PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA. Ábrázoló geometria példákon keresztül
|
|
- György Balla
- 7 évvel ezelőtt
- Látták:
Átírás
1 PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA Ábrázoló geometria példákon keresztül
2 Készült a TÁMOP /2/A/KMR számú, a Természettudományos (matematika és fizika) képzés a műszaki és informatikai felsőoktatásban című projekt keretében. Készült:a Typotex Kiadó és a BME TTK Matematika Intézet gondozásában Felelős Kiadó: Votisky Zsuzsa Szakmai felelős vezető: Ferenczi Miklós Címlap grafikai terve: Csépány Gergely László, Tóth Norbert ISBN: Copyright: , Szilágyi Brigitta, Prok István A terminusai: A szerző nevének feltüntetése mellett nem kereskedelmi céllal szabadon másolható, terjeszthető, megjelentethető és előadható, de nem módosítható. 2
3 Készségfejlesztő feladatok Tangram Kockaforgatás Formafelismerés Vetületek 1. Térgeometriai bevezetés 2. Merőleges vetítés, kétképsíkos ábrázolás 3. Térelemek ábrázolása, illeszkedési feladatok, láthatóság 4. Egyenes és sík döféspontja, síkok metszésvonala Síkidomok áthatása 5. Áttérés új képsíkrendszerre, egyenes és sík transzformálása Poliéder adott irányú nézete Kitérő egyenesek távolsága, hajlásszöge és normáltranszverzálisa Testábrázolás képsík-transzformációval 6. Poliéder-felület metszete síkkal és egyenessel Poliéder síkmetszete 7. Poliéder-felületek áthatása Poliéder és vetítőhasáb áthatása Poliéderek áthatása 8. Méretes alapszerkesztések Méretes testábrázolás 1 Vetítősíkra épített test Méretes testábrázolás 2 Általános síkra épített test Méretes testábrázolás 3 Általános síkra épített test 9. Ellipszis, hiperbola, parabola 10. Körábrázolás Vetítősíkra illeszkedő kör Általános síkra illeszkedő kör 11. Axonometrikus ábrázolás Testábrázolás ortogonális axonometriában 12. Felületek ábrázolása 13. Forgásfelületek síkmetszete Forgáskúp síkmetszeteinek osztályozása Gömb síkmetszete Forgáshenger síkmetszete Forgáskúp síkmetszete 14. Forgásfelületek áthatása Forgáskúp és gömb áthatása 3
4 4
5 TANGRAM Mi is a Tangram? Egy hét elemből álló összerakós játék, amely Kínából jutott el Európába és Amerikába a XIX. század elején. Számtalan legenda fűződik hozzá. A legelterjedtebb szerint a játék ősi eredetű, és a császári dinasztiák már évezredek óta használják díszítésre, jóslásra, játékra. Ma már a világ egyik legnépszerűbb kirakó játéka. A kalandos eredet azonban, amelyről több forrás is beszámol, valószínűleg csak ügyes reklámfogás. A feladatokban szereplő alakzatokat Tangram elemeiből kell kirakni. Javasoljuk az elemek elkészítését, akár úgy, hogy az alábbi képet kinyomtatjuk és a vastag vonalak mentén feldaraboljuk, akár egyéb időállóbb anyagból hozzuk létre saját játékunkat. Ha feltesszük, hogy a darabokból kirakható alapnégyzet átlója egység hosszúságú, akkor az alkotó elemek méretei a következők: Két nagy egyenlő szárú, derékszögű háromszög az ábrán narancssárga és ciánkék melynek befogói, átfogója pedig hosszúságú. Egy közepes egyenlő szárú, derékszögű háromszög sárga melynek befogói, átfogója hosszúságú. Két kis egyenlő szárú, derékszögű háromszög világoszöld és sötétzöld melynek befogói, átfogója hosszúságú. A barna négyzet oldalhossza:. A sötétkék parallelogramma hosszabbik oldalai, rövidebb oldala hosszúságúak (szögei 45 és 135 ). 5
6 Fu Traing Wang és Chuan-chin Hsiung 1942-ben bizonyította, hogy tizenhárom különböző konvex alakzat készíthető az összes elem felhasználásával. Ezek az alábbiak: A Tangramból kirakhatók például hiányos négyzetek: Emberfigurák: Különböző állatfigurák: Javasoljuk az olvasónak, hogy próbálja meg kirakni a fenti alakzatokat, és ha kedvet kapott a játékhoz, gondolkodjon a mellékelt példatár feladványainak megoldásán is. 6
7 1. 2.* 3. 4.* Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 7
8 1. 2.* 3. 4.* Megoldás 8
9 5. 6.* Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 9
10 5. 6.* Megoldás 10
11 * 12.* Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 11
12 * 12.* Megoldás 12
13 13.* 14.* 15.* 16.* Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 13
14 13.* 14.* 15.* 16.* Megoldás 14
15 17.* 18.* * Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 15
16 17.* 18.* * Megoldás 16
17 21.* 22.* * Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 17
18 21.* 22.* * Megoldás 18
19 25.* 26.* 27.* 28. Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 19
20 25.* 26.* 27.* 28. Megoldás 20
21 * 32. Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 21
22 * 32. Megoldás 22
23 Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 23
24 Megoldás 24
25 Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 25
26 Megoldás 26
27 Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 27
28 Megoldás 28
29 Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 29
30 Megoldás 30
31 Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 31
32 Megoldás 32
33 Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 33
34 Hogyan építhetők fel a fönti ábrák a tangram játék elemeiből? *a csillaggal jelölt ábrákhoz nem kell a készlet összes darabját felhasználni 34
35 Egy kocka pontosan három lapjára vonalakat rajzoltunk, a többit üresen hagytuk. Válasszuk ki a szaggatott vonal után állók közül azokat, amelyek a vonal előtt álló kocka elforgatásával nyerhetők! 35
36 Egy kocka pontosan három lapjára vonalakat rajzoltunk, a többit üresen hagytuk. Válasszuk ki a szaggatott vonal után állók közül azokat, amelyek a vonal előtt álló kocka elforgatásával nyerhetők! 36
37 Egy kocka pontosan három lapjára vonalakat rajzoltunk, a többit üresen hagytuk. Válasszuk ki a szaggatott vonal után állók közül azokat, amelyek a vonal előtt álló kocka elforgatásával nyerhetők! 37
38 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 38
39 Egy lehetséges megoldás -8 kocka- 39
40 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 40
41 Egy lehetséges megoldás -8 kocka- 41
42 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 42
43 Egy lehetséges megoldás -6 kocka- 43
44 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 44
45 Egy lehetséges megoldás -9 kocka- 45
46 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 46
47 Egy lehetséges megoldás -8 kocka- 47
48 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 48
49 Egy lehetséges megoldás -8 kocka- 49
50 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 50
51 Egy lehetséges megoldás -7 kocka- 51
52 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 52
53 Egy lehetséges megoldás -7 kocka- 53
54 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 54
55 Egy lehetséges megoldás -9 kocka- 55
56 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 56
57 Egy lehetséges megoldás -8 kocka- 57
58 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 58
59 Egy lehetséges megoldás -8 kocka- 59
60 Állítsuk elő a fönti, több nézőpontból ábrázolt testnek az élek irányából adódó három rendezett vetületét! Tüntessük föl a láthatóságot! Hány egybevágó kockából építhető fel az alakzat? 60
61 Egy lehetséges megoldás -7 kocka- 61
62 Az ábrán egy síklapokkal határolt test rendezett felül-, oldal- és elölnézeti képeit láthatjuk. Mi lehet a test? Rajzoljuk meg egy általános (pl. axonometrikus) vetületét! 62
63 Megoldás 63
64 Az ábrán egy síklapokkal határolt test rendezett felül-, oldal- és elölnézeti képeit láthatjuk. Mi lehet a test? Rajzoljuk meg egy általános (pl. axonometrikus) vetületét! 64
65 Megoldás 65
66 Az ábrán egy síklapokkal határolt test rendezett felül-, oldal- és elölnézeti képeit láthatjuk. Mi lehet a test? Rajzoljuk meg egy általános (pl. axonometrikus) vetületét! 66
67 Megoldás 67
68 Az ábrán egy síklapokkal határolt test rendezett felül-, oldal- és elölnézeti képeit láthatjuk. Mi lehet a test? Rajzoljuk meg egy általános (pl. axonometrikus) vetületét! 68
69 Megoldás 69
70 Rajzoljuk meg a fönti, síklapokkal határolt testnek a nyilakkal jelölt irányokból adódó három rendezett vetületét! 70
71 Megoldás 71
72 Rajzoljuk meg a fönti, síklapokkal határolt testnek a nyilakkal jelölt irányokból adódó három rendezett vetületét! 72
73 Megoldás 73
74 Rajzoljuk meg a fönti, síklapokkal határolt testnek a nyilakkal jelölt irányokból adódó három rendezett vetületét! 74
75 Megoldás 75
76 76
77 77
78 78
79 79
80 80
81 81
82 82
83 83
84 84
85 85
86 86
87 87
88 88
89 89
90 90
91 91
92 92
93 93
94 94
95 95
96 96
97 97
98 98
99 99
100 100
101 101
102 102
103 103
104 104
105 105
106 106
107 107
108 108
109 109
110 110
111 111
112 112
113 113
114 114
115 115
116 116
117 117
118 118
119 119
120 120
121 121
122 122
123 123
124 124
125 125
126 126
127 127
128 128
129 129
130 130
131 131
132 132
133 133
134 134
135 135
136 136
137 137
138 138
139 139
140 140
141 141
142 142
143 143
144 144
145 145
146 146
147 147
148 148
149 149
150 150
151 151
152 152
153 153
154 154
155 155
156 156
157 157
158 158
159 159
160 160
161 161
162 162
163 163
164 164
165 165
166 166
167 167
168 168
169 169
170 170
171 171
172 172
173 173
174 174
175 175
176 176
177 177
178 178
179 179
180 180
181 181
182 182
183 183
184 184
185 185
186 186
187 187
188 188
VARIÁLHATÓ PÉLDATÁR Matematika2 (A2)
Szép Gabriella VARIÁLHATÓ PÉLDATÁR Matematika2 (A2) 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető, lektor Technikai szerkesztő ISBN Copyright Támogatás: Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0028
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
1. Munkalap. 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra!
1. Munkalap 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra! 2. Rajzoljon merőleges egyenest az e egyenes P pontjába! e P 3. Ossza fel az AB szakaszt 2:3 arányban!
GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA
GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA 2015 A jegyzet bírálója: Dr. Juhász Imre egyetemi tanár A jegyzetet szerkesztette, gépelte, rajzolta: Dr. Geiger János PhD 3 TARTALOMJEGYZÉK ELŐSZÓ... 9 BEVEZETÉS... 11
MINTAFELADATOK. 1. feladat: Két síkidom metszése I.33.,I.34.
MINTAFELADATOK 1. feladat: Két síkidom metszése I.33.,I.34. 2. feladat: Testábrázolás képsíktranszformációval Gúla ábrázolása (a magasságvonalának transzformálásával) Adott az m egyenes, a ráilleszkedő
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
VII.4. RAJZOLGATUNK II. A feladatsor jellemzői
VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
Tóth János - Simon L. Péter - Csikja Rudolf. Differenciálegyenletek feladatgyűjtemény
Tóth János - Simon L. Péter - Csikja Rudolf Differenciálegyenletek feladatgyűjtemény 2011 Támogatás: Készült a TÁMOP 4.1.2.A/1 11/1 2011 0064 számú, a Természettudományos (matematika és fizika) képzés
Forgáshenger normálisának és érintősíkjának megszerkesztése II/1
Forgáshenger normálisának és érintősíkjának megszerkesztése II/1 Adott egy forgáshenger: t főegyenes tengelye két vetületi képével t: 0, 110,170-től jobb felső sarokig egy felületi pontjának második vetületi
GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA FELADATGYÜJTEMÉNY
- GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA FELADATGYÜJTEMÉNY 2012. Bíráló: Dr. Juhász Imre egyetemi tanár TARTALOMJEGYZÉK ELŐSZÓ I. Alapelemek ábrázolása, illeszkedése, metszése 3. 16. Alapelemek ábrázolása I.1.
Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.
1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen
A tér lineáris leképezései síkra
A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása
GEOMETRIA 1, alapszint
GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai
Geometria 1, normálszint
Geometria 1, normálszint 2. előadás 1 / 46 Geometria 1, normálszint ELTE Matematikai Intézet, Geometriai Tanszék 2019 A diákat készítette: Moussong Gábor Előadó: Lakos Gyula lakos@math.elte.hu 2. előadás
Ábrázoló geometria kezdőknek
BANCSIK ZSOLT LAJOS SÁNDOR JUHÁSZ IMRE Ábrázoló geometria kezdőknek mobidiák könyvtár Bancsik Zsolt, Lajos Sándor, Juhász Imre Ábrázoló geometria kezdőknek mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István
VII.2. RAJZOLGATUNK. A feladatsor jellemzői
VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
Hasonlóság 10. évfolyam
Hasonlóság Definíció: A geometriai transzformációk olyan függvények, melyek értelmezési tartománya, és értékkészlete is ponthalmaz. Definíció: Két vagy több geometriai transzformációt egymás után is elvégezhetünk.
Géprajz - gépelemek. AXO OMETRIKUS ábrázolás
Géprajz - gépelemek AXO OMETRIKUS ábrázolás Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Egyszerű testek látszati képe Ábrázolási módok: 1. Vetületi 2. Perspektivikus
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság
Bevezetés a síkgeometriába
a síkgeometriába 2016.01.29. a síkgeometriába 1 Fogalom, alapfogalom Álĺıtás,axióma Térelemek kölcsönös helyzete 2 A szögek A szögek mérése Szögfajták Szögpárok 3 4 a síkgeometriába Fogalom, alapfogalom
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hatévfolyamos képzés Matematika 8. osztály VI. rész: Térgeometria Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék VI.
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal
Síklapú testek Gúlák, hasábok Metszésük egyenessel, síkkal Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Vlasta Szirovicza: Descriptive geometry Síklapú
Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21.
Geometria I. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006. április 21. Szilágyi Ibolya (EKF) Geometria 2006. április 21. 1 / 77 Outline Szimmetrikus alakzatok, speciális
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
Kompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
Programozási nyelvek 2. előadás
Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai
Lineáris vetítési eljárás
Tudományos Diákköri Konferencia Gergye Menyhért Lineáris vetítési eljárás Konzulens: dr. Szoboszlai Mihály egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Építészeti Ábrázolás Tanszék 2014
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve ÉPÍTŐMÉRNÖKI ÁBRÁZOLÁS II. 1.2 Azonosító (tantárgykód) BMEEOEM AV57 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel
6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag
Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,
Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső
Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök Szalóki Dezső matematika, fizika, ábrázoló-geometria és biológia szakos vezetőtanár Lektorálta:
Ferde kúp ellipszis metszete
Ferde kúp ellipszis metszete A ferde kúp az első képsíkon lévő vezérkörével és az M csúcsponttal van megadva. Ha a kúpból ellipszist szeretnénk metszeni, akkor a metsző síknak minden alkotót végesben kell
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
pontokat kapjuk. Tekintsük például az x tengelyt. Ezen ismerjük az O, E
Az axonometria előadások és gyakorlatok vázlata Bevezetés Az axonometrikus ábrázolás feladata, hogy a térbeli alakzatok szemléletes képét gyorsan és egyszerűen állítsuk elő. Egy alakzat szemléletes képe
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!
1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
Tárgyak műszaki ábrázolása. Metszeti ábrázolás
Tárgyak műszaki ábrázolása Metszeti ábrázolás Ábrázolás metszetekkel A belső üregek, furatok, stb. szemléletes bemutatására a metszeti ábrázolás szolgál A metszeti ábrázolás elve Az üreges tárgyat egy
Geometriai alapismeretek
Geometriai alapismeretek A geometria alapfogalmai a tapasztalat útján absztrakcióval alakultak ki. Térelemek: pont, egyenes, sík Térelemek kölcsönös helyzete, fontosabb alapesetek: Egy pont vagy illeszkedik
Geometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Kocka perspektivikus ábrázolása. Bevezetés
1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása
Axonometria és perspektíva. Szemléltető céllal készülő ábrák
Axonometria és perspektíva Szemléltető céllal készülő ábrák Axonometria Jelentése: tengelyek mentén való mérés (axis: tengely, metrum: mérték) Az axonometria a koordinátarendszer tengelyein mért távolságok,
TENB 011 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése
EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Á B R Á Z O L Ó G E O M E T R I A TENB 011 segédlet a PTE PMMK építőmérnök hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Építőmérnöki ábrázolás házi feladatok 2018/19 I. szemeszter
Építőmérnöki ábrázolás házi feladatok 2018/19 I. szemeszter Formai követelmények A félév során 6 rajzfeladatot és egy papír makettet kell elkészíteni a megadott határidőre. A házi feladatok A3-as (420x297mm)
Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen
A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Vezetéknév:... Utónév:... Osztály:... Iskola:... Mate gyűjtemény EDITURA PARALELA 45
Vezetéknév:... Utónév:... Osztály:... Iskola:...... Mate 2000+ gyűjtemény Jelen kiadvány az érvényben lévő Tanterv alapján készült, melyet a Nemzeti Oktatási Minisztérium 5003/2.12.2014-es határozatszámmal
Műszaki rajz. Szakma szerint csoportosítva. Építész rajz. Géprajz. Villamos rajz. Homlokzatok Alaprajzi elrendezés. Elemek rajza Kapcsolódási rajzok
Műszaki rajz Szakma szerint csoportosítva Építész rajz Homlokzatok Alaprajzi elrendezés Géprajz Elemek rajza Kapcsolódási rajzok Villamos rajz Villamos hálózatok Erősáramú berendezések Műszaki rajz Cél
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba
ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Építészeti és építési alapismeretek középszint 0721 ÉRETTSÉGI VIZSGA 2007. október 24. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS
A LECSÚSZÓ KÖR ÁBRÁZOLÓ GEOMETRIÁJA. Írta: Hajdu Endre
A LECSÚSZÓ KÖR ÁBRÁZOLÓ GEOMETRIÁJA Írta: Hajdu Endre Geometriai, kinematikai tankönyvekben gyakran találkozhatunk annak az AB szakasznak a példájával, melynek végpontjai egy derékszöget bezáró egyenes
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
Geometriai példatár 2.
Geometriai példatár 2 Metrikus feladatok Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 2: Metrikus feladatok
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Koordinátageometriai gyakorló feladatok I ( vektorok )
Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor
TE IS LáTOd, AMIT Én LáTOk?
MATEMATIKAI KOMPETENCIATERÜLET TE IS LáTOd, AMIT Én LáTOk? TÉRSZEMLÉLET FEJLESZTÉS 5 12. ÉVFOLYAM I. RÉSZ módszertani ajánlások FELADATlapok A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program
Kiindulás 01. Ábrázoló geometria "testépítés" transzformáció segítségével. n 2 " x 1,2. n 1 '
Kiindulás 01 A négyszög alapú szabályos hasáb x 1,2 AB szakas második képe 02 A négyszög alapú szabályos hasáb Transzformáció 1. 03 A négyszög alapú szabályos hasáb 2. Négyzet alaplap élbe transzformálása,
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
Nagy Erika. Matekból Ötös. 5. osztályosoknak. www.matek.info
Nagy Erika Matekból Ötös 5. osztályosoknak www.matek.info 1 Készítette: Nagy Erika 2009 Javított kiadás 2010 MINDEN JOG FENNTARTVA! Jelen kiadványt vagy annak részeit tilos bármilyen eljárással (elektronikusan,
1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK
MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,
MATEMATIKA C 12. évfolyam 4. modul Még egyszer!
MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok
Egy sajátos ábrázolási feladatról
1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:
A TERMÉSZETES SZÁMOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
- a szakmai tantárgyak alapozó ismereteinek megszerzését; - az általános műszaki műveltség folyamatos fejlesztését;
MŰSZAKI ÁBRÁZOLÁS A műszaki ábrázolás tantárgy tanításának általános célja a gimnáziumi képzésben, mint szabadon választott tantárgyként a szakképzést választók azt az általános vizuális kultúrát és térszemléletet,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.
Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén
Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén Pék Johanna Budapesti Műszaki és Gazdaságtudományi Egyetem Építészmérnöki Kar Építészeti Ábrázolás
ÉPÍTŐMÉRNÖKI ÁBRÁZOLÁS
SEGÉDLET AZ ÉPÍTŐMÉRNÖKI ÁBRÁZOLÁS TANTÁRGYHOZ II. RÉSZ 2014. 1 Bevezetés 2011-ben az Építőmérnöki ábrázolás tantárgy előadási és gyakorlati tananyaga bővítésre került. Jelen jegyzet a 2006-ban Nika Endre,
2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal