Tökéletes gázok adiabatikus rev. változásának állapotegyenlete. A standard entalpia hőmérsékletfüggése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tökéletes gázok adiabatikus rev. változásának állapotegyenlete. A standard entalpia hőmérsékletfüggése"

Átírás

1 ökéletes gázok adiabatikus rev. változásának állapotegyenlete V κ κ = V 2 2 Kinetikus gázelmélet A levegő tulajdonságai adiabatikus kiterjedés/adiabatikus kompresszió ermokémia reakcióhő, standard reakcióhő standard állapot Hess tétele a reakcióhő számítással is meghatározható standard entalpiák elemek, vegyületek H = ν H ν H = ( H ) r t f t k f k r f A standard entalpia hőmérsékletfüggése olv forr v φ m = φ m m,p + φ m + φ m,p + m + m,p 298 H () H ( ) C (s)d H (olv) C ( )d H (pár) C (g)d olv forr

2 A természetes folyamatok iránya (a folyamatok spontaneitása) H 2 +O 2 H 2 O gázok kitöltik a rendelkezésükre álló teret meleg tárgy lehűl Rendezett Rendezetlen? az energetikailag (I. főtételnek nem ellentmondó) megengedett folyamatok közül melyik megy spontán végbe? Kémiai folyamatok végbemenetele, egyensúlya

3 A természeti folyamatokra jellemző az energia szétszóródása. Definiáljunk egy függvényt, amely számszerűen kifejezi a rendezetlenség mértékét! Önként végbemenő folyamatokban (elszigetelt rendszerben) a változása legyen pozitív. Induljunk ki az I főtételből: du= δw + δq (Érvényes reverzibilis és irreverzibilis folyamatokra is.) Reverzibilis esetben: du= δw rev + δq rev Ha csak térfogati munka van: δw rev = -p dv intenzív extenzív

4 δq rev = ds J/K S: entrópia, a rendezetlenség mértéke Az entrópia termodinamikai definícióegyenlete: ds = δq rev Véges változása 2 állapot között 2 S = δ Q rev S állapotfüggvény, az adott állapot rendezetlensége, mindegy, hogyan értük el extenzív mennyiség S=nS m

5 Az I. főtétel reverzibilis folyamatra: du= δw rev + δq rev Ha csak térf. munka van és felhasználjuk a hő új kifejezését: du = -pdv + ds A fundamentális egyenlet zárt rendszerre hőenergia bevitel: munka bevitel: rendezetlenebb mozgás rendezés

6 S változása zárt rendszerben 2 δ S = ) Izobár δ Q nc d S rev = mp 2 C = mp n d = n 2) Izosztér δ Q nc d S rev = 2 Cmv = n d = n 3) Izoterm 2 mv 2 2 C C mv Q rev mp d ln d ln Q rev Qrev S = δ =

7 Példa:? ha nagymennyiségű vízzel 00 kj hőt közlünk, mekkora lesz az entrópia változása? S = Q rev ) = 273 K S = 00 kj/273 K = 366 J/K 2) = 373 K S = 00 kj/373 K = 268 J/K S azzal az energiával arányos, amely a rendezetlenséghez kell

8 ökéletes gáz izoterm reverzibilis változása U = 0, Q = -W, W = nr ln p p 2 p S = nrln = nrln p 2 2 p Q = nr ln 2 p p p Állapot-változások (izoterm-izobár folyamatok) S(olv ) = H(olv ) olv S( pár ) = H(pár ) forr S nő melegítés olvadás párolgás kiterjedés RENDEZELENSÉG NŐ S csökken hűtés fagyás kondenzálás összenyomás RENDEZELENSÉG CSÖKKEN

9 Irreverzibilis folyamatok? du = -pdv + ds Pl. Két gáz nyomása azonos, de hőmérsékletük különbözik. Hőmérséklet-kiegyenlítődés indul el. legyen elszigetelt a rendszer 2 U U2 S S2 adiatermikus fal (csak hőt enged át) du U = U+ U2= áll. + du2 = 0 du dv i = 0 dn = 0 i = du 2 ds = ds + ds S d i 2 = du i i mert nincsen térfogati munka

10 ds = du du = du ha > 2 du < 0 ds >0 ha < 2 du >0 ds>0 elszigetelt rendszerben a kiegyenlítődése S-növekedéssel jár minden kölcsönhatáshoz rendelhető entrópiaváltozás Általánosítás: Ha elszigetelt rendszerben spontán makroszkopikus folyamat játszódik le, az entrópia nő. Az egyensúlyt az entrópia maximuma jelenti. a termodinamika II. főtétele

11 A II. főtétel: S 0 elszigetelt rendszerben Ha a rendszer nem elszigetelt: S rendszer + S környezet 0 Spontán makroszkópikus folyamatok mindig az entrópia növekedésével járnak együtt.

12 S = f(v)? U= W rev + Q rev S = Q rev ha =áll. Q V = U W = W = nr ln = nr ln V V Qrev = Wmech = nrln V S= nrln V V 2 2 p p 2 2 expanzió kompresszió (kiterjedés) (összenyomás)

13 S = f()?. nincs állapot-változás dq = rev Cd ds = v = Cv d ln d 2 S ( ) = S ( ) + Cd v S() CV ln 2. van halmazállapot-változás = áll. Q fás = látens hő, fázisátalakulási hő fá konfigurációs entrópia

14 Párolgási entrópia értékek a normál forrásponton vaps, JK mol bróm 88,6 benzol 87,2 széntetraklorid 85,9 ciklohexán 85, kénhidrogén 87,9 ammónia 97,4 víz 09, higany 94,2

15 2 Cd S ( ) = S ( ) + v + S konfg i szilárd folyadék gáz abszolút entrópia, S O0 0 olvadás fázisátalakulás hőmérséklet (K) forrás Q forrás fp 0 K: a termikus entrópia 0, a konfigurációs entrópia lehet 0-tól eltérő

16 0 S ( ) = S ( ) + 0 Cd v = 0 K? iszta tökéletes kristályok entrópiája 0 K-en azonos. A termodinamika 3. főtétele S(0) 0 p-függő standard moláris entrópia, ( bar) jele: Ø Az entrópiának tehát van abszolút értéke (ellentétben U-val és H-val).

17 hőmérsékleten gáz halmazállapotú anyag standard entrópiája: olv C m,p(s) φ φ H m(olv) S m( ) = S m( 0) + d + + olv 0 fp + d + + C m,p( ) H C m( pár ) m,p(g) fp fp olv d

18 Néhány anyag standard ( Ø ) moláris entrópiája 25 C-on S Ø m, JK mol szilárd anyagok kálcium-klorid 39,8 kálcium-karbonát 92,9 réz 33,2 gyémánt 2,4 grafit 5,7 ólom 64,8 magnéziumkarbonát 65,7 magnézium-oxid 26,9 nátrium-klorid 72, C 2 H 22 O 360,2 ón fehér 5,6 ón szürke 44, folyadékok benzol 73,3 etanol 60,7 víz 69,9 S m, JK mol gázok ammónia 92,5 széndioxid 23,7 hélium 26,2 hidrogén 30,7 neon 46,3 nitrogén 9,6 oxigén 205, vízgőz 88,8

19 Ha a rendszer nem elszigetelt: S rendszer + S környezet 0 Stotal = Srendszer + Skörnyezet ha p, állandó Skörnyezet = H S = H + S rendszer total rendszer rendszer S = Q rev endoterm exoterm G H S Gibbs, szabadentalpia Összes entrópia Gibbs energia Spontaneitás átalakulás sebessége változás iránya

20 G tulajdonságai:. állapotfüggvény 2. extenzív mennyiség 3. G= H S H= U+ PV U= Q + W + W = Q PV + W térf egy egy G = Q PV + W + PV S izoterm, izobár egy reverzibilis Q = S G= W = W max egy egy,max G = H S { } G= ng ng = n G G m,2 m, m,2 m, max.. kinyerhető nem térfogati munka A teljes tárolt energia A molekulák véletlenszerű mozgása által tárolt energia G függése a külső körülményektől = befolyásolhatóság

A természetes folyamatok iránya (a folyamatok spontaneitása)

A természetes folyamatok iránya (a folyamatok spontaneitása) A természetes folyamatok iránya (a folyamatok spontaneitása) H 2 +O 2 H 2 O 2 2 2 gázok kitöltik a rendelkezésükre álló teret meleg tárgy lehűl Rendezett Rendezetlen? az energetikailag (I. főtételnek nem

Részletesebben

Fizika 112. 9. és 10. Előadás

Fizika 112. 9. és 10. Előadás Fizika 9. és 0. Előadás 0. főtétel: bármely magára hagyott termodinamikai rendszer egy idő után egyensúlyi állapotba kerül amelyből önmagától nem mozdulhat ki a két testből álló magára hagyott termodinamikai

Részletesebben

FIZIKAI KÉMIA KOHÓMÉRNÖK MESTERKÉPZÉS LEVELEZŐ

FIZIKAI KÉMIA KOHÓMÉRNÖK MESTERKÉPZÉS LEVELEZŐ FIZIKAI KÉMIA KOHÓMÉRNÖK MESTERKÉPZÉS LEVELEZŐ TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI TANSZÉK Miskolc, 2008. Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyző,

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport Biofizikai termodinamika (Bio-termodinamika) Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.com

Részletesebben

teljes tárolt energia molekulák véletlenszerű mozgása által tárolt energia

teljes tárolt energia molekulák véletlenszerű mozgása által tárolt energia Kémii egyensúlyok G H TS teljes tárolt energi molekulák véletlenszerű mozgás áltl tárolt energi Spontneitás: G

Részletesebben

Természettudomány. 1-2. témakör: Atomok, atommodellek Anyagok, gázok

Természettudomány. 1-2. témakör: Atomok, atommodellek Anyagok, gázok Természettudomány 1-2. témakör: Atomok, atommodellek Anyagok, gázok Atommodellek viták, elképzelések, tények I. i.e. 600. körül: Thálész: a víz az ősanyag i.e. IV-V. század: Démokritosz: az anyagot parányi

Részletesebben

gázállapot, gőzállapot gas and vapour nyomás, standard nyomás, parciális nyomás pressure, standard pressure, partial pressure

gázállapot, gőzállapot gas and vapour nyomás, standard nyomás, parciális nyomás pressure, standard pressure, partial pressure gázállapot, gőzállapot gas and vapour nyomás, standard nyomás, parciális nyomás pressure, standard pressure, partial pressure hőmérséklet, termodinamika nulladik főtétele temperature, Zeroth Law of thermodynamics

Részletesebben

helyébe beírva az előző egyenlet összefüggését: p 2 *V 1 = p 1 *(T 2 ), azaz (p 2 )/T 2 = (p 1 = V/n) p*v m = 101 325 Pa, ekkor a V m p*v = (m/m)*r*t

helyébe beírva az előző egyenlet összefüggését: p 2 *V 1 = p 1 *(T 2 ), azaz (p 2 )/T 2 = (p 1 = V/n) p*v m = 101 325 Pa, ekkor a V m p*v = (m/m)*r*t 4. előadás V x helyébe beírva az előző egyenlet összefüggését: p 2 *V 2 = p 1 *V 1 *(T 2 /T 1 ), azaz (p 2 *V 2 )/T 2 = (p 1 *V 1 )/T 1 Bármely tökéletes gázra p*v/t = K (állandó!!!!) 1 mol tökéletes gázra

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

Rajczy Mátyás. A gazdasági növekedés fizikai korlátai

Rajczy Mátyás. A gazdasági növekedés fizikai korlátai Rajczy Mátyás A gazdasági növekedés fizikai korlátai A szakdolgozat célja Egy egyértelmű és viszonylag könnyen meghatározható, aggregálható mérőszám megállapítása. Alkalmazásával a gazdaságot hosszú távon

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

A nyugalomban levő levegő fizikai jellemzői. Dr. Lakotár Katalin

A nyugalomban levő levegő fizikai jellemzői. Dr. Lakotár Katalin A nyugalomban levő levegő fizikai jellemzői Dr. Lakotár Katalin Száraz, nyugalomban levő levegő légköri jellemzői egyszerűsített légkör modell állapotjelzői: sűrűség vagy fajlagos térfogat térfogategységben

Részletesebben

A termodinamikai rendszer energiája. E = E pot + E kin + U E pot =m g h E kin =½m v². U = U 0 + U trans + U rot + U vibr + U khat + U gerj

A termodinamikai rendszer energiája. E = E pot + E kin + U E pot =m g h E kin =½m v². U = U 0 + U trans + U rot + U vibr + U khat + U gerj A termodinamikai rendszer energiája E = E pot + E kin + U E pot =m g h E kin =½m v² U = U 0 + U trans + U rot + U vibr + U khat + U gerj belső energia abszolút értéke nem ismert, csak a változása 0:kémiai

Részletesebben

M Ű SZAKI HŐ TAN SZIGORLAT

M Ű SZAKI HŐ TAN SZIGORLAT I. kérdéscsoport A., A termodinamikai rendszer. Értelmezze a termodinamikai rendszer és környezet fogalmát! Jellemezze a rendszert határoló falakat tulajdonságaik alapján! B., Vízgőz-körfolyamat. Kapcsolási

Részletesebben

Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László

Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai Dr. Nagy László Egyensúlyi termodinamika A termodinamika a klasszikus értelezés szerint a hőserével együtt járó kölsönhatások tudománya.

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:...

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:... T I T - M T T Hevesy György Kémiaverseny országos döntő Az írásbeli forduló feladatlapja 7. osztály A versenyző azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

4. FELADATSOR (2015. 03. 02.)

4. FELADATSOR (2015. 03. 02.) 4 FELADATSOR (2015 03 02) 1 feladat Egy rendszer fundamentális egyenlete a következő:,,= a) Írd fel az egyenletet intenzív mennyiségekkel! b) Írd fel az egyenletet entrópiareperezentációban! c) Ellenőrizd,

Részletesebben

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei:

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei: AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának tényezői

Részletesebben

Anyagszerkezet és vizsgálat. 3. Előadás

Anyagszerkezet és vizsgálat. 3. Előadás SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat NGB_AJ021_1 3. Előadás Dr. Hargitai Hajnalka (Csizmazia Ferencné dr. előadásanyagai alapján) 1 Tematika Színfémek

Részletesebben

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség) Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

KÉMIA PÓTÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. június 6. du. JAVÍTÁSI ÚTMUTATÓ

KÉMIA PÓTÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. június 6. du. JAVÍTÁSI ÚTMUTATÓ KÉMIA PÓTÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. június 6. du. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint.

Részletesebben

A LÉGKÖR SZERKEZETE. A légkör fizikai tulajdonságai alapján rétegekre osztható

A LÉGKÖR SZERKEZETE. A légkör fizikai tulajdonságai alapján rétegekre osztható A LÉGKÖR SZERKEZETE A légkör fizikai tulajdonságai alapján rétegekre osztható TROPOSZFÉRA A légkör legalsó (8-18 km) rétege Jellegzetessége: a hőmérséklet a magassággal csökken (helyenként és időnként

Részletesebben

Termodinamika és statisztikus mechanika. Nagy, Károly

Termodinamika és statisztikus mechanika. Nagy, Károly Termodinamika és statisztikus mechanika Nagy, Károly Termodinamika és statisztikus mechanika Nagy, Károly Publication date 1991 Szerzői jog 1991 Dr. Nagy Károly Dr. Nagy Károly - tanszékvezető egyetemi

Részletesebben

Termokémia, termodinamika

Termokémia, termodinamika Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk

Részletesebben

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az eladásban: a fizika alkalmazása a kémia tárgykörébe es fogalmak magyarázatára.

Részletesebben

Sillabusz az Orvosi kémia szemináriumokhoz. Pécsi Tudományegyetem Általános Orvostudományi Kar 2010/2011. 1

Sillabusz az Orvosi kémia szemináriumokhoz. Pécsi Tudományegyetem Általános Orvostudományi Kar 2010/2011. 1 Sillabusz az Orvosi kémia szemináriumokhoz 1. Az anyag Pécsi Tudományegyetem Általános Orvostudományi Kar 2010/2011. 1 Kémia: az anyag tudománya Kémia: az anyagok összetételével, szerkezetével, tulajdonságaival

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

2. A hőmérő kalibrálása. Előkészítő előadás 2015.02.09.

2. A hőmérő kalibrálása. Előkészítő előadás 2015.02.09. 2. A hőmérő kalibrálása Előkészítő előadás 2015.02.09. Nemzetközi mértékegységrendszer SI Alapmennyiség Alap mértékegységek Mennyiség Jele Mértékegység Jele hosszúság l méter m tömeg m kilogramm kg idő

Részletesebben

Bevezető megjegyzések

Bevezető megjegyzések Bevezető megjegyzések A következő fejezet a gépészmérnöki, a mezőgazdasági és élelmiszeripari gépészmérnöki, valamint a mechatronikai mérnöki BSc kurzusokon meghirdetett Műszaki hőtan tantárgy ismeretanyagának

Részletesebben

Bevezetés a kémiába (TKBE0141, TTBE0141) témakörei. Általános kémia

Bevezetés a kémiába (TKBE0141, TTBE0141) témakörei. Általános kémia Bevezetés a kémiába (TKBE0141, TTBE0141) témakörei Általános kémia 1. Az atom szerkezete Az atom felépítése, alkotó részei jellemzése. Rendszám, tömegszám, izotópok. Az atompálya fogalma, a kvantumszámok

Részletesebben

Minta vizsgalap. I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont)

Minta vizsgalap. I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4, NH 4 Cl, NaCl C) Fe(NO

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

A vas-oxidok redukciós folyamatainak termodinamikája

A vas-oxidok redukciós folyamatainak termodinamikája BUDAESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Anyag- és gyártástechnológia (hd) féléves házi feladat A vas-oxidok redukciós folyamatainak termodinamikája Thiele Ádám WTOSJ Budapest, 11

Részletesebben

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul. Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia

Részletesebben

Hangtan II. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29.

Hangtan II. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Hangtan II. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Bevezetés Egyszerűsítések Jelölések A gázrétegek Kapcsolat a térfogat és a nyomás között A hullámegyenlet A hangsebesség Érdekességek

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Folyadék-gáz, szilárd-gáz folyadék-folyadék és folyadék-szilárd határfelületek. Adszorpció és orientáció a határfelületen. Adszorpció oldatból és

Folyadék-gáz, szilárd-gáz folyadék-folyadék és folyadék-szilárd határfelületek. Adszorpció és orientáció a határfelületen. Adszorpció oldatból és Folyadék-gáz, szilárd-gáz folyadék-folyadék és folyadék-szilárd határfelületek. Adszorpció és orientáció a határfelületen. Adszorpció oldatból és elegyből. Görbült felületek, Laplace nyomás levegő p 1

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 1512 ÉRETTSÉGI VIZSGA 2015. október 20. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei

Részletesebben

Fizika II. E-példatár

Fizika II. E-példatár Fizika II. (hőtan, termosztatika, termodinamika) E-példatár 5*8 internetes feladat Élelmiszermérnök, Biomérnök és Szőlész-borász mérnök hallgatóknak Dr. Firtha Ferenc Fizika-Automatika Tanszék 2013 egyes

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

Az elektromágneses anyagvizsgálat alapjai

Az elektromágneses anyagvizsgálat alapjai BME, Anyagtudomány és Technológia Tanszék Az elektromágneses anyagvizsgálat alapjai Dr. Mészáros István Habilitációs előadás BME 216. március 3. 1 B = µ H Mágneses tér anyag kölcsönhatás B = µ µ r H =

Részletesebben

Molekuláris motorok működése

Molekuláris motorok működése Biológiai molekuláris motorok és kapcsolók Molekuláris motorok működése Osváth Szabolcs Semmelweis Egyetem kapcsoló: A hatása a biológiai rendszerre az állapotától függ. Ha visszabillentik az eredeti állapotába,

Részletesebben

Munka- és energiatermelés. Bányai István

Munka- és energiatermelés. Bányai István Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,

Részletesebben

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás 2016.02.01.

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás 2016.02.01. 5. Sók oldáshőjének meghatározása kalorimetriás módszerrel Előkészítő előadás 2016.02.01. Célja: hő mérése A kalorimetriás mérések Használatával meghatározható: átalakulási hő reakcióhő anyagok hőkapacitása

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2015.09.23. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti

Részletesebben

VEGYIPARI ALAPISMERETEK

VEGYIPARI ALAPISMERETEK Vegyipari alapismeretek középszint 1411 ÉRETTSÉGI VIZSGA 2016. május 18. VEGYIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

Az éghető gázok csoportosítása

Az éghető gázok csoportosítása Az éghető gázok csoportosítása Gázcsaládok Gázcsaládok és gázcsoportok Felső Wobbe-szám 15 C-on és 1013,25 mbar nyomáson, MJ/m 3 Legkisebb Legnagyobb Első gázcsalád, 22,4 24,8 a csoport Második gázcsalád,

Részletesebben

1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA. Kalorimetriás mérések

1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA. Kalorimetriás mérések 1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA Kalorimetriás mérések A fizikai és kémiai folyamatokat energiaváltozások kísérik, melynek egyik megnyilvánulása a hőeffektus. A rendszerben ilyen esetekben észlelhető

Részletesebben

Termodinamika 2016. március 11. Az I. f tétel A termodinamika (h tan) els f tétele:

Termodinamika 2016. március 11. Az I. f tétel A termodinamika (h tan) els f tétele: Termodinamika 2016. március 11. Az I. f tétel A termodinamika (h tan) els f tétele: E = Q W g. A kifejezésben E a vizsgált rendszer bels energiája, E ennek megváltozása. (A bels jelz arra utal, hogy ez

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Fővállalkozó: TELVICE KFT. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés

Fővállalkozó: TELVICE KFT. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés ANYAGISMERET A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI

Részletesebben

5. A termodinamika II. és III. főtétele

5. A termodinamika II. és III. főtétele 5. A termodinamika II. és III. főtétele 5.. Az entrópia termodinamikai definíciója A termodinamikai folyamatok energiaviszonyainak leírása után, amelyek az I. főtételen alapultak, rátérünk a folyamatok

Részletesebben

Két szóból kihoztuk a legjobbat... Altherma hybrid

Két szóból kihoztuk a legjobbat... Altherma hybrid Két szóból kihoztuk a legjobbat... Altherma hybrid Elromlott a gázkazánom és gyorsan ki kell cserélnem Az ügyfelek elvárásai Iszeretnék hőszivattyút használni, de ezt hallottam, hogy nem lenne hatékony

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Gravitáció mint entropikus erő

Gravitáció mint entropikus erő Gravitáció mint entropikus erő Takács Gábor MTA-BME Lendület Statisztikus Térelméleti Kutatócsoport ELFT Elméleti Fizikai Iskola Szeged, Fizikai Intézet 2012. augusztus 28. Vázlat 1. Entropikus erő: elemi

Részletesebben

? Az adszorbens által megkötött mennyiség = x, X: telítettség, töltés, kapacitás. Adszorpció. m kg. A kötőerők

? Az adszorbens által megkötött mennyiség = x, X: telítettség, töltés, kapacitás. Adszorpció. m kg. A kötőerők Adszorpció A kötőerők Szilárd anyagok felületén történő komponensmegkötés (oldatokból és gázelegyekből) Szilárd felületen történő sűrítés Fizikai~ Van der Waals-féle kötőerők Kondenzációs hő Könnyebb deszorpció

Részletesebben

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a

Részletesebben

FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra)

FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra) FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra) Tantárgyi struktúra és óraszámok Óraterv a kerettantervekhez gimnázium Tantárgyak 9. évf. 10. évf. 11. évf. 12. évf. Fizika 2 2 2 2 1 9. osztály B változat

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten.

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten. ozmózis osmosis termodinamikai stabilitás thermodynamic stability kinetikai stabilitás kinetic stability felületaktív anyagok surfactants, surface active materials felületinaktív anyagok surface inactive

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Bio-termodinamika, entrópia, egyensúly és változás.

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Bio-termodinamika, entrópia, egyensúly és változás. SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport Bio-termodinamika, entrópia, egyensúly és változás Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.com

Részletesebben

1. Termodinamika. 1.1. Az ideális gázok állapotváltozásai

1. Termodinamika. 1.1. Az ideális gázok állapotváltozásai . Termodinamika.. Az ideális gázok állapotváltozásai... Egy hengerben 000 cm3 térfogatú, atm nyomású, 7 oc hõmérsékletû levegõ van. Mekkora lesz a levegõ nyomása,ha hõmérsékletét állandó térfogaton -3

Részletesebben

52 522 06 0000 00 00 Erőművi kazángépész Erőművi kazángépész

52 522 06 0000 00 00 Erőművi kazángépész Erőművi kazángépész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Hőtan Termodinamika és Hőközlés

Hőtan Termodinamika és Hőközlés Budapesti Műszaki és Gazdaságtudományi Egyetem Energetikai Gépek és Rendszerek Tanszék Hőtan Termodinamika és Hőközlés Feladatgyűjtemény és Segédlet HŐTAN TERMODINAMIKA ÉS HŐKÖZLÉS FELADATGYŰJTEMÉNY ÉS

Részletesebben

6. Termodinamikai egyensúlyok és a folyamatok iránya

6. Termodinamikai egyensúlyok és a folyamatok iránya 6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer

Részletesebben

2. Energodinamika értelmezése, főtételei, leírási módok

2. Energodinamika értelmezése, főtételei, leírási módok Energetika 7 2. Energodinamika értelmezése, főtételei, leírási módok Az energia fogalmának kialakulása történetileg a munkavégzés definícióához kapcsolódik. Kezdetben az energiát a munkavégző képességgel

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

FOGALOMGYŰJTEMÉNY TERMODINAMIKA

FOGALOMGYŰJTEMÉNY TERMODINAMIKA FOGALOMGYŰJTEMÉNY TERMODINAMIKA munka (w, J) az erő és az irányába eső elmozdulás szorzata (rendezett mozgás). energia (E, J) a rendszer munkavégzőképessége. hő (q, J) a hőmérséklet-különbség okozta energiaváltozás.

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:...

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:... T I T - M T T Hevesy György Kémiaverseny országos döntő Az írásbeli forduló feladatlapja 7. osztály A versenyző azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk belőle. A következő az, hogy a megszerzett tudást elmélyítjük.

Részletesebben

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám.

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám. Fényszórás mérése A jelenség magyarázata A megfigyelhető jelenségek A fény elektromágneses hullám. Az elektromos tér töltésekre erőhatást fejt ki. A dipólus keletkezése Dipólusok: a pozitív és a negatív

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely

Részletesebben

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek

Részletesebben

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Tartalom Egyensúly elágazási határállapot Rugalmas nyomott oszlop kritikus ereje (Euler erő) Valódi nyomott oszlopok

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

Gróf Gyula HŐKÖZLÉS. Ideiglenes jegyzet

Gróf Gyula HŐKÖZLÉS. Ideiglenes jegyzet Gróf Gyula HŐKÖZLÉS Ideiglenes jegyzet Budapest, 999 Az. 5. fejezet a Termodinamka részt jelenti. TARTALOMJEGYZÉK 6. HŐVEZETÉS SZILÁRD TESTEKBEN...5 6..A hőterjedés mechanizmusa, leírása... 5 6... A hőterjedés

Részletesebben

Diffúziós együttható (1) (Δ r) 2 =4D Δ t.

Diffúziós együttható (1) (Δ r) 2 =4D Δ t. IFJÚ FIZIKUSOK NEMZETKÖZI VERSENYE MAGYAR SZEMMEL Hömöstrei Mihály Német Nemzetiségi Gimnázium, Budapest Pham Thi Linh Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Beregi Ábel Baár-Madas

Részletesebben

Klasszikus zika Termodinamika III.

Klasszikus zika Termodinamika III. Klasszikus zika Termodinamika III. Horváth András, SZE GIVK v 0.9 Oktatási célra szabadon terjeszthet 1 / 24 Ismétlés Mi is az az entrópia? Alapötlet Egy izotermán belül mozogva nincs bels energia változás.

Részletesebben

golyóscsapok, visszacsapók

golyóscsapok, visszacsapók Árlista ÉRVÉNYES 2016.03.24 TŐL VISSZAVONÁSIG A feltűntetett árak nettó Áfa nélküli listaárak. Az árlista visszavonásig érvényes. WESA golyóscsapok Felhasználható közegek: víz (ivóvíz kivételével), fűtőolaj,

Részletesebben

B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont]

B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont] B feladat : Ebben a kísérleti részben vizsgáljuk, Összpontszám: 20 B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását B1 A tej pufferkapacitása

Részletesebben

higanytartalom kadmium ólom

higanytartalom kadmium ólom . Termék Alkáli elem, 1,5 V oldal 1. az 5-ből 1. Típusmegjelölés: IEC LR6 JIS: AM3 ANSI: AA LR6, mignon, AA 2. Kémiai rendszer: elektrolit-cink-mangándioxid (higany- és kadmiummentes) 3. Méretek: Ø 13,5-14,5

Részletesebben

Energetikai minőségtanúsítvány összesítő

Energetikai minőségtanúsítvány összesítő Földvár Terv Kft Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület: Megrendelő: Tanúsító: 5 lakásos társasház Paks, Kossuth Lajos utca 4. Hrsz.: 864. Viczai János GT/17-0469

Részletesebben

Kémia Kutasi, Istvánné dr.

Kémia Kutasi, Istvánné dr. Kémia Kutasi, Istvánné dr. Kémia Kutasi, Istvánné dr. Publication date 2014 Szerzői jog 2014 Kutasi Istvánné dr. Tartalom Bevezetés... vi I. Általános kémia... 1 1. Az anyagmegmaradás törvényei... 4 1.

Részletesebben

Széchenyi istván egyetem Mûszaki Tudományi Kar Közlekedési és Gépészmérnöki Intézet Általános Gépészeti Tanszék. Dr. Író Béla - Dr.

Széchenyi istván egyetem Mûszaki Tudományi Kar Közlekedési és Gépészmérnöki Intézet Általános Gépészeti Tanszék. Dr. Író Béla - Dr. Széchenyi istván egyetem Mûszaki Tudományi Kar Közlekedési és Gépészmérnöki Intézet Általános Gépészeti Tanszék Dr. Író Béla - Dr. Zsenák Ferenc MŰSZAKI HŐTAN (TERMODINAMIKA, HŐKÖZLÉS) - - 3. MŰSZAKI HŐTAN...4

Részletesebben

Vállalkozásfinanszírozás

Vállalkozásfinanszírozás Vállalkozásfinanszírozás Területei Pénzügyi tervezés Beruházás finanszírozás Hitelintézeti eljárás Pénzügyi tervezés a vállalkozásnál tervezés célja: bizonytalanság kockázat csökkentése jövőbeli események,

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon

Részletesebben

Elméleti Fizika 2. 2014. március 11.

Elméleti Fizika 2. 2014. március 11. Elméleti Fizika 2. Török János, Orosz László, Kertész János 2014. március 11. Tartalomjegyzék I. Statisztikus fizika 5 1. A statisztikus fizika alapjai 6 1.1. Statisztikus fizika tárgya. A statisztikus

Részletesebben

Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék

Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék Reológia 2 Bányai István DE Kolloid- és Környezetkémiai Tanszék Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V 1 p p t 8 l 1 2 r 2 x Höppler-típusú viszkoziméter v 2g 9 2 testgömb

Részletesebben

Hőmérséklet mérése Termisztor és termoelem hitelesítése

Hőmérséklet mérése Termisztor és termoelem hitelesítése 1 Hőmérséklet mérése Termisztor és termoelem hitelesítése Mit nevezünk hőmérsékletnek? A hőmérséklet fogalma hőérzetünkből származik: valamit melegebbnek, hűvösebbnek érzünk tapintással. A hőmérséklet

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Kvantum termodinamika

Kvantum termodinamika Kvantum termodinamika Diósi Lajos MTA Wigner FK Budapest 2014. febr. 4. Diósi Lajos (MTA Wigner FKBudapest) Kvantum termodinamika 2014. febr. 4. 1 / 12 1 Miért van 1 qubitnek termodinamikája? 2 QuOszcillátor/Qubit:

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben

Halmazállapot változások. Folyadékok párolgása. Folyadékok párolgása

Halmazállapot változások. Folyadékok párolgása. Folyadékok párolgása Halmazállapot változások 6. hét Egy anyag különböző halmazállapotai közötti átmenet - elsőfajú fázisátalakulások A kémiai összetétel nem változik meg Adott nyomáson meghatározott hőmérsékleten megy végbe

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Történeti áttekintés Ernest Rutherford (1911) Rutherford alfa részecskéket tanulmányozott 1898-tól (ő fedezte fel őket). 1909-ben egy kísérlet során

Részletesebben