KOVÁCS BÉLA, MATEMATIKA I.
|
|
- Veronika Bogdánné
- 8 évvel ezelőtt
- Látták:
Átírás
1 KOVÁCS BÉLA, MATEmATIkA I 17
2 XVII A HATÁROZATLAN INTEGRÁL 1 PRImITÍV FÜGGVÉNY, ALApINTEGRÁLOk A (nagy) F függvényt a (kis) f függvény primitív függvényének nevezzük valamely nyílt intervallumon, ha itt Egy függvénynek végtelen sok primitív függvénye van, és ezek összességét f határozatlan integráljának nevezzük Jelölése: (olv "integrál ef iksz dé iksz"), ahol C tetszőleges állandó (integrációs állandó) Alapintegrálok,,,
3 2 INTEGRÁLÁSI SZAbÁLYOk, k állandó (1) (2) (3), állandó Parciális integrálás Parciális integrálás: Gyakoriak az alakú integrálok, ahol P(x) polinom Ha Q(x) exponenciális, trigonometrikus vagy hiperbolikus függvény, akkor P(x) -et célszerű u-nak választani Ha viszont Q(x) logaritmus, arkusz vagy area függvény, akkor Q(x)-et célszerű u-nak választani Integrálás helyettesítéssel Integrálás helyettesítéssel: Ha jól választjuk meg a j függvényt, akkor a jobb oldali új integrál egyszerűbb lesz, mint az eredeti 3 MINTApÉLDÁk Megoldások: láthatók nem láthatók 1 Számítsuk ki az alábbi integrálokat: a) b) c),
4 d) e) f) g) h) i) j) k) l) Megoldások A fenti integrálok mindegyike visszavezethető alapintegrálokra a) b) c) d)
5 e) C f) g), vagy h) i) j) k) l) 2 Számítsuk ki az alábbi integrálokat: a) b) c) d) e) f) Megoldások Mindegyik integrál kiszámításánál felhasználjuk a (3) szabályt a)
6 b) c) d) e) f) 3 Számítsuk ki az alábbi integrálokat: a) b) c) d) e) f) Megoldások A fenti integrálok kiszámításánál felhasználjuk a (2) szabályt a) A számláló a nevező deriváltja, ezért A b) f) integrálok kiszámításánál szükséges egy kis átalakítás ahhoz, hogy a számláló a nevező deriváltja legyen b) c) d)
7 e) f) 4 Számítsuk ki az alábbi integrálokat: a) b) c) d) e) f) Megoldások Alkalmazzuk az (1) szabályt a) b) c) d) e) f)
8 5 Számítsuk ki az alábbi integrálokat, majd deriválással győződjünk meg az integrálás helyességéről: a) b) c) d) e) f) Megoldások Alkalmazzuk a parciális integrálás módszerét a) Ellenőrzés: Megkaptuk az integranduszt -et), tehát az integrálás eredménye helyes b) Ellenőrzés: c) Ellenőrzés:
9 d) Ellenőrzés: e) Ellenőrzés: f) Ellenőrzés: 6 Számítsuk ki az alábbi integrálokat: a) b) c) d) e)
10 f) g) h) Megoldások Alkalmazzuk a helyettesítéssel való integrálás módszerét a) b) c) d) e) a ch t dt = f)
11 g) h) Egy lehetséges másik helyettesítés:, dt 7 Számítsuk ki az alábbi integrálokat: a) b) c) d) Megoldások a) b) c)
12 d) (l a 6/f példát) 8 Számítsuk ki az alábbi integrálokat: a) b) c) d) e) f) g) h) Megoldások Valamennyi integrandusz racionális tört Résztörtekre bontjuk őket, majd utána integrálunk Felhasználjuk a 7 példa eredményeit a) Ha x = 2, akkor 9 = 7A Þ A =, ha, akkor Tehát b), tehát
13 c) d) Itt kihasználtuk azt, hogy a azonosságból A = 1, B = 3, következik e) f) g) h), 9 Számítsuk ki az alábbi integrálokat:
14 a) b) c) Megoldások Mindegyik integrandusz sin x-nek és cos x-nek racionális függvénye Ekkor egy lehetséges megoldási mód a helyettesítéssel való integrálás Itt felhasználjuk azt, hogy,, a) b) Itt eljárhatunk a következőképpen is: c) 10 Számítsuk ki az alábbi integrálokat: a) b)
15 c) Megoldások Mindegyik integrandusz -nek racionális függvénye Ekkor egy lehetséges megoldási mód az helyettesítéssel való integrálás:,, azaz a) b) Megjegyezzük, hogy a tört számlálója a nevező deriváltja c) 11 Számítsuk ki az alábbi integrálokat: a) b) c) d) Megoldások a)
16 b) c) d) 4 FELADATOk Számítsa ki a következő integrálokat, alapintegrálokra visszavezetve azokat:
17 Számítsa ki a következő integrálokat, a parciális integrálás módszerét alkalmazva: Számítsa ki a következő integrálokat, a helyettesítés módszerét alkalmazva:
18 Számítsa ki a következő integrálokat, az (1), (2) és (3) integrálási szabályokat alkalmazva: Számítsa ki a következő integrálokat az integrandusz résztörtekre bontásával: 41
19 A helyettesítéssel számítsa ki a következő integrálokat: Az helyettesítéssel számítsa ki a következő integrálokat: Számítsa ki a következő integrálokat:
20 Megoldások
21 , Adjuk össze a két egyenlőséget, majd az összeget osszuk el 2 -vel Ekkor a kívánt integrált kapjuk:
22 Ha a két egyenlőséget kivonjuk egymásból, majd ismét osztunk 2 -vel, akkor egy újabb integrált kapunk
23 Itt észrevehető, hogy a számláló a nevező deriváltja, és így 42
24 A helyettesítés elvégzése után Az helyettesítés elvégzése után 52 53
25 A 18 feladat megoldásához hasonló módon eljárva, 62 Digitális Egyetem, Copyright Kovács Béla, 2011
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
Részletesebben2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
Részletesebben5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
RészletesebbenMiskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenKomplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!
Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!
RészletesebbenInverz függvények Inverz függvények / 26
Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
RészletesebbenVektorszámítás Fizika tanárszak I. évfolyam
Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................
RészletesebbenHáromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag
Síkbeli és térbeli alakzatok 1.5 Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag Életkor: Fogalmak, eljárások: 11 14 elnevezések a háromszögekben háromszögek belső szögösszege háromszögek
RészletesebbenElektromágneses hullámok terjedési sebességének mérése levegőben
Elektromágneses hullámok terjedési sebességének mérése levegőben Dombi András Babeş-Bolyai Tudományegyetem, Fizika Kar, Fizika - Informatika szak, 3. évfolyam Témavezetők: Dr. Néda Zoltán egyetemi professzor
RészletesebbenMatematikai programozás gyakorlatok
VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................
RészletesebbenEgy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást
RészletesebbenElőirányzott kötelezettségvállalások: az 1., 2., 3. évre a költségvetésben az adott évre elrendelt kötelezettségvállalások. Jelmagyarázat: Előirányzott kötelezettségvállalások (EKÖ) Kötelezettségvállalási
Részletesebben5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.
Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok
RészletesebbenMATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
RészletesebbenEgyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden
RészletesebbenMatematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
RészletesebbenMatematikai statisztikai elemzések 6.
Matematikai statisztikai elemzések 6. Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós regresszió Prof. Dr. Závoti, József Matematikai statisztikai elemzések 6.: Regressziószámítás:
Részletesebben1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
RészletesebbenMatematika példatár 4.
Matematika példatár 4 Integrálszámítás szabályai és Csabina, Zoltánné Created by XMLmind XSL-FO Converter Matematika példatár 4: Integrálszámítás szabályai és Csabina, Zoltánné Lektor: Vígné dr Lencsés,
RészletesebbenAnalízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
RészletesebbenBevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia
Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran
RészletesebbenMATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja
RészletesebbenA gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:
. Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Megoldások november
IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +
RészletesebbenA képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
RészletesebbenElemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény
RészletesebbenElemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok
RészletesebbenHatározatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
RészletesebbenMATEMATIKA Emelt szint 9-12. évfolyam
MATEMATIKA Emelt szint 9-12. évfolyam évfolyam 9. 10. 11. 12. óra/tanév 216 216 216 224 óra/hét 6 6 6 7 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről
RészletesebbenIngatlanvagyon értékelés
Nyugat-Magyarországi Egyetem Geoinformatikai Kar Ingatlanfejlesztı 8000 Székesfehérvár, Pirosalma u. 1-3. Szakirányú Továbbképzési Szak Ingatlanvagyon értékelés 4. A vagyon elemzése Szerzı: Harnos László
RészletesebbenAdd meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
RészletesebbenSzámelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz
RészletesebbenSztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013
UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS
RészletesebbenMátrixaritmetika. Tartalom:
Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám
RészletesebbenTARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255
TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...
RészletesebbenA hazai termőföldforgalom aktuális kérdései Dr. Simon Attila István közigazgatási államtitkár Földművelésügyi Minisztérium
A hazai termőföldforgalom aktuális kérdései Dr. Simon Attila István közigazgatási államtitkár Földművelésügyi Minisztérium 2015. Szeptember 04. 1 17/2015. (VI. 5.) AB határozat Az Alkotmánybíróság megerősítette
RészletesebbenAz áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
Részletesebben4. előadás. Vektorok
4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához
RészletesebbenA junior kategória nevezési díja maximum a senior 75%-a, továbbá a csapat nevezési díja maximum 2000 Ft/fő.
Gyorsított Korongvadászat Magyar Kupa Versenyszabályzat 2016 1. A versenysorozat célja: - a gyorsított korongvadászat - mint versenysport - népszerűsítése, - a versenyzők részére versenyzési lehetőség
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak
Részletesebben4. LECKE: DÖNTÉSI FÁK - OSZTÁLYOZÁS II. -- Előadás. 4.1. Döntési fák [Concepts Chapter 11]
1 4. LECKE: DÖNTÉSI FÁK - OSZTÁLYOZÁS II. -- Előadás 4.1. Döntési fák [Concepts Chapter 11] A döntési fákon alapuló klasszifikációs eljárás nagy előnye, hogy az alkalmazása révén nemcsak egyedenkénti előrejelzést
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
RészletesebbenAdy Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT. Készítette: Szigeti Zsolt. Felkészítő tanár: Báthori Éva.
Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT Készítette: Szigeti Zsolt Felkészítő tanár: Báthori Éva 2010 október Dolgozatom témája a különböző függvények, illetve mértani
RészletesebbenAz osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
RészletesebbenGráfokkal megoldható hétköznapi problémák
Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfokkal megoldható hétköznapi problémák Szakdolgozat Készítette Vincze Ágnes Melitta Konzulens Héger Tamás Budapest, 2015 Tartalomjegyzék Bevezetés
RészletesebbenMATEMATIKA. 5 8. évfolyam
MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni
RészletesebbenL'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.
L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.
RészletesebbenMATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
Részletesebbenn n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
Részletesebben(A típus) MSZ EN 61008-1
(A típus) DB106619 DB123865 DB123854 MSZ EN 61008-1 Tanúsítványok PB107413-40 KEMA KEUR tanúsítvány, csak a 2P/ 25 A - 63 A rendelési számokra b -véd kapcsolók kett s bekötés csatlakozással a következ
RészletesebbenCOMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET 5. osztály 2015/2016. tanév Készítette: Tóth Mária 1 Tananyagbeosztás Évi óraszám: 144 óra Heti óraszám: 4 óra Témakörök:
RészletesebbenSzámviteli politika magyar számviteli standard általános szakmai koncepció
Számviteli politika magyar számviteli standard általános szakmai koncepció I. Cél Azoknak a szabályoknak, előírásoknak, módszereknek, az ezeket alátámasztó döntési lehetőségeknek a megfogalmazása, amelyek
RészletesebbenMatematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek
Matematikai logika A logika tudománnyá válása az ókori Görögországban kezd dött. Maga a logika szó is görög eredet, a logosz szó jelentése: szó, fogalom, ész, szabály. Kialakulása ahhoz köthet, hogy már
RészletesebbenBánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK?
Bánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK? A BGF KKFK Nemzetközi gazdálkodás és Kereskedelem és marketing szakjain a hallgatók tanrendjében statisztikai és matematikai
RészletesebbenA Feldmann ~ Sapiro - elv igazolása
A Feldmann ~ Sapiro - elv igazolása Bevezetés Már középiskolás koromban is érdekelt, hogy mi lehet az a borzasztó nehéz számítás, aminek csak a végeredményét közölték velünk, s amit Feldmann ~ Sapiro -
RészletesebbenKivonat. Készült: Fehérgyarmat Város Önkormányzata Képviselő-testületének 2014. július 01-én megtartott rendkívüli, nyilvános ülésének jegyzőkönyvéből
Kivonat Készült: Fehérgyarmat Város Önkormányzata Képviselő-testületének 2014. július 01-én megtartott rendkívüli, nyilvános ülésének jegyzőkönyvéből FEHÉRGYARMAT VÁROS ÖNKORMÁNYZATA KÉPVISELŐ-TESTÜLETÉNEK
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók
RészletesebbenElemi függvények. Nevezetes függvények. 1. A hatványfüggvény
Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
RészletesebbenMinta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
RészletesebbenForgásfelületek származtatása és ábrázolása
Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,
Részletesebben6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
RészletesebbenDifferenciál egyenletek
Galik Zsófia menedzser hallgató Differenciál egyenletek osztályzása Differenciál egyenletek A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben
RészletesebbenTartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék
III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1
Részletesebbenx a x, ha a > 1 x a x, ha 0 < a < 1
EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény
RészletesebbenVI.7. RÁCSODÁLKOZÁS. A feladatsor jellemzői
VI.7. RÁSOÁLKOZÁS Tárgy, téma feladatsor jellemzői háromszögek, négyszögek területe rácssokszögek segítségével. Előzmények él terület fogalma. már ismert terület fogalom (főképp a háromszög és a négyszögek
RészletesebbenDOMSZKY ZOLTÁN. Rendhagyó matek II.
DOMSZKY ZOLTÁN Rendhagyó matek II. Ajánlom ezt a könyvet illetve sorozatot mind közül is legkedvesebb tanáraimnak, Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta meg szeretetemet
RészletesebbenSzámsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás
12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat
Részletesebben8. előadás EGYÉNI KERESLET
8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép
RészletesebbenVI.11. TORONY-HÁZ-TETŐ. A feladatsor jellemzői
VI.11. TORONY-HÁZ-TETŐ Tárgy, téma A feladatsor jellemzői Szögfüggvények derékszögű háromszögben, szinusztétel, koszinusztétel, Pitagorasz-tétel. Előzmények Pitagorasz-tétel, derékszögű háromszög trigonometriája,
Részletesebbenegyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenBolyai János Matematikai Társulat
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.
RészletesebbenKIEGÉSZÍTİ MELLÉKLET. A Mővészeti Marketing Kommunikációs Közhasznú Nonprofit Kft. 2010. évi egyszerősített éves beszámolójához
KIEGÉSZÍTİ MELLÉKLET A Mővészeti Marketing Kommunikációs Közhasznú Nonprofit Kft. 2010. évi egyszerősített éves beszámolójához 2.oldal 1./ A vállalkozás bemutatása: A társaság cégneve: Mővészeti Marketing
RészletesebbenNeoSzámla Használati Útmutató. Verziószám: 2014/Q2 Kelt: 2014.07.15. neoszamla.hu info@neoszamla.hu 06 30 535 2181
NeoSzámla Használati Útmutató Verziószám: 2014/Q2 Kelt: 2014.07.15 neoszamla.hu info@neoszamla.hu 06 30 535 2181 Tartalom Szolgáltatói adatok... 3 Kiállítható számlák... 3 Regisztráció... 3 A vállalkozás
RészletesebbenHatározott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
RészletesebbenMATEMATIKA A és B variáció
MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy
RészletesebbenAz indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!
Az indukció A logikában indukciónak nevezzük azt a következtetési módot, amelyek segítségével valamely osztályon belül az egyes esetekb l az általánosra következtetünk. Például: 0,, 804, 76, 48 mind oszthatóak
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenHELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,
RészletesebbenTermészetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5
1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat
RészletesebbenAronic Főkönyv kettős könyvviteli programrendszer
6085 Fülöpszállás, Kiskunság tér 4. Internet: www.cin.hu E-mail: software@cin.hu Tel: 78/435-081, 30/9-573-673, 30/9-593-167 kettős könyvviteli programrendszer v2.0 Szoftverdokumentáció Önnek is jár egy
RészletesebbenHalmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.
Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,
Részletesebben6. AZ EREDMÉNYEK ÉRTELMEZÉSE
6. AZ EREDMÉNYEK ÉRTELMEZÉSE A kurzus anyagát felhasználva összeállíthatunk egy kitűnő feladatlapot, de még nem dőlhetünk nyugodtan hátra. Diákjaink teljesítményét még osztályzatokra kell átváltanunk,
RészletesebbenFizikaverseny, Döntő, Elméleti forduló 2013. február 8.
Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy
RészletesebbenHatározatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
Részletesebben2. A hőmérő kalibrálása. Előkészítő előadás 2015.02.09.
2. A hőmérő kalibrálása Előkészítő előadás 2015.02.09. Nemzetközi mértékegységrendszer SI Alapmennyiség Alap mértékegységek Mennyiség Jele Mértékegység Jele hosszúság l méter m tömeg m kilogramm kg idő
RészletesebbenLevél községi Önkormányzat Képviselı-testülete
Levél községi Önkormányzat Képviselı-testülete 1 11/2011. Levél községi Önkormányzat Képviselı-testületének 2011. június 23-án tartott ülésérıl készült jegyzıkönyv Tartalma: 1. 2010. évi költségvetési
RészletesebbenEötvös József Főiskola Műszaki Fakultás
1 Eötvös József Főiskola Műszaki Fakultás Vincze Lászlóné dr. Levegőtisztaságvédelem Példatár II. évfolyamos nappali tagozatos környezetmérnök, III. évfolyamos levelező tagozatos környezetmérnök hallgatók
RészletesebbenTej. Szívvel-lélekkel! Gyűjts össze 100 tejszívet és nyerj egy játszóteret!
Tej. Szívvel-lélekkel! Gyűjts össze 100 tejszívet és nyerj egy játszóteret! M E G N E V E Z É S Ű N Y E R E M É N Y J Á T É K R É S Z V É T E L I -, É S J Á T É K S Z A B Á L Y Z A T A 1. A JÁTÉK SZERVEZŐJE
RészletesebbenVÁLLALATIRÁNYÍTÁSI ÜGYVITELI PROGRAMRENDSZER. Váradi László OKTATÁSI SEGÉDANYAG. 2012/13. tanév 2. szemeszter 05. foglalkozás
Óbudai Egyetem Neumann János Informatikai Kar SAP Business One 8.82 VÁLLALATIRÁNYÍTÁSI ÜGYVITELI PROGRAMRENDSZER Váradi László Komplex feladat 03 OKTATÁSI SEGÉDANYAG 2012/13. tanév 2. szemeszter 05. foglalkozás
RészletesebbenKÖZZÉTÉTELI LISTA MÓRICZ ZSIGMOND REFORMÁTUS KOLLÉGIUM, GIMNÁZIUM, SZAKKÖZÉPISKOLA ARANY JÁNOS ÁLTALÁNOS ISKOLA TAGINTÉZMÉNYE
KÖZZÉTÉTELI LISTA MÓRICZ ZSIGMOND REFORMÁTUS KOLLÉGIUM, GIMNÁZIUM, SZAKKÖZÉPISKOLA ARANY JÁNOS ÁLTALÁNOS ISKOLA TAGINTÉZMÉNYE 5310 KISÚJSZÁLLÁS KÁLVIN U. 3. JOGSZABÁLYI HÁTTÉR 32/2008. - XI.24. OKM rendelet
Részletesebben14. D. Egy éven belül esedékes kötelezettségek 205 305 198 417 15. E. Passzív időbeli elhatárolások. c d e
BraiNet Kereskedelmi és Szolgáltató Kft. Egyszerűsített éves beszámoló MÉRLEGE "B" változat Mérleg fordulónapja: 2013. december 31. tételszám Források Előző év Előző év(ek) módosításai adatok E Ft-ban
Részletesebben