Elméleti fizikai kémia II. Adszorpció God created bulk but the Devil created surface Wolfgang Pauli.
|
|
- Márton Orosz
- 8 évvel ezelőtt
- Látták:
Átírás
1 Elmélet fzka kéma II dszorpcó God created bulk but the Devl created surface Wolfgang Paul.
2 Felület feszültség felület molekulákra anzotrop erőtér hat. Egy befelé húzó nettó erő hat, am annál nagyobb mnél nagyobb az aszmmetra. Mután kalakul a mnmáls felszín, a mechanka egyensúly, az eredő erő nulla, a felszín nagysága nem csökken tovább. Növeléséhez energa kell. z az erő amely összetartja a felszínt jellemző az anyagra Egységny felület szabadentalpája, J/m 2 dg d n, p, T összehúzó erő mnmáls nagyságú felületet alakít k. De ez nem a felület feszültség!!!! felület feszültség egységny új felület kalakulásához szükséges munka zoterm reverzbls körülmények között, állandó n, p, V mellett tszta folyadékok esetében. G = (tszta folyadéknál nncsenek egyéb tagok, pl. koncentrácó-változás) mndg poztív ezért a felület,, csak csökkenhet önként ameddg lehet.
3 dszorpcó Fzka kéma alapkurzus Gyakorlatlag csak a gázok szorpcója (Langmur, BET) Kollodka alapkurzus dszorpcó folyadék gáz felületen Itt a Gbbs-zotermát vettük alapul (de mnek!) Gbbs-zotermával adszorpcó termodnamka leírása kssé komplkált és nem ntegrálható egyenlethez vezet. Fogalom: rendszer egy komponensének koncentrácója ksebb, vagy nagyobb a határfelületen, mnt a tömbfázsban.
4 határfelület fogalmának pontosítása határfelületek fgyelembevétele esetében a fázstörvény nem érvényes. Extenzív paraméterre (G,U,H,n ) B=B + B + B Két megközelítés létezk: a felület fázs és a felület többlet alkalmazása. -fázs -fázs -fázs -fázs pros vonal b=b/v (ntenzív def.) ntenzív sajátság értéket mutatja az x távolság függvényében
5 felület fázs modell -fázs Felület fázs: két matematka határfelülettel defnált kváz harmadk fázs, amelynek olyan vastagnak kell lenn, hogy mnden zavaró hatás ezen belül legyen. -fázs -fázs kérdés, hogy m az ntenzív változó értéke a felület fázson belül.
6 felület többlet modell. felület többlet: a felület egy matematka határfelület; a tömbfázsok megtartják eddg az ntenzív sajátságakat ez a modellrendszer és az extenzívjek számítottak, a valós pedg a rendszerekben (fázsokban) mértek: B többlet = B = B valós- B modell Fontos: a térfogat kvétel, az mndg a tömbfázsokhoz tartozk
7 Nem degen a koncepcó: a feszültség felülete (Young 1805) felület feszültségnél hallgatólagosan defnáltuk a feszültség felületét mnt matematka felületet.
8 Példák Általánosságban B legyen extenzív és b az ntenzív párja, pl. b=b/v B modell = b V + b V B = B valód -(b V + b V ) Példa: az anyagmennység koncentrácó pár c =n /V n modell = c V + c V n = n -(c V + c V ) felület többlet modellt Gbbs fejlesztette k, és ez az elterjedtebb. De ez nem azt jelent, hogy ez a valóság. Egyszerűen többen feszültek nek a kérdésnek, és számomra (és a többség számára) ez a legérthetőbb.
9 dszorpcó a határfelületen n P N n többlet mennység BCD terület = n az fázsban (modell), N a görbe felett terület DEFG terület = n az fázsban (modell), P a görbe alatt terület Ha ráfogjuk BD-re a határfelületet, akkor poztív szorpcó van: n = P(tt a valós érték nagyobb)-n (tt a valós érték ksebb). ha HJ-re tesszük, akkor negatív, amnt a nylak jelzk. valós érték a görbe vonal alatt terület
10 Gbbs konvencó: az elválasztó felület Legyen egy fő komponens és arra gaz legyen a matematka határfelületen, hogy =n / = 0 ahol a felület többlet koncentrácó konvencó módja a kényelem Pl. etanol víz elegy (40 %?) a vízre negatív az etanolra poztív. ddg toljuk a határfelületet a folyadék rányába, amíg a víz többletkoncentrácója zérus.
11 Gbbs-konvencó alkalmazása I. Rendszer V térfogatú és két fázsú, α és -fázs: V = V α + V Két komponensű: és B de a B helyett az általánosság kedvéért -t használunk
12 Gbbs-konvencó és a relatív adszorpcó Relatív adszorpcó két anyag mennységének vszonya és elmnálunk belőle mndent am határfelület pozícójától függ Ez osztva -val a relatív adszorpcója -nek - hoz képest: Ha =0 akkor = (Gbbs) n n c V ( c c ) V mert V V V n n c V ( c c ) V n n c c c c c c n c V n cv c c c c c Független a határfelület helyétől. c Csak az fázst nézzük!
13 levezetés részlete n c c n c V c c n ( ) n,valós c V, valós ( ) ( ) ( ) c c c c n n ( c c ) ( c c ) n,valós n c V, valós c V Mndegy hogyan defnáljuk, csak egyformán kell! Gyakorlatlag, am a másk fázsban van az felület többlet.
14 Termodnamka potencálfüggvények 1. (smétlés) z adszorpcós zoterma levezetése z első főtétel: a határfelület két fázs között van, és. munkavégzés összetevődk a térfogat munkából, az összetétel változásából és a határfelület méretének változásból: dw p dv p dv d dn du dq dw TdS p dv p dv d dn H U p V p V 1 dh Td S + V dp V dp d dn N N 1 N 1
15 Termodnamka potencálfüggvények 2 (smétlés) G G( T, p,, n, n,... n ) 1 2 k G G G G dg dt dp d dn T p n p, n,,, 1 Tn T p n T, p, n G G S T p pn, Tn, G G RT ln c n T, p, n T, p, n k V j 0 j természet vszonylagos stabltása dg SdT Vdp d dn N 1
16 Gbbs-zoterma, szabadentalpa többlet k dg SdT Vdp d dn dg dg dg dg S S S dt V dp V dp d dn dn dn 1 dg d dn def. G n dg d d dn n d 0 d n d következmény: d d d d RTd ln c mert egyensúlyban egyezk az oldattal d dln c RT
17 Gbbs-zoterma egy oldott anyagra két fázsra d d ln RT c dln c B B Gbbs-konvencó az =2 esetre B 1 d cb d RT d ln( c ) RT dc B B Ezt tanultuk! dszorpcó oldatokból.
18 M a helyzet a Langmur-zotermával? Szyszkowsk egyenlet: b ln(1 c / a) B B 1 d cb d RT d ln( c ) RT dc B B Beírva a Gbbs-egyenletbe és dfferencálva és Bc B 1 c 1/ a B B b RT
19 Langmur - zoterma Kp ka n K 1 Kp k n d
20 Felület folyamatok sebessége: pl. dsszocatív kemszorpcó 1. Dffúzó a felületre (oldatbel probléma) 2. dszorpcó-deszorpcó (Langmur) 3. ktvált adszorpcó (E-R) 4. Dffúzó a felületen (L-H) 5. Deszorpcó a felületről. Z w p (2 mkt ) 1/2 Maxmáls adszorpcós sebesség 2 molekula dsszocatív kemszorpcója. felső esetben a szorpcó sebessége a s.m.l. z alsó esetben lehet kéma reakcó aktválása.
21 Langmur-féle knetka zoterma d kan 1 p dt d kn d dt n Kp k K N 1 Kp k a d 1. z aktív helyek egymástól függetlenek 2. z egyensúly beáll 3. Nncs másodk szorpcós réteg
22 ktvált adszorpcó (Langmur-típus) B + B az adszorpcó során dsszocál d 2 ka N 1 p dt d 2 kd N dt 1/2 n Kp K 1/2 N 1 Kp k k a d 2. Mndkét részecskének helyet kell találn 3. két részecskének ütközn kell a deszorpcóhoz. deszorpcó mndg aktvált folyamat.
23 Heterogén katalízs Összevetés: a kéma reakcó sebességét vethetjük össze az aktválás paraméterek nem mndg rányadók Tpkus értékek: q* ~ cm -3 C s ~ cm -2 Vagy nagyon nagy felület vagy nagy aktválás energa különbség kell (70 kj, 300 K) v v ho he kt q* B e h q q kt 1 h q q B B E RT B c e E E 0, ho E RT 0, he 0, h 0, ho vhe c s RT RT 12 ( E0) ln ln e 10 v q * RT ho s
24 Néhány példa HI bomlás felület E a /kj mol arany 105 platna 140 N 2 O bomlás - >250 arany 120 platna 136 CaO 146 l 2 O NH 3 bomlás - >340 W 162 Mo
25 Mechanzmus 1 (Langmur-Hnshelwood, LH) k + B P v k v K p K p ; 1 K p K p 1 K p K p B B B B B B B B kk K p p 1K p B B K p B B 2 1. Gyéren fedett felület: a nevező 1 lesz mert K p << 1. reakcó knetkalag másodrendű lesz. Igen gyakor 2. z egyk () gyengén kötődk (K p << (1+ K B p B )) akkor akkor maxmum van a p B függvényében (CO 2 +H 2 (platna)) 3. Ha B erősen kötődk, akkor -1 rendű lesz B-re (CO + O 2, kvarc, platna)
26 (Langmur) Eley-Rdeal (ER) mechanzmus + B v v 1 kk p p 1 K p B k P kkppb K p K p B B v kp B Ez valójában egy szélsőséges eset, amkor B egyáltalán nem kötődk. Ez rtkán fordul elő, és ha B kötődk, akkor a LH mechanzmus s megtörténk, lletve párhuzamosan meg a két folyamat. Ilyenkor vegyes rendű reakcók jönnek létre.
Kolloid rendszerek definíciója, osztályozása, jellemzése. Molekuláris kölcsönhatások. Határfelüleleti jelenségek (fluid határfelületek)
Kollod rendszerek defnícója, osztályozása, jellemzése. olekulárs kölcsönhatások. Határfelülelet jelenségek (flud határfelületek) Kollodka helye Bológa Kollodkéma Fzka kéma bokéma Szerves kéma Fzka A kéma
Doktori értekezés. Abrankó-Rideg Nóra TENZIDEK FOLYADÉK/GÁZ HATÁRFELÜLETEN KIALAKULT ADSZORPCIÓS RÉTEGÉNEK VIZSGÁLATA SZÁMÍTÓGÉPES SZIMULÁCIÓVAL
Doktor értekezés Abrankó-Rdeg Nóra TENZIDEK FOLYADÉK/GÁZ HATÁRFELÜLETEN KIALAKULT ADSZORPCIÓS RÉTEGÉNEK VIZSGÁLATA SZÁMÍTÓGÉPES SZIMULÁCIÓVAL Témavezetők: Dr. Jedlovszky Pál, egyetem tanár Dr. Varga Imre,
Fizika II. (Termosztatika, termodinamika)
Fzka II. (Termosztatka, termodnamka) előadás jegyzet Élelmszermérnök, Szőlész-borász mérnök és omérnök hallgatóknak Dr. Frtha Ferenc. árls 4. Tartalom evezetés.... Hőmérséklet, I. főtétel. Ideáls gázok...3
Bevezetés a kémiai termodinamikába
A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal
Határfelületi jelenségek: fluid határfelületek
Határfelületi jelenségek: fluid határfelületek Bányai István 3. óra Határfelületi jelenségek: fluid határfelületek A felület fogalma A felületi feszültség Kontaktszög, nedvesedés, szétterülés Adszorpció
VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN
VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN Bevezetés: Folyadékok - elsősorban savak, sók, bázsok vzes oldata - áramvezetésének gen fontos gyakorlat alkalmazása vannak. Leggyakrabban az elektronkus
Elméleti fizikai kémia II. Felületek termodinamikája nts/tamop/mfk/ch05.html
Elmélet fzka kéma II Felületek termodnamkája http://www.ttk.undeb.hu/docume nts/tamop/mfk/ch05.html Az előadások tartalma 1. A (határ)felületek fogalma, termodnamka sajátsága. A felület feszültség, Laplace-nyomás,
Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek
Szennyvíztsztítás technológa számítások és vízmnőség értékelés módszerek Segédlet a Szennyvíztsztítás c. tantárgy gyakorlat foglalkozásahoz Dr. Takács János ME, Eljárástechnka Tsz. 00. BEVEZETÉS Áldjon,
Termodinamikai állapot függvények és a mólhő kapcsolata
ermdnamka állapt függvények és a mólhő kapslata A mólhő mnd állandó nymásn, mnd állandó térfgatn könnyen mérhető. A különböző energetka és mdellszámításkhz vsznt az állapt függvényeket - a belső energát,
A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei:
AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának tényezői
1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi
1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Folyadék-gáz, szilárd-gáz folyadék-folyadék és folyadék-szilárd határfelületek. Adszorpció és orientáció a határfelületen. Adszorpció oldatból és
Folyadék-gáz, szilárd-gáz folyadék-folyadék és folyadék-szilárd határfelületek. Adszorpció és orientáció a határfelületen. Adszorpció oldatból és elegyből. Görbült felületek, Laplace nyomás levegő p 1
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
JAVASLAT NÓGRÁD MEGYEI ÖNKORMÁNYZAT KÖZGYŰLÉSÉNEK ELNÖKE. Az előterjesztés törvényes: dr. Barta László
NÓGRÁD MEGYEI ÖNKORMÁNYZAT KÖZGYŰLÉSÉNEK ELNÖKE 50-14/2012.ikt.sz. 3. sz. napirendi pont Az előterjesztés törvényes: dr. Barta László JAVASLAT a Nógrád Megyei Önkormányzat Közgyűlésének Hivatala alapító
[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS
A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS 1., Merev testek általános statikája mértékegységek a mechanikában a számító- és szerkesztő eljárások parallel alkalmazása Statikai
Természettudomány. 1-2. témakör: Atomok, atommodellek Anyagok, gázok
Természettudomány 1-2. témakör: Atomok, atommodellek Anyagok, gázok Atommodellek viták, elképzelések, tények I. i.e. 600. körül: Thálész: a víz az ősanyag i.e. IV-V. század: Démokritosz: az anyagot parányi
+ - kondenzátor. Elektromos áram
Tóth : Eektromos áram/1 1 Eektromos áram tapasztaat szernt az eektromos tötések az anyagokban ksebb vagy nagyobb mértékben hosszú távú mozgásra képesek tötések egyrányú, hosszútávú mozgását eektromos áramnak
7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL Számos technológiai folyamat, kémiai reakció színtere gáz, vagy folyékony közeg (fluid közeg). Gondoljunk csak a fémek előállításakor
Az elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
1-2. melléklet: Állóvíz típusok referencia jellemzői (11, 13)
Vízgyűjtő-gazdálkodási Terv 2-10 Zagyva 1-2. melléklet: Állóvíz típusok referencia jellemzői (11, 13) 1-2. melléklet Állóvíz típusok referencia jellemzői - 1 - 1-2 melléklet: Állóvizek referencia jellemz
Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A vllamos forgógépek, mutatós műszerek működésének alapja Magnetosztatka mező: nyugvó állandó mágnesek és egyenáramok dőben állandó
VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006
ÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZÉFOLYAM 6. Az elszgetelt rendszer határfelületén át nem áramlk sem energa, sem anyag. A zárt rendszer határfelületén energa léhet át, anyag nem. A nytott rendszer
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
A mechanika alapjai. A pontszerű testek dinamikája. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29.
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Bevezetés Newton I. Newton II. Newton III. Newton IV. 2 / 27 Bevezetés Bevezetés Newton I.
Kooperáció és intelligencia
Kooperáció és intelligencia Tanulás többágenses szervezetekben/2 Tanulás több ágensből álló környezetben -a mozgó cél tanulás problémája (alapvetően megerősítéses tanulás) Legyen az ágens közösség formalizált
Mágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia középszint 1412 ÉRETTSÉGI VIZSGA 2015. május 14. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei
A vas-oxidok redukciós folyamatainak termodinamikája
BUDAESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Anyag- és gyártástechnológia (hd) féléves házi feladat A vas-oxidok redukciós folyamatainak termodinamikája Thiele Ádám WTOSJ Budapest, 11
Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék
Reológia 2 Bányai István DE Kolloid- és Környezetkémiai Tanszék Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V 1 p p t 8 l 1 2 r 2 x Höppler-típusú viszkoziméter v 2g 9 2 testgömb
Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont]
B feladat : Ebben a kísérleti részben vizsgáljuk, Összpontszám: 20 B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását B1 A tej pufferkapacitása
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző
lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (
A nyugalomban levő levegő fizikai jellemzői. Dr. Lakotár Katalin
A nyugalomban levő levegő fizikai jellemzői Dr. Lakotár Katalin Száraz, nyugalomban levő levegő légköri jellemzői egyszerűsített légkör modell állapotjelzői: sűrűség vagy fajlagos térfogat térfogategységben
METROLÓGIA ÉS HIBASZÁMíTÁS
METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.
Ahol mindig Ön az első! www.eon.hu/ugyintezes. Segítünk online ügyféllé válni Kisokos
Ahol mndg Ön az első! www.eon.hu/ugyntezes Segítünk onlne ügyféllé váln Ksokos Kedves Ügyfelünk! Szeretnénk, ha Ön s megsmerkedne Onlne ügyfélszolgálatunkkal (www.eon.hu/ugyntezes), amelyen keresztül egyszerűen,
1. Metrótörténet. A feladat folytatása a következő oldalon található. Informatika emelt szint. m2_blaha.jpg, m3_nagyvaradter.jpg és m4_furopajzs.jpg.
1. Metrótörténet A fővárosi metróhálózat a tömegközlekedés gerincét adja. A vonalak építésének története egészen a XIX. század végéig nyúlik vissza. Feladata, hogy készítse el a négy metróvonal történetét
A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.
A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
FIZIKAI KÉMIA KOHÓMÉRNÖK MESTERKÉPZÉS LEVELEZŐ
FIZIKAI KÉMIA KOHÓMÉRNÖK MESTERKÉPZÉS LEVELEZŐ TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI TANSZÉK Miskolc, 2008. Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyző,
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti
A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek
BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal
Merev test mozgása. A merev test kinematikájának alapjai
TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével
Előgyergyártott konzolos és konzolos támfalas közlekedési vasbeton elemcsaládok a kerékpáros és gyalogos közlekedési területek növelésére
Előgyergyártott konzolos és konzolos támfalas közlekedési vasbeton elemcsaládok a kerékpáros és gyalogos közlekedési területek növelésére Adott esetben hegy- és dombvidéken, vízparton, hídfőknél az egyetlen
2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
Vasúti menetrendek optimalizálása
Vasúti menetrendek optimalizálása Jüttner Alpár ELTE TTK Operációkutatási Tsz. Jüttner Alpár (ELTE TTK) Vasúti menetrendek optimalizálása 1 / 10 Vasúti menetrendek tervezése Bemenet A vasúthálózat leírása
Környezetvédelmi analitika
Az anyag a TÁMOP-4...A/- /--89 téma keretében készült a Pannon Egyetemen. Környezetmérnök Tudástár Sorozat szerkesztő: Dr. Domokos Endre XXXIV. kötet Környezetvédelm analtka Rezgés spektroszkópa Blles
MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése
MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA Napkollektorok üzem jellemzőnek modellezése Doktor (PhD) értekezés tézse Péter Szabó István Gödöllő 015 A doktor skola megnevezése: Műszak Tudomány Doktor Iskola tudományága:
Villamos kapcsolókészülékek BMEVIVEA336
Villamos kapcsolókészülékek BMEVIVEA336 Szigetelések feladatai, igénybevételei A villamos szigetelés feladata: Az üzemszerűen vagy időszakosan különböző potenciálon lévő vezető részek (fém alkatrészek
Programozás I. - 9. gyakorlat
Programozás I. - 9. gyakorlat Mutatók, dinamikus memóriakezelés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 9, 2009 1 tar@dcs.vein.hu
Anyagszerkezet és vizsgálat. 3. Előadás
SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat NGB_AJ021_1 3. Előadás Dr. Hargitai Hajnalka (Csizmazia Ferencné dr. előadásanyagai alapján) 1 Tematika Színfémek
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia középszint 0622 ÉRETTSÉGI VIZSGA 2007. október 31. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Az írásbeli feladatok értékelésének
Játékok (domináns stratégia, alkalmazása. 2016.03.30.
Játékok (domináns stratégia, Nash-egyensúly). A Nashegyensúly koncepciójának alkalmazása. 2016.03.30. Játékelmélet és közgazdaságtan 1914: Zermelo (sakk) 1944. Neumann-Morgenstern: Game Theory and Economic
Lendület, lendületmegmaradás
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat
Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:
Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!
Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Hitelderivatívák árazása sztochasztikus volatilitás modellekkel
Eötvös Loránd Tudományegyetem Természettudomány Kar Budapest Corvnus Egyetem Közgazdaságtudomány Kar Hteldervatívák árazása sztochasztkus volatltás modellekkel Bztosítás és pénzügy matematka MSc Kvanttatív
Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található
Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar
Leier árokburkoló elem
Leier ár A szélsőséges időjárás miatt megnövekedett csapadékvíz elvezetése Magyarországon is egyre fontosabbá válik. A meglévő elavult földmedrű rendszerek felújítását, új rendszerek kiépítését csak a
Leica DISTOTMD510. X310 The original laser distance meter. The original laser distance meter
TM Leca DISTO Leca DISTOTMD510 X10 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - - -
4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme
HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató
BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék. Hőkezelés 2. (PhD) féléves házi feladat. Acélok cementálása. Thiele Ádám WTOSJ2
BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Hőkezelés. (PhD) féléves házi feladat Acélok cementálása Thiele Ádám WTOSJ Budaest, 11 Tartalomjegyzék 1. A termokémiai kezeléseknél lejátszódó
HIBAJEGYZÉK az Alapvető fizikai kémiai mérések, és a kísérleti adatok feldolgozása
HIBAJEGYZÉK az Alapvető fzka kéma mérések, és a kísérlet adatk feldlgzása címü jegyzethez 2008-070 Általáns hba, hgy a ktevőben lévő negatív (-) előjelek mndenhnnan eltűntek a nymtatás srán!!! 2. Fejezet
A természetes folyamatok iránya (a folyamatok spontaneitása)
A természetes folyamatok iránya (a folyamatok spontaneitása) H 2 +O 2 H 2 O 2 2 2 gázok kitöltik a rendelkezésükre álló teret meleg tárgy lehűl Rendezett Rendezetlen? az energetikailag (I. főtételnek nem
Üresként jelölt CRF visszaállítása
Üresként jelölt CRF visszaállítása Ha egy CRF vagy bizonyos mező(k) ki vannak szürkítve (üresként jelölve), akkor a megjelölés üresként eszközre kell kattintania, majd törölni a kiválasztott jelölőnégyzet
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,
Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)
lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR DOKTORI ISKOLA VEZETŐ: MTA rendes tagja TÉMACSOPORT VEZETŐ: MTA rendes tagja TÉMAVEZETŐ: egyetemi docens
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR ÚJ ELJÁRÁS AUTOKLÁV GÉPCSOPORTOK EXPOZÍCIÓJÁNAK MEGHATÁROZÁSÁRA PhD értekezés KÉSZÍTETTE: Szees L. Gábor okleveles géészmérnök SÁLYI ISTVÁN GÉPÉSZETI TUDOMÁNYOK DOKTORI
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
Bevezetés az ökonometriába
Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizedik előadas Tartalom 1 Alapfogalmak, determinisztikus és sztochasztikus megközelítés
2. személyes konzultáció. Széchenyi István Egyetem
Makroökonóma 2. személyes konzultácó Szécheny István Egyetem Gazdálkodás szak e-learnng képzés Összeállította: Farkas Péter 1 A tananyag felépítése (térkép) Ön tt áll : MAKROEGENSÚL Inflácó, munkanélkülség,
Halmazállapot változások. Folyadékok párolgása. Folyadékok párolgása
Halmazállapot változások 6. hét Egy anyag különböző halmazállapotai közötti átmenet - elsőfajú fázisátalakulások A kémiai összetétel nem változik meg Adott nyomáson meghatározott hőmérsékleten megy végbe
xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78%
Minőségi mutatók Kiskereskedelmi mutatók (Internet) Megnevezés: Új hozzáférés létesítési idő Meghatározás: A szolgáltatáshoz létesített új hozzáféréseknek, az esetek 80%ban teljesített határideje. Mérési
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
FIZIKAI KÉMIA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŐSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI TANSZÉK. Fizikai kémia kommunikációs dosszié
FIZIKAI KÉMIA ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŐSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI TANSZÉK Miskolc, 2008. Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyzı, óraszám,
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
MATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!
Az indukció A logikában indukciónak nevezzük azt a következtetési módot, amelyek segítségével valamely osztályon belül az egyes esetekb l az általánosra következtetünk. Például: 0,, 804, 76, 48 mind oszthatóak
Az entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
A mérések eredményeit az 1. számú táblázatban tüntettük fel.
Oktatási Hivatal A Mérések függőleges, vastag falú alumínium csőben eső mágnesekkel 2011/2012. tanévi Fizika Országos Középiskolai Tanulmányi Verseny döntő feladatának M E G O L D Á S A I. kategória. A
Országos Középiskolai Tanulmányi Verseny 2011/2012. tanév. Kémia II. kategória 2. forduló. Megoldások
ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 011/01. tanév Kémia II. kategória. forduló Megoldások I. feladatsor 1. D 5. A 9. B 1. D. B 6. C 10. B 14. A. C 7. A 11. E 4. A 8. A 1. D 14 pont
Felépítettünk egy modellt, amely dinamikus, megfelel a Lucas kritikának képes reprodukálni bizonyos makro aggregátumok alakulásában megfigyelhető szabályszerűségeket (üzleti ciklus, a fogyasztás simítottab
Szerves vegyületek megoszlási jellemzőinek és adszorpciós tulajdonságainak kutatása
Pannon Egyetem, Vegyészmérnök Intézet Kooperácós Kutatás Központ 8200 Veszprém, Egyetem u. 10., Tel./Fax: (88) 624 828 6. elléklet Szerves vegyületek megoszlás ellemzőnek és adszorpcós tuladonságanak kutatása
Biostatisztika e-book Dr. Dinya Elek
TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok
Tökéletes gázok adiabatikus rev. változásának állapotegyenlete. A standard entalpia hőmérsékletfüggése
ökéletes gázok adiabatikus rev. változásának állapotegyenlete V κ κ = V 2 2 Kinetikus gázelmélet A levegő tulajdonságai adiabatikus kiterjedés/adiabatikus kompresszió ermokémia reakcióhő, standard reakcióhő
MSZ EN 60947-2 MSZ EN 60898-1
ic60n kismegszakítók kettős (B, C, D jelleggörbe) DB0669 DB865 DB854 MSZ EN 60947- MSZ EN 60898- PB0740-40 PB07407-40 Tanúsítványok PB07409-40 PB07405-40 b ic60n kismegszakítók kett s bekötés csatlakozással,
A légzés élettana I.
A légzés élettana I. Légzésmechanika, ventiláció Tanulási támpontok 27-28. prof. Sáry Gyula 1 Légzőizmok és légzőmozgások A tüdő levegőfrakciói A tüdő és mellkas tágulékonysága (compliance) A felületi
Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között
Dr. Nyári Tibor Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között tökéletes színeket visszaadni. A digitális
Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján
BME Hdak és Szerkezetek Tanszék Magasépítés acélszerkezetek tárgy Gyakorlat útmutató Nyeregetetős csarnokszerkezetek terhe az EN 1991 alapján Összeállította: Dr. Papp Ferenc tárgyelőadó Budapest, 2006.
ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió
λ x ELTE II. Fzkus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzbls termodnamka Dffúzó Az átlagos szabad úthossz (λ) és az átlagos ütközés dı (τ): λ = < v> τ A N = n (A x); A σ σ π (2r)