilton-körök és DNS molekulák
GoBack Hamilton-körök és DNS Tengely Szabolcs 2005. november 4 tengely@math.klte.hu KöMaL Ifjúsági Ankét 2005 slide 1 Gráfok Gráfok Példa Nehéz dió DNS Hossz - S 1 n G n alkalmazása G = (V,E) egyszerű
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
10. előadás. Konvex halmazok
10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója
Matematika. Padányi Katolikus Gyakorlóiskola 1
Matematika Alapelvek, célok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Hamilton-körök és DNS molekulák
GoBack Hamilton-körök és DNS Tengely Szabolcs 2005. november 4 tengely@math.klte.hu KöMaL Ifjúsági Ankét 2005 slide 1 Gráfok G = (V,E) egyszerű gráf, ha V egy véges halmaz és E ( V 2), V elemei a G gráf
A görög klaszikus kor.
Történeti áttekintés. Történeti mérföldkövek A görög klaszikus kor. Logisztika (aritmetika) és számelmélet. Klukovits Lajos TTIK Bolyai Intézet 2014. március 4. A folyammenti kultúrák hanyatlása a II.
Prímszámok statisztikai analízise
Prímszámok statisztikai analízise Puszta Adrián 28. április 18. Kivonat Munkám során a prímszámok és a páros prímek eloszlását, illetve különbségét vizsgáltam, majd ebből következtettem a véletlenszerű
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Kocka perspektivikus ábrázolása. Bevezetés
1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása
Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás
NTP-KKI-B-15 A köznevelés és kulturális intézményekben működő tehetséggondozó programok támogatása Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás Tudomány és művészetek tehetséggondozó
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
PISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Tudomány és művészetek tehetséggondozó műhelye
Emberi Erőforrások Minisztériuma megbízásából az Emberi Erőforrás Támogatáskezelő nyílt pályázatot hirdetett a köznevelési és a kulturális intézményekben működő tehetséggondozó programok támogatására (NTP-KKI-B-
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Szín számokkal Képábrázolás
2. foglalkozás Szín számokkal Képábrázolás Összegzés A számítógépek a rajzokat, fényképeket és más képeket pusztán számokat használva tárolják. A következő foglalkozás bemutatja, hogyan tudják ezt csinálni.
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból