Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén
|
|
- Fanni Mezei
- 6 évvel ezelőtt
- Látták:
Átírás
1 Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén Pék Johanna Budapesti Műszaki és Gazdaságtudományi Egyetem Építészmérnöki Kar Építészeti Ábrázolás Tanszék Sopron, október 21.
2 Bevezetés MIÉRT SZÜKSÉGES A KÉT SZAK KÖZÖTT MÓDSZERTANI KÜLÖNBSÉGET TENNI? A matematika szakos, illetve az építész hallgatók az alábbi területeken mutatnak eltérést: TUDOMÁNYOS ÉRDEKLŐDÉS ABSZTRAKCIÓS KÉPESSÉG TÉRLÁTÁS FINOMMOTOROS KÉSZSÉG (+ felvételi pontszám)
3 Matematika szakosok erősségei 1. TUDOMÁNYOS ÉRDEKLŐDÉS Egy geometriai tétel esetén a reakció: Matematika szakos hallgatók Miért igaz az állítás? Építészhallgatók Hogyan tudom alkalmazni? Példa: Monge-projekcióban sík és egyenes merőlegességének képi feltétele Matematika szakosok igénylik a bizonyítását, míg az építészek tényként elfogadják.
4 Matematika szakosok erősségei 2. ABSZTRAKCIÓS KÉPESSÉG A hétköznapi világunkhoz képest absztrakt fogalmak, továbbá tételek és módszerek alkalmazása más ábrázolási rendszerben, illetve felülettípusok egységes kezelése Matematika szakos hallgatók Az új világ elemeinek elfogadása és az általánosítás viszonylag gördülékeny. Építészhallgatók Nehézkes absztrakció, a gyakorlatias gondolkodásmód miatt. Fejlesztésre van szükség!
5 Matematika szakosok erősségei 2. Példák: Sík és egyenes döféspontjának globális kezelése Mindkét esetben csak a gyengébb képességű hallgatók problémája. Affinitás és centrális kollineáció Ez az absztrakció belépő szintje. Széteső áthatások geometriai háttere Matematika szakosoknál nem nehéz a szak jellege miatt, építészek esetében elengedhetetlen egy könnyen emészthető geometriai indoklás (geometriai háttér hiányában elvi hibás rajzok készülnek). Másodrendű felületek egységes tárgyalása Már a matematika alapképzésben tanulóknak is gondot okozhat, építészhallgatóknál legfeljebb pár mondatban, szemléletcentrikusan tárgyalható.
6 Építészhallgatók erősségei 1. TÉRLÁTÁS Vetületek kezelése Monge-projekcióban, szerkesztés axonometriában/perspektívában Matematika szakos hallgatók Gyakori a térlátás teljes hiánya. Fejlesztésre van szükség! Építészhallgatók A felvételi követelmények eleve kiszűrik a gyenge térlátással bíró diákokat.
7 Építészhallgatók erősségei 1. Példák: Láthatóság szerinti ábrázolás Matematika alapszakra járók hosszú ideig csak fedőpontokkal képesek megoldani, míg az építésznek készülők pár alkalom után ráérzésre helyesen ábrázolnak. Vetületeivel adott csonkolt kocka szemléletes képe Matematika szakon egzakt algoritmust igényelnek, a csúcsokat elbetűzve, lassan haladnak, a jó térlátású építészek pár perc alatt megoldják a feladatot. Kontúrral kapcsolatos hibák Mindkét helyen a gyengébb hallgatók típushibája a kontúrból kilógó felületi pontok.
8 Építészhallgatók erősségei 2. FINOMMOTOROS KÉSZSÉG Szabadkézi ábrák vagy szerkesztés esetén Matematika szakos hallgatók Pici ábrák, rossz ceruzahasználat stb. Építészhallgatók Igényes munkák, köszönhetően egyrészt a felvételi rendszernek, másrészt a folyamatos szabadkézi rajz oktatásnak. Példa: Görbék és felületek ábrázolása Tanárszakra járók esetén gyakori a csúcsos ellipszis, a darabosan megrajzolt görbe vonalak, építészeknél ez csak a gyengébb képességű hallgatók kezdő hibája.
9 Mit tehetünk a fejlesztésért? Matematika tanárnak készülők esetén: Egy félévnyi ábrázoló geometria kötelezővé tétele. ( korábbi konferencia) Építészhallgatóknál: Az ábrázoló geometria oktatása során minimális konstruktív geometriai ismeret átadása úgy, hogy az ne legyen öncélú. (Ne legyenek geometriai jellegű tervezési hibák.)
10 Jegyzet matematika BSc számára ( korábbról ) CÉLOK csak ízelítő az ábrázoló geometriából geometriai pontosságra törekvés az állításokat bizonyítani kell
11 Segédanyagok építészhallgatóknak CÉLOK A hallgatók többször végiggondolhatják a feladatok megoldásait. Színes ábrák, a könnyebb követhetőségért. Rejtett plusz geometria az érdeklődőknek.
12 Segédanyagok építészhallgatóknak CÉLOK A hallgatók többször végiggondolhatják a feladatok megoldásait. Színes ábrák, a könnyebb követhetőségért. Rejtett plusz geometria az érdeklődőknek.
13 Segédanyagok építész hallgatóknak CÉLOK A hallgatók többször végiggondolhatják a feladatok megoldásait. Színes ábrák, a könnyebb követhetőségért. Rejtett plusz geometria az érdeklődőknek.
14 Hogyan készültek? GeoGebra (A dinamikus volta hatalmas előny.) Gimp2 (A GeoGebra nem tud szépen indexelt betűket és tetszőleges görbeíveket ábrázolni, ezért több rétegű Gimp-fájlok szükségesek.) MS Word (Részletes magyarázó szöveg a szerkesztésekhez.)
15 Hogyan készültek? GeoGebra (A dinamikus volta hatalmas előny.) Gimp2 (A GeoGebra nem tud szépen indexelt betűket és tetszőleges görbeíveket ábrázolni, ezért több rétegű Gimp-fájlok szükségesek.) MS Word (Részletes magyarázó szöveg a szerkesztésekhez.)
16 Hogyan készültek? GeoGebra (A dinamikus volta hatalmas előny.) Gimp2 (A GeoGebra nem tud szépen indexelt betűket és tetszőleges görbeíveket ábrázolni, ezért több rétegű Gimp-fájlok szükségesek.) MS Word (Részletes magyarázó szöveg a szerkesztésekhez.)
17 Az eredmény Hogyan készültek?
18 Elképzelésem egy jegyzetről ÉPÍTÉSZHALLGATÓK SZÁMÁRA Mottó: Ne azért tudja, mert látja, hanem azért lássa, mert tudja. Céljaim: Új, modern nyelvezetű és színes jegyzet. Nyomtatva és pdf-ként is használható legyen. Linkekkel kapcsolódhatna egy központi szerveren tárolt mozgóképes és/vagy interaktív adattárhoz. Az építészeknek kellő geometriai ismeretek korszerű és tömör leírása. Önálló szerkesztésre sarkalljon (például a fejezetek végén található munkalapokkal). A fejezetek végén nehéz, összetett feladatok bemutatása.
19 Elképzelésem egy jegyzetről és a jegyzet egy lapja: Nem túlságosan festékigényes, mégis modern kivitel. Egy-egy fejezet alapvető információkkal, építészeti alkalmazásokkal kezdődne. Konstruktív- és esetlegesen differenciálgeometriai tulajdonságok tényszerű(!) felsorolása. Alapszerkesztések logikus sorrendben, amelyek egy összetett feladat építőelemei. A szerkesztéseknél szabad hely a hallgató jegyzeteinek.
20 KÖSZÖNÖM A FIGYELMET!
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve ÉPÍTŐMÉRNÖKI ÁBRÁZOLÁS II. 1.2 Azonosító (tantárgykód) BMEEOEM AV57 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás
Matematika az építészetben
Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,
1. Munkalap. 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra!
1. Munkalap 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra! 2. Rajzoljon merőleges egyenest az e egyenes P pontjába! e P 3. Ossza fel az AB szakaszt 2:3 arányban!
SZERZŐ: Kiss Róbert. Oldal1
A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott
A dinamikus geometriai rendszerek használatának egy lehetséges területe
Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december
Dr. H. Baráti Ilona TÉRLÁTÁS FEJLŐDÉSÉT SEGÍTŐ GYAKORLÓ FELADATOK. elektronikus segédlet az Építőmérnöki Kar hallgatói számára
Dr. H. Baráti Ilona TÉRLÁTÁS FEJLŐDÉSÉT SEGÍTŐ GYAKORLÓ FELADATOK elektronikus segédlet az Építőmérnöki Kar hallgatói számára Lektor: Nika Endre V. Horn Valéria 2010 Bevezető gondolatok Az elektronikus
PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA. Ábrázoló geometria példákon keresztül
PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA Ábrázoló geometria példákon keresztül 2011 1 Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0028 számú, a Természettudományos (matematika és fizika) képzés a műszaki
Műszaki rajz 37 óra. MŰSZAKI RAJZ 7-8. évfolyam. Pedagógia program kerettanterv. Szabadon választható óra:
MŰSZAKI RAJZ 7-8. évfolyam Pedagógia program kerettanterv Szabadon választható óra: Műszaki rajz 37 óra A műszaki rajz szabadon választható órák célja: hogy a szakirányban továbbtanulóknak sajátos szemléleti
GeoGebra: eszköz és médium
Kovács Zoltán zeus.nyf.hu/ kovacsz Nyíregyházi F iskola Varga Tamás Módszertani napok, 2010 Névjegy oktatás: geometria és határterületei matematikus és programtervez hallgatóknak, technológia alkalmazása
MATEMATIKA 1-2.osztály
MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani
INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA. Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.
INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.hu Abstract/Absztrakt A GeoGebra egy olyan világszerte 190 országban ismert,
Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.
1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. alapján 1-4. évfolyam 2 MATEMATIKA Az iskolai matematikatanítás célja,
különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson amatematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
SZERZŐ: Kiss Róbert. Oldal1
A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó
különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
A foglalkozás céljának eléréséhez a következő tevékenységeket végezzük el:
A FOGLAKOZÁS ADATAI: SZERZŐ Kiss Róbert A FOGLALKOZÁS CÍME Dinamikus rajzolás robotképernyőn A FOGLALKOZÁS RÖVID LEÍRÁSA A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Műszaki rajz. Szakma szerint csoportosítva. Építész rajz. Géprajz. Villamos rajz. Homlokzatok Alaprajzi elrendezés. Elemek rajza Kapcsolódási rajzok
Műszaki rajz Szakma szerint csoportosítva Építész rajz Homlokzatok Alaprajzi elrendezés Géprajz Elemek rajza Kapcsolódási rajzok Villamos rajz Villamos hálózatok Erősáramú berendezések Műszaki rajz Cél
Lineáris vetítési eljárás
Tudományos Diákköri Konferencia Gergye Menyhért Lineáris vetítési eljárás Konzulens: dr. Szoboszlai Mihály egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Építészeti Ábrázolás Tanszék 2014
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet
Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-
Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
16. modul: ALGEBRAI AZONOSSÁGOK
MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott
A szóbeli vizsgafeladatot ha a feladat indokolja a szaktanárok által összeállított mellékletek, segédanyagként felhasználható források egészítik ki.
1185-0 Informatikai ismeretek szakismereti alkalmazása A 10/2007 (II. 27.) SzMM rendelettel módosított 1/200 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel
MINISZTERELNÖKI HIVATAL. Szóbeli vizsgatevékenység
MINISZTERELNÖKI HIVATAL Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 1147-06/1 Átfogó szakdolgozat készítése, mely egy internetes szolgáltatást tervez és valósít meg vagy a kliens-,
AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK
Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK MATEMATIKA FIZIKA BIOLÓGIA FÖLDRAJZ KÉMIA Az OFI kínálata - természettudományok Matematika Matematika Ajánlatunk:
Nemzeti alaptanterv 2012 MATEMATIKA
ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Szoftverfejlesztő Informatikai alkalmazásfejlesztő
114-06 Szoftverfejlesztés Átfogó szakdolgozat készítése, mely vagy adatmodellezés alapján adatbázis-fejlesztés és tesztelési feladat megvalósítása, vagy egy adaptációs jellegű feladat megoldása specifikációja,
11. Balra zárt igazítás A bekezdés sorai a bal oldali margóhoz igazodnak. 12. Beillesztés
1. Ablak A képernyő azon része, amelyben programok futhatnak. 2. Aláhúzott A karakter egyszeres vonallal történő aláhúzása a szövegben. 3. Algoritmus Egy feladat megoldását eredményező, véges számú lépések
Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY
Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY KÉSZÍTETTE: Bartháné Jáger Ottília, Holndonnerné Zátonyi Katalin, Krivánné Czirba Zsuzsanna, Migléczi Lászlóné MISKOLC 2015 Összesített
<X Y SZAKKÖZÉPISKOLA>
Szakképesítés azonosító száma, megnevezése: 54 522 01 0000 00 00 Erősáramú elektrotechnikus Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0900-06 Informatikai,
MINISZTERELNÖKI HIVATAL. Szóbeli vizsgatevékenység
MINISZTERELNÖKI HIVATAL Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: Vizsgarészhez rendelt vizsgafeladat megnevezése: 1185-06/1 Gazdasági tervezési, rendszerelemzési, tervezési vagy
Matematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály
Matematika 1 4. évfolyam Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi
Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret
MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
BME ÉPÍTÉSZMÉRNÖKI KAR 2011/2012. tanév N. I. ÉVFOLYAM RAJZ HÉT_ ÓRAREND. hétfő kedd szerda csütörtök péntek 8
BME ÉPÍTÉSZMÉRNÖKI KAR 2011/20. tanév N. I. ÉVFOLYAM RAJZ HÉT_2011. 2011. 09. 05-09. ÓRAREND hétfő kedd szerda csütörtök péntek Tankör vezetői óra Építészet; Építész Kar; Ismerkedés 13 S Z A K M A I N
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
Oktatási azonosító Tantárgy Elért pontszám Magyar nyelv Matematika Magyar nyelv Matematika
Oktatási azonosító Tantárgy Elért pontszám 76894971600 Magyar nyelv 28 76894971600 Matematika 18 75983808936 Magyar nyelv 22 75983808936 Matematika 17 78988181589 Magyar nyelv 32 78988181589 Matematika
Jaschik Álmos Művészeti Szakközépiskola
Jaschik Álmos Művészeti Szakközépiskola Ha ebbe az épületbe lépsz, immár százéves szándék megvalósulásának mozaikjait láthatod a falaink között, és örömmel látunk mindenkit itt, akik e bennünk élő szépnek
- a szakmai tantárgyak alapozó ismereteinek megszerzését; - az általános műszaki műveltség folyamatos fejlesztését;
MŰSZAKI ÁBRÁZOLÁS A műszaki ábrázolás tantárgy tanításának általános célja a gimnáziumi képzésben, mint szabadon választott tantárgyként a szakképzést választók azt az általános vizuális kultúrát és térszemléletet,
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA matematika 9. évfolyam 1. Számtan, algebra 15 óra 2. Gondolkodási módszerek, halmazok, kombinatorika, valószínűség, statisztika 27 óra 3. Függvények, sorozatok,
Jaschik Álmos Művészeti Szakközépiskola
Jaschik Álmos Művészeti Szakközépiskola Ha ebbe az épületbe lépsz, immár százéves szándék megvalósulásának mozaikjait láthatod a falaink között, és örömmel látunk mindenkit itt, akik e bennünk élő szépnek
"A felelős egyetem módszertani aspektusai" Április 21. Budapest, MellearN konferencia
"A felelős egyetem módszertani aspektusai" 2017. Április 21. Budapest, MellearN konferencia Képzési és kimeneti követelmények (16/2016 EMMI) Illeszkedés az Európai Uniós irányelvekhez: kompetenciák tudás
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
SZÁMÍTÓGÉPES SZIMULÁCIÓ LEHETŐSÉGEI
Geda Gábor Biró Csaba Tánczos Tamás Eszterházy Károly Főiskola gedag@aries.ektf.hu birocs@aries.ektf.hu kistancos@ektf.hu SZÁMÍTÓGÉPES SZIMULÁCIÓ LEHETŐSÉGEI Absztrakt: Az informatikai eszközök fejlődése
képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség
TANTÁRGYI ADATLAP 1. A tanulmányi program jellemzői 1.1 A felsőoktatási intézmény Sapientia Erdélyi Magyar Tudományegyetem 1.2 Kar Marosvásárhelyi Műszaki és Humán Tudományok Kar 1.3 Tanszék Gépészmérnöki
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
<X Y SZAKKÖZÉPISKOLA>
Szakképesítés azonosító száma, megnevezése: 54 522 01 0000 00 00 Erősáramú elektrotechnikus Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0900-06 Informatikai,
Modellek dokumentálása
előadás CAD Rendszerek II AGC2 Piros Attila Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1 / 18 DOKUMENTÁCIÓK FELOSZTÁSA I. Felosztás felhasználás szerint: gyártási dokumentáció
Karibi kincsek Dokumentáció
Dokumentáció 2010.03.24. Gyimesi Róbert Alapvetés Milyen célok elérését remélhetjük a programcsomagtól? Ezen oktatócsomag segítségével egy olyan (matematika)feladatot dolgozhatunk fel, oldhatunk közösen
A szóbeli vizsgafeladatot ha a feladat indokolja a szaktanárok által összeállított mellékletek, segédanyagként felhasználható források egészítik ki.
A 10/007 (II. 7.) SzMM rendelettel módosított 1/00 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
BSc hallgatók szakdolgozatával szemben támasztott követelmények SZTE TTIK Földrajzi és Földtani Tanszékcsoport
BSc hallgatók szakdolgozatával szemben támasztott követelmények SZTE TTIK Földrajzi és Földtani Tanszékcsoport Az alapszakon a záróvizsgára bocsátás feltétele szakdolgozat készítése. A szakdolgozat kreditértéke:
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 2. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
A MŰSZAKI ÁBRÁZOLÁS E-ELARNING ALAPÚ OKTATÁSA A SZÉCHENYI ISTVÁN EGYETEMEN
A MŰSZAKI ÁBRÁZOLÁS E-ELARNING ALAPÚ OKTATÁSA A SZÉCHENYI ISTVÁN EGYETEMEN E-LEARNING BASED INSTRUCTION OF TECHNICAL DRAWING AT SZECHENYI ISTVAN UNIVERSITY Kovács Miklós, kovacsm@sze.hu Széchenyi István
Tudomány és művészetek tehetséggondozó műhelye
Emberi Erőforrások Minisztériuma megbízásából az Emberi Erőforrás Támogatáskezelő nyílt pályázatot hirdetett a köznevelési és a kulturális intézményekben működő tehetséggondozó programok támogatására (NTP-KKI-B-
Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.
Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását
GÉPÉSZETI ALAPISMERETEK
Gépészeti alapismeretek középszint 4 ÉRETTSÉGI VIZSG 04. október 3. GÉPÉSZETI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMUTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUM Fontos tudnivalók
reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. A tanulóktól megkívánjuk a szaknyelv életkornak
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
Kiegészítés a három erő egyensúlyához
1 Kiegészítés a három erő egyensúlyához Egy régebbi dolgozatunkban melynek jele és címe : RD: Három erő egyensúlya ~ kéttámaszú tartó már sok mindent elmondtunk a címbeli témáról. Ez ugyanis egy megkerülhetetlen
A tér lineáris leképezései síkra
A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása
A NEMZETI KÖZNEVELÉSI PORTÁL ÉS A DIGITÁLIS TANANYAGELEMEK BEMUTATÁSA KERESÉS, LEJÁTSZÁS ÉS FELADATKÉSZÍTÉS AZ NKP-N
A NEMZETI KÖZNEVELÉSI PORTÁL ÉS A DIGITÁLIS TANANYAGELEMEK BEMUTATÁSA KERESÉS, LEJÁTSZÁS ÉS FELADATKÉSZÍTÉS AZ NKP-N Az NKP célkitűzései Az NKP komplex, tanulást támogató online rendszer. Fejlesztési célok:
Dinamikus geometriai programok
2011. február 19. Eszköz és médium (fotó: http://sliderulemuseum.com) ugyanez egyben: Enter Reform mozgalmak a formális matematika megalapozását az életkjori sajátosságoknak megfelelő tárgyi tevékenységnek
Leíró művészet, mint modalitás
Leíró művészet, mint modalitás Hohner Katalin, PhD hallgató Kognitív Tudományi tanszék Budapesti Műszaki- és Gazdaságtudományi Egyetem Előadás 2009 Az ábrázoló geometria, mint absztrakt művészet Megértés
A LECSÚSZÓ KÖR ÁBRÁZOLÓ GEOMETRIÁJA. Írta: Hajdu Endre
A LECSÚSZÓ KÖR ÁBRÁZOLÓ GEOMETRIÁJA Írta: Hajdu Endre Geometriai, kinematikai tankönyvekben gyakran találkozhatunk annak az AB szakasznak a példájával, melynek végpontjai egy derékszöget bezáró egyenes
ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 24. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati
Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 15. modul SÍKIDOMOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 15. modul: SÍKIDOMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás
NTP-KKI-B-15 A köznevelés és kulturális intézményekben működő tehetséggondozó programok támogatása Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás Tudomány és művészetek tehetséggondozó
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
Profilmetsződésekről, avagy tórusz és körhenger áthatásáról
1 Profilmetsződésekről, avagy tórusz és körhenger áthatásáról Megesik, hogy nem értjük, amit olvasunk. Ez történt az [ 1 ] szakmai segédkönyv eseté - ben is. Ennek oka lehet ismereteink hiánya, a pontatlan
Prof. Kuczmann Miklós Szabályozástechnika. B.Sc. villamosmérnök szakos hallgatók számára verzió:
Prof. Kuczmann Miklós Szabályozástechnika B.Sc. villamosmérnök szakos hallgatók számára 2018 verzió: 1.0.0. A Szabályozástechnika c. tárgy célja A tantárgy célja a rendszerelmélet és az irányítástechnika
TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség
TANTÁRGYI ADATLAP 1. A tanulmányi program jellemzői 1.1 A felsőoktatási intézmény Sapientia Erdélyi Magyar Tudományegyetem 1.2 Kar Marosvásárhelyi Műszaki és Humán Tudományok Kar 1.3 Tanszék Gépészmérnöki
ADATMODELLEZÉS. Az egyed-kapcsolat modell
ADATMODELLEZÉS Az egyed-kapcsolat modell AZ ADATMODELLEZÉSRŐL Amikor egy adatbázist hozunk létre, a valóság valamilyen szeletéről szeretnénk eltárolni adatokat Elengedhetetlen, hogy valamilyen modellalkotási
Forgáshenger normálisának és érintősíkjának megszerkesztése II/1
Forgáshenger normálisának és érintősíkjának megszerkesztése II/1 Adott egy forgáshenger: t főegyenes tengelye két vetületi képével t: 0, 110,170-től jobb felső sarokig egy felületi pontjának második vetületi
A továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
A vizsgafeladat ismertetése: A jelölt korábban elkészített és értékelt szakdolgozatát röviden ismerteti, és a vizsgabizottság kérdéseire válaszol
A vizsgafeladat ismertetése: A jelölt korábban elkészített és értékelt szakdolgozatát röviden ismerteti, és a vizsgabizottság kérdéseire válaszol Az első részben a vizsgázók számára előre kiadandó feladatkiírás
Egy feladat megoldása Geogebra segítségével
Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra
Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 13. modul SZÖVEGES FELADATOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 13. modul: SZÖVEGES FELADATOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott
5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Rövid tantárgyi leírás. Előfeltétel. A tantárgy neve SZABV31 Szorobán. 2 3 m SZV I-VIII.
Rövid tantárgyi leírás SZABV31 Szorobán Cél: A hallgatók megismertetése a japán számolóeszköz történetével, használatával. A négy alapművelet tanítási módszereinek, lehetőségeinek elsajátíttatása. Felkészítés
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
NEMZETI SZAKKÉPZÉSI ÉS FELNŐTTKÉPZÉSI HIVATAL. Komplex szakmai vizsga Gyakorlati vizsgatevékenység
NEMZETI SZAKKÉPZÉSI ÉS FELNŐTTKÉPZÉSI HIVATAL Komplex szakmai vizsga B Vizsgafeladat megnevezése: B) A szakmai gyakorlati munkásság bemutatása a portfólióval időtartama: 20 perc A vizsgafeladat értékelési
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
Dinamikus geometriai programok
2010. szeptember 18. Ebben a vázlatban arról írok, hogyan válhatnak a dinamikus geometriai programok a matematika tanítás hatékony segítőivé. Reform mozgalmak a formális matematika megalapozását az életkjori
Síklapú testek. Gúlák, hasábok áthatása. Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria
Síklapú testek Gúlák, hasábok áthatása Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Áthatás Két test áthatásának nevezzük a testek közös pontjainak összességéből
BME ÉPÍTÉSZMÉRNÖKI KAR 2012/2013. tanév N. I. ÉVFOLYAM RAJZ HÉT_ ÓRAREND. szerda
BME ÉPÍTÉSZMÉRNÖKI KAR 2012/2013. tanév N. I. ÉVFOLYAM RAJZ HÉT_2012. 2012. 09. 03-07. ÓRAREND hétfő kedd szerda csütörtök péntek 8.15 előadás K.275. KÖSZÖNTŐ, SOKSZÍNŰSÉG 8.15 Tankörvezetői óra Építészet,
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Int 1.4 Szakterület
GÉPÉSZETI ALAPISMERETEK
Gépészeti alapismeretek középszint 0811 ÉRETTSÉGI VIZSGA 008. május 6. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos
MILYEN LEGYEN AZ OKTATÁS? HALLGATÓI ELVÁRÁSOK A FELSŐOKTATÁS OKTATÁSI
MILYEN LEGYEN AZ OKTATÁS? HALLGATÓI ELVÁRÁSOK A FELSŐOKTATÁS OKTATÁSI SZOLGÁLTATÁSÁVAL KAPCSOLATBAN BEDZSULA BÁLINT NJE-GTK MENEDZSMENT ÉS ÜZLETI KOMMUNIKÁCIÓ TANSZÉK FELSŐOKTATÁS Átalakuló felsőoktatás
MATEMATIKA. www.ttik.hu/felvi
Matematika alapszak (BSc) Matematika-X tanárszak (osztatlan) Matematikus mesterszak (MSc) Alkalmazott matematikus mesterszak (MSc) Matematika- és Számítástudományok Doktori Iskola (PhD) www.ttik.hu/felvi
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika