Redukció és fordítás. Fordítás. Tudományfilozófia, A két-nyelv modell. A két-nyelv modell belső kritikája. Az optimista olvasat
|
|
- Mihály Pintér
- 6 évvel ezelőtt
- Látták:
Átírás
1 Redukció és fordítás Fordítás Tudományfilozófia, A nyelvi megfogalmazás problémája A két-nyelv modell A természeti események (dolgok, események) ált. nem nyelvi alakúak de a tudományos modellalkotás bemeneteként csak nyelvi formák lehetnek Vagyis le kell tudni írni a tapasztalatot, amikor Nincs garancia, hogy mind ugyanúgy tapasztaljuk a világot Nincs garancia, hogy a használt szavaink (kategóriáink) megfelelnek a valóság ténylegesen létező kategóriáinak (pl. kecskebéka stabil fajhibrid, egyértelmű / valós kategória-e a szoclib, fajtiszta, méreg ), stb Mégis, úgy tűnik, hogy elég sikeresen írjuk le a világot Mázlink van? Pont mindig beletrafálunk? Vagy ez csak egy sikeres magyarázat miközben sok lehetőség közül épp ezt választotta a tudósközösség A kérdés: a tudomány fejlődése mennyire jut véletlenszerű / szükségszerű modellekhez (A design-térben szabad trajektóriát követ vagy hatalmas, mély szurdokban halad, ahol kevés elágazásra van lehetőség) A klasszikus tudományfilozófiában kialakul az ún. két-nyelv modell A megfigyelési terminusokkal szemben állnak a nem megfigyelési (teoretikus) terminusok. A teoretikus terminusok nyelvén lehet megfogalmazni a természettörvényeket, szabályszerűségeket, a megfigyelési terminusokkal le lehet írni a tapasztalatot (protokolltételek). A két csoportot ún. korrespondencia-szabályok kötik össze. Így ugye tudjuk, hogy hogyan fejlődik a tudomány? Empirikus állítások gyűjtése, rendszerezése Teoretikus állítások kapcsolatainak vizsgálata Folyamatos fejlődés Az optimista olvasat Egy tudományos tény nem más, mint egy nyers tény a megfelelő megfogalmazásban kifejezve A tudós egy ténnyel kapcsolatban mindössze annyit hoz létre, hogy megalkotja a nyelvet, amellyel kifejezi (Poincaré 1902: 272-3). A tudomány tényekből épül fel, éppúgy, ahogy egy ház kövekből, de a tények összegyűjtése még éppúgy nem tudomány, mint ahogy egy rakás tégla még nem ház. Egy tény az egy tény. Egy diák ilyen és ilyen számot olvas le a hőmérőről. Nem tett semmiféle óvintézkedést. Nem is számít, leolvasta, és ha csak a tényt vesszük figyelembe, semmi okunk ezt kevésbé a valóságnak tekinteni, mint Földnélküli János peregrinációit. (Poincaré 1905 (1952), o.). A két-nyelv modell belső kritikája Nem nyilvánvalóan működik az empirikus-teoretikus dichotómia ki dönti el, mi hova tartozik? (Mi lokális? Mi univerzális? Nyilvánvaló az elválás?) Vita arról, hogy Milyen módon kötelezzük el magunkat egy leíró nyelv mellett? Lehet-e rögzített és neutrális-e az érzéki tapasztalat? lásd következő fóliákat Válasszunk inkább szolipszizmushoz vezető egyéni érzetadatokat vagy inkább a társas megértést segítő, de nem magalapozott vagy elemi adatokat? Hogyan higgyünk a korrespondancia-szabályokban? Hiszen ez egy fordítási folyamat, így pontatlan, vagyis nem várható 1 az 1 hez megfeleltetés És végül mi a státusza a teoretikus terminusoknak (atom, kvark, spin, erő, szelekció)? Ezek most vannak? De hát nem kötődnek közvetlenül a tapaszatalathoz? Vagy csak kényelmes rövidítések a tapasztalat valamilyen leírására? Jó-e kiküszöbölni a teoretikus terminusokat? - erről lásd még következő fóliákat 1
2 Duhem (és mások) kritikája a tapasztalati nyelvről A gyakorlati tény kontúrjai bizonytalanok (Duhem 1954: 152) Otto Neurath - Mindig jelezni kellene, mely tényeket hanyagoltak el és melyeket részesítettek előnyben. A fizikai hipotézisrendszer, mint minden egyéb hipotézisrendszer, nem csak a tények kapcsolatát, hanem kiválasztását is meghatározza. Még egy protokolltétel is elvethető. A noli me tangere egyetlen állításra sem áll még ha Carnap a protokolltételekre fenn is tartaná azt. (Neurath 1983: 95) De még a kezdő állításai sem kötöttek a sikeres tudománynak, hiszen különféle egységes nyelvek lehetnek kiindulási alapjaink, amelyek közvetlenül nem fordíthatók le egymásra. És még ha többé-kevésbé kötöttek is lennének az egységes nyelvek valójában a tegnap és a ma, egy könyv elején és végén megjelenő állítások is gyakran kissé különböző nyelvekhez tartoznak, még akkor is különböző rendelkezésre álló és növelhető számú megfigyelési állítás közül választhatunk, hogy pontos predikciókat tegyünk. Amit az egyik személy lényegtelennek tart és aztán ennek megfelelően alakítja fogalmait, az a másik számára elengedhetetlennek tűnhet. Például Goethe amiatt kritizálta Newtont, hogy az a spektrum képének elmosódó széleit elhanyagolta, míg saját elméletének ez volt az egyik kiindulópontja. Így áll a helyzet a tudományos munka minden szintjén nem csak a hipotézisek szűkebb tartományában, ahogyan amellett Poincaré és Duhem oly meggyőzően érvelt. (Neurath 1935). Egy példa Otto Neurath olvassa Goethe Newton-kritikáját Hogyan írjunk le kísérleteket? Newton Optikája a 18. század egyik legfontosabb munkája. A 19. század elején Goethe komoly támadást indít a newtoni modell ellen (Színelmélet). Ebben egy külön könyvet ír Newton kísérleteinek kritikájáról Neurath (a Bécsi Kör egyik filozófusa) ennek alapján: Pusztán egyes tények elhagyása vagy kiemelése már hipotetikus elemet vezet be egy doktrínába. Egy jelenség teljessége sohasem ragadható meg Bizonyos leírások választása bizonyos hipotézisekhez vezet, és a jelenség sohasem tükröződhet teljesen egy elméletben. Newton és Goethe leírásai ugyanazon a szinten vannak alternatív (és elméletterhelt) leírásai ugyanannak a jelenségnek. Már bizonyos kapcsolatok kijelölése önmagában is többé-kevésbé kifejezett hipotéziseken alapul. Egyes tényeket kiemelünk, összeillesztjük őket, és reméljük, hogy a fennmaradó tények is beilleszthetőek maradnak. A teoretikus terminusok státusza Ernst Mach 1883 The Science of Mechanics Pozitivista szemlélet, elutasítja a hipotetikus entitásokat, mint atom, erő, abszolút tér Tudomány szembeállítása a spekulatív metafizikával A tudomány célja: a tapasztalatok gazdaságos leírása, a misztikus, egyedi jelenségek helyett általánosító törvények alkotása Az ismeretlen visszavezetése az ismerősre Mach szerint az a mechanika, amelyik elektromos fluidomokról, mint létezőről beszél, az nem jó tudomány. Lehet beszélni atomokról és egyéb tapasztalaton túli dolgokról, de ne állítsuk, hogy léteznek pusztán gazdaságos a használatuk (a lehető legtöbb tény a lehető legkevesebb gondolkodással ) A természet leírásánál kerüljük el az oksági magyarázatokat (úgyse tudjuk, úgy vane, ezek középkori csökevények) De akkor mi van? Kapcsolódik az instrumentalizmus/ realizmus vitához (lásd később) Mach válasza Az elmélet célja a) ideák illesztése tényekhez és b) egymáshoz A) végső soron a tudomány redukálhatósága a tapasztalatra (ez van) Minden tudományos fogalom redukálható tapasztalatra (ha nem, akkor nem kész az elmélet) A tudományos fogalom nem más, mint az élmények adott csoportosítása A nyelv a közvetlen érzetadatokon, primitív terminusokon keresztül áll kapcsolatban a világgal (szín, nyomás, ) B) tudomány egységes A redukció fogalma A redukció visszavezetés : jelenségek különböző köreire vonatkozó két tudásterület relációja T 1 elmélet minden entitása felfogható mint egy alapvetőbb T 2 elmélet entitása(inak konfigurációja) Pl. fény (optika) = elektromágneses hullám (ED) T 1 elmélet minden törvénye, jelensége leírható és megmagyarázható a T 2 elmélet nyelvén és törvényeivel Pl. fénytörés elektromos és mágneses térerősségvektorok tangenciális komponenseinek egyenlőségéből két felület határán 2
3 Hány féle redukció The Structure of Science, Nagel: ha a redukált T 1 elmélet nem tartalmaz olyan leíró terminust, amely nincsen meg a T 2 redukáló elméletben, akkor homogén a redukció ilyen esetben bár megvilágosító erejű tud lenni a redukció, igazából sok újat nem tudunk meg, nincs igazi AHA élményünk Történetileg ez igen valószínűtlen Nagel példája a Galilei féle mozgástörtvények redukciója a newtoni mechanikában valójában ez csak közelítés, mert bár nincsenek olyan kifejezések G-ben, amik nincsenek N-ben, valójában deduktív módon nem deriválhatók az egyik törvényei a másikból. (L. Sklar kritikája) így megmagyarázzuk valahogy a redukálandó elmélet törvényeit, de nem pont úgy, ahogy vártuk Heterogén redukció termodinamika redukciója statisztikus termodinamikára lásd később logikailag nem levezethető az egyik a másikból, de ha fenáll az összeköthetőség: deriválhatóság akkor OK. A hídtörvények (bridge law) HT: valamilyen identitásrelációt kell megfogalmaznia klasszikus fizikai optika modern optika: létezők megfeleltetései egymásnak: fényhullámok - elektromágneses hullámok így a redukció során valamilyen azonosság kerül megállapításra (HT=redukciós függvények) pl. sok munka után rájövünk, hogy a gének = DNS Példa 1: Atomizmus a 17. században Descartes korpuszkularianizmusa I.e. 5. sz., Démokritosz, Leukipposz: atomok + űr 17. sz.: újjáéledés: arisztotelészi term.fil. alternatívája a század közepére általánosan elfogadott (nem empirikus!) korpuszkuláris filozófia mechanisztikus felfogás: a részek viselkedésével magyarázható az egész viselkedése (vs. organikus) a látható jelenségek magyarázhatók az atomok viselkedésével Feladat: I. leírni az atomok viselkedését, mozgását II. ebből magyarázni a tapasztalatot nem atomista: nincs űr végtelen kis testek plenum -a I. atomok mozgása két lépésben magyarázandó: 1.) szabad mozgás: hogyan mozognának kölcsönhatás nélkül a) tehetetlenség (impetus elmélet Galilei D. letisztázza) b) egyenes vonalú (korábban: körmozgás az alapvető) 2.) ütközés: 7 szabály alapján (ezek később 1 kivétellel buknak) De ami marad: matematikai szabályok alapján kell leírni (Borelli: rugalmatlan; Huygens: rugalmas) Módszer: az ütközések közti idő tartson a nullához 3
4 II. a mozgások eredménye: anyagörvények nem lehet űr az egyenes vonalú mozgás során távozott anyagot pótolni kell végső soron körmozgások a szomszédos örvények összetartják egymást magyarázható: Naprendszer mozgása, Hold mozgása, gravitáció kémia, geológia, optika, stb. egyetemes redukcionizmus: minden fizikai jelenség erre vezethető vissza Pl. 2: A színek redukciója törékenységre Egy példa a sikeres korpuszkuláris magyarázatra: Newton optikai kísérletei Frissen felfedezett törvény a fénytörésről + prizmakísérlet + korpuszkulásis szemlélet + elszigetelt, de ördögien ügyes kísérletező Newton (publikált) kísérlete Az eredmény Hogyan magyarázható a látott megnyúlt kép? Hullám? Akkor a sarkon bekanyarodna a fény (Grimaldi 1665) Ha korpuszkuláris szemléletünk van (az van), mitől van, hogy nagyobb nyomás vörös Kisebb fénytörés vörös!a vörös fény erősebb! Lehet ez Részecske sebessége alapján (de akkor Jupiter holdak) Részecske méret alapján (de akkor nem módosulhat a fény) Summázat Tegyük fel, hogy a részecskék (így a fény részecskéi is) különböző méretűek Ezt elfogadva meg tudjuk magyarázni Egy eddig nem ismert tulajdonságot, a törékenységet Egy már ismert tulajdonságot, a színt EZ is redukció! De pontosan hogyan is? Pl. 3: Elsődleges és másodlagos tulajdonságok Korpuszkuláris filozófia hátterében: az atomoknak csak bizonyos tulajdonságai reálisak (pl. alak), a többi nem (pl.íz) Galilei: az anyag belső tulajdonságai, amik a matematika nyelvén kifejezhetők (alak, nagyság, szám) az anyag által okozott tulajdonságok (az érzékszervekben: szín, hő, hang, íz, stb.) Gassendi, Descartes: csak az elsődleges tul.-ok alapján kell magyarázni a Természetet: testecskék tulajdonságai ezek száma, elrendeződése, alakja, mérete (és térbeli helyzete) mindenre magyarázatot ad Newton: az elsődleges tulajdonságok képesek másodlagos tul.ok érzeteit kelteni bennünk mi pedig képesek vagyunk új elsődleges tulajdonságokra találni, ha ügyesen kutakodunk (pl. a fény törékenységére) 4
5 John Locke ( ) Értekezés az emberi értelemről (1690): A modern tudomány követelményeinek megfelelő nagy hatású ismeretelmélet Különbségek elsődleges és másodlagos tul.-ok között: az elsődlegesek közvetlenül mérhetők (szín, íz nem. És a hő?) Az elsődlegesek több érzékszervvel is észlelhetők (látás, tapintás) ezek magukhoz a testekhez tartoznak, míg a másodlagosak a testek és az érzékek kölcsönhatásához Tehát: az elsődlegesekkel a testek mindig aktuálisan rendelkeznek, míg a másodikak csak erők, hogy érzeteket keltsenek. (Diszpozíció, mint pl. törékenység.) + az elsődlegesekről szerzett ideáink (képzeteink) hasonlítanak a dolgokra, míg a m.-ról szerzettek nem csúnya realizmus! Berkeley: képzetek csak képzetekre tudnak hasonlítani, dolgokra nem! Ha elég pontos érzékeink lennének, hogy kivehessük a testek apró részecskéit, és a valódi felépítést, amin az érzékelhető minőségek múlnak, nem kétlem, hogy ezek a mostanitól különböző ideákat okoznának bennünk; mert ami most az arany sárga színe, az eltűnne, és helyette bizonyos méretű és alakú részek csodás szövedékét kellene látnunk. Ezt a mikroszkópok világosan megmutatják: mert ami puszta szemünkben színeket okoz, az felnagyítva egészen másnak mutatkozik; és ha egy látszólag színes tárgy apró részeinek arányait megváltoztatjuk, akkor ezzel megváltoznak a bennünk okozott ideák is. (Értekezés az emberi értelemről II.xxiii.11) Pl. homok, haj, vér Episztemológiai (ismeretelméleti) redukcionizmus: a jelenségeket egy alapvetőbb szinten meg tudjuk magyarázni Ontológiai (lételméleti) redukcionizmus: a valódi létezők az alapvetőbb szinten vannak, a felső szint csak látszat Locke ontológiai redukcionista, de kétli, hogy a magyarázat szintjén is vissza tudunk-e vezetni (érzékszervek korlátjai) tudományos realizmus : a tudomány elméleteiben szereplő entitások vannak. Az érzékszerveink által nyújtottak nem feltétlenül. Pl. az anyagi testeknek csak elsődleges tulajdonságai vannak, másodlagosak nincsenek. ( anti-realizmus: ezek sincsenek a valóságban, ezeket is csak mi vezetjük be, hogy jobban le tudjuk írni a tapasztalatot) Pl. 4: erők, fluidumok Mint mindig a newtoni magyarázati modell sikertörténet Sikeres redukció Optikában a színek matematizálhatósága Mechanikában az égi és földi mozgások közös magyarázata No de mitévő legyen egy pl. kémikus? Meddig tart egy sikeres elmélet? az is lehetséges, hogy Isten különböző méretű és alakú anyagrészecskéket tud teremteni, különböző méretarányokban, és talán eltérő sűrűséggel és erőkkel, így a természet törvényeit is mássá téve, az univerzum különböző pontjain eltérő világokat létrehozva. Mindenesetre semmit nem látok ami kizárná ezt. Opticks o. Kiterjesszük a sikeres elméletet, vagy másoljuk le? 5
6 XVIII. sz. kémia elektív affinitások (ld. Goethe Vonzások és választások) Kémiai erők feltételezése Fotokémiai reakciók (ezüst-halidok, színezékek változásai, fotoszintézis) fénykémia a fény fizikájának riválisa lesz! A sikeres fizikai elmélet nem kiterjesztendő a kémiára, hanem lemásolandó Berthollet, Stahl, Berzelius Pl. 5: A termodinamika redukciója a statisztikus fizikára 18. sz.: hő: másodlagos tul.? De: mérhető, kiegyenlítődik. ez egyfajta fluidum: kalorikum (Lavoisier, Laplace) 19. sz. eleje: megmarad-e a hő? S. Carnot: gőzgép esetén igen (de átalakulhat munkává) J. Joule: elektromos motorok esetén nem: disszipáció század közepe: virágzik a fenomenologikus termodinamika, (entrópia, stb.), de nincs egyetértés abban, mi a hő 40-es évek vége: energiamegmaradás tétele összeföggés a hő és a mechanikai munka, mechanikai energia között. DE: mi lehet az összefüggés??? 1857, R Clausius: A hőnek nevezett mozgás természete kinetikus elmélet: a hő a molekulák mozgási E-ja egyrészt egyesíti a termodinamikát a kémiai atomelmélettel, másrészt egy csomó misztikus fizikai fogalmat magyaráz, méghozzá newtoniánus alapon (hőmérséklet, nyomás, stb.) Probléma: a termodinamikai folyamatok irreverzibilisek (entrópianövekedés), míg a mechanikai folyamatok reverzibilisek hogyan lehetne visszavezetni??? 1860-as évek: statisztikus eszközök ( új a fizikában) (Maxwell), Boltzmann: mikro- és makroállapotok az entrópia helyre kerül, és az entrópiatétel is: csak valószínűségi jellegű, relatív valószínűségekről szól (1877) Probléma: hol vannak a valószínűségek? (Bennünk vagy kint?) Továbbra is feszültség a mechanika és TD között kvantumelmélet Tanulság az ontológiai redukció itt problémás (pl. S), mert csak akkor megy, ha a valószínűséget a világ részeként értelmezzük ezt majd a QM legitimálja (?) az episztemológiai redukció pompás: egyrészt visszavezet egy jelenségkört egy másikra, amit alapvetőbbnek látunk és jobban ismerünk, másrészt egy csomó területet egyesít a magyarázat szintjén egységesítő szerep Tudományok közötti redukció? A tudományok egysége Oppenheim-Putnam (1958): elemi részecskék atomok molekulák élő sejtek többsejtű organizmusok társas csoportok (Megjegyzés: a redukció tranzitív) Fizikalizmus ontológiai: csak a fizikai létezők vannak, a többi mese episztemológiai: mindent vissza kell vezetni a fizikára Pl.: pszichológia: neurofiziológiai struktúrák működése, a többi tenyérjóslás társadalomtudományok: módszertani atomizmus 6
TUDOMÁNYOS MÓDSZERTAN
TUDOMÁNYOS MÓDSZERTAN TUDOMÁNYOS MÓDSZERTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév
A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév Dr. Paripás Béla 6. Előadás (2010.10.27.) Ponthatárok: 0 13 elégtelen (1) 14 18 elégséges (2) 19 22 közepes (3) 23 26 jó (4) 27
A modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
5. Holizmus, aluldetermináltság. BME - GTK Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2.
5. Holizmus, aluldetermináltság BME - GTK Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u. 2-4. fsz. 2. Telefon: 463-1181 Mielőtt elkezdenénk mi a helyes válasz? Amikor ugyanazon adatokra,
Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár
Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév
A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 6. Előadás (2018.10. 25.) EMLÉKEZTETŐ Pontszám konverzió (Ha 100% = 32 pont ) Érdemjegy Elégséges (2)
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.
BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az eladásban: a fizika alkalmazása a kémia tárgykörébe es fogalmak magyarázatára.
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Szocio- lingvisztikai alapismeretek
Szocio- lingvisztikai alapismeretek 10. A szociolingvisztika kialakulásának okai Hagyományos nyelvészet: A nyelv társadalmi normák strukturált halmaza (invariáns, homogén) Noam Chomsky: A nyelvelmélet
Legyen képes egyszerű megfigyelési, mérési folyamatok megtervezésére, tudományos ismeretek megszerzéséhez célzott kísérletek elvégzésére.
Fizika 7. osztály A tanuló használja a számítógépet adatrögzítésre, információgyűjtésre. Eredményeiről tartson pontosabb, a szakszerű fogalmak tudatos alkalmazására törekvő, ábrákkal, irodalmi hivatkozásokkal
V e r s e n y f e l h í v á s
A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK
- 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,
1. Bevezetés* * Külön köszönettel tartozom Madácsy Istvánnak és Murányi Tibornak a szöveg előkészítésében nyújtott baráti segítségéért.
1. Bevezetés* Ha nem is minden előzmény nélkül, de a tradicionális iskola magyar ágában jelent meg az a nézet, amely az európai filozófia egyik kifejezését, a szolipszizmust alkalmazta a tradicionális
Axiomatikus felépítés az axiómák megalapozottságát a felépített elmélet teljesítképessége igazolja majd!
Hol vagyunk most? Definiáltuk az alapvet fogalmakat! - TD-i rendszer, fajtái - Környezet, fal - TD-i rendszer jellemzi - TD-i rendszer leírásához szükséges változók, állapotjelzk, azok csoportosítása -
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Munka- és energiatermelés. Bányai István
Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,
A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FILOZÓFIA FELADATLAP ÉS VÁLASZLAP
Oktatási Hivatal Munkaidő: 120 perc Elérhető pontszám: 50 pont ÚTMUTATÓ A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FILOZÓFIA FELADATLAP ÉS VÁLASZLAP A munka megkezdése előtt
Fizikatörténet. Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Erlichné Dr. Bogdán Katalin Tantárgyfelelős beosztása Főiskolai docens
Tantárgy neve Fizikatörténet Tantárgy kódja FIB2405 Meghirdetés féléve 2 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Erlichné
Minek kell a matematika? (bevezetés)
Tudomány Minek kell a matematika? (bevezetés) Osváth Szabolcs a tudomány az emberiségnek a világ megismerésére és megértésére irányuló vállalkozása Semmelweis Egyetem a szőkedencsi hétszáz éves hárs Matematika...
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Arról, ami nincs A nemlétezés elméletei. 11. A semmi semmít december 2.
Arról, ami nincs A nemlétezés elméletei 11. A semmi semmít 2013. december 2. Martin Heidegger 1889-1976, Németország Filozófiai fenomenológia, hermeneutika, egzisztencializmus kiemelkedő alakja 1927: Lét
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Készítette: Bruder Júlia
Készítette: Bruder Júlia nkp.hu Megfigyelés Kísérlet Mérés Feladat: Lakóhely időjárásának megfigyelése 2 hétig: max. hőmérséklet, min. hőmérséklet, szél (nincs, gyenge, erős), csapadék. Az adatokat táblázatba
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Arról, ami nincs A nemlétezés elméletei. 9. Tudományos nyelvek és a létezés november 18.
Arról, ami nincs A nemlétezés elméletei 9. Tudományos nyelvek és a létezés 2013. november 18. I. Mi van? logika Willard van Orman Quine: Furcsa, hogy milyen egyszerű az ontológia problémája. Két egytagú
KVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
Az osztályozó vizsgák tematikája fizikából 7-11. évfolyam 2015/2016. tanév
Az osztályozó vizsgák tematikája fizikából 7-11. évfolyam 2015/2016. tanév Fizikából a tanulónak szóbeli osztályozó vizsgán kell részt vennie. A szóbeli vizsga időtartama 20 perc. A vizsgázónak 2 egyszerű
FIZIKA VIZSGATEMATIKA
FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
FARAGÓ LÁSZLÓ: A REÁLIS TÉR ELVESZTÉSE ÉS A GYAKORLATI KONSTRUKCIÓKRA VALÓ RÁTALÁLÁS
FARAGÓ LÁSZLÓ: A REÁLIS TÉR ELVESZTÉSE ÉS A GYAKORLATI KONSTRUKCIÓKRA VALÓ RÁTALÁLÁS A GEOGRÁFUS ÚTJAI TÓTH JÓZSEF EMLÉKKONFERENCIA PÉCS, 2014. MÁRCIUS 18. A GEOGRÁFIÁBAN (TÉRTUDOMÁNYOKBAN) TÁRSADALMI
Kant és a transzcendentális filozófia. Filozófia ös tanév VI. előadás
Kant és a transzcendentális filozófia Filozófia 2014-2015-ös tanév VI. előadás Kant és a transzcendentális filozófia A 18. század derekára mind az empirista, mind a racionalista hagyomány válságba jutott.
Speciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.
BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az előadásban: a fizika alkalmazása a kémia tárgykörébe eső fogalmak magyarázatára.
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
Az eredeti tézis szerint a fizikában (különösen az elméleti fizikában) soha
Seite 1 1 Seite 2 2 Seite 3 3 Seite 4 4 * Lásd - http://index.hu/tech/szoftver/goog0826/ Letöltés 08/10/05 A Google kalkulátor nem konzekvensen hibázik, de mindig csak a nagyon nagy számoknál ront. Például
Budapest, 2010. december 3-4.
Mócsy Ildikó A természettudomány A természettudomány szakágazatai: - alap tudományok: fizika kémia biológia földtudományok csillagászat - alkalmazott tudományok: mérnöki mezőgazdaság orvostudomány - matematika,
Milyen a modern matematika?
Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már
AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan
AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK Rausch Péter kémia-környezettan Hogy viselkedik az ember egyedül? A kémiában ritkán tudunk egyetlen részecskét vizsgálni! - az anyagi részecske tudja hogy kell
A relativitáselmélet története
A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,
Théorie analytique de la chaleur
Théorie analytique de la chaleur Előszó Az elsődleges okok ismeretlenek számunkra; de egyszerű és állandó törvényeknek vannak alávetve, amelyeket megfigyelés révén fel lehet fedezni Munkánk célja kifejteni
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
Általános Pszichológia. Érzékelés Észlelés
Általános Pszichológia Érzékelés Észlelés Érzékelés Észlelés Klasszikus modell Elemitől a bonyolultabbig Külvilág elemi (Fizikai) ingerei: Érzékszervek (Speciális receptorok) Észlelés -fény -hanghullám
kinetikus gázelmélet Clausius Maxwell
kinetikus gázelmélet Clausius rugalmas ütközés csak a fallal, ugyanazzal az átlagsebességgel, bármilyen irányban egyforma gyakorisággal: p = nmc 2 /3V pv = 2/3 nmc 2 /2 = 2/3 K ~ T (1857) túl nagy sebesség
Kinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
Az élő sejt fizikai Biológiája:
Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
GYAKORLATI FILOZÓFIA FILOZÓFIA TANÉV II. ELŐADÁS SZEPT. 18.
GYAKORLATI FILOZÓFIA FILOZÓFIA 2014-2015. TANÉV II. ELŐADÁS 2014. SZEPT. 18. A GYAKORLATI FILOZÓFIA TÁRGYA ELMÉLETI ÉSZ GYAKORLATI ÉSZ ELMÉLETI ÉSZ: MILYEN VÉLEKEDÉSEKET FOGADJUNK EL IGAZNAK? GYAKORLATI
Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI
Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Igazolás és cáfolás a tudományban
Igazolás és cáfolás a tudományban Tudományfilozófia, 2007. 03. 01 1. A tapasztalat nyelvi formája Ismétlés: a levélsor példája: vannak nem nyelvi természetű következtetések De ezek nem ellenőrizhetők logikailag:
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
FILOZÓFIA I. FÉLÉV 1. ELŐADÁS SZEPT. 11. MI A FILOZÓFIA?
FILOZÓFIA 2014-15. I. FÉLÉV 1. ELŐADÁS 2014. SZEPT. 11. MI A FILOZÓFIA? MI A FILOZÓFIA? FILOZÓFIA - A BÖLCSESSÉG SZERETETE NEM A BIRTOKLÁSA, HANEM CSAK A SZERETETE. MIT JELENT ITT A BÖLCSESSÉG? 1. SZENT
A gyógyszerek hatásának bizonyítása a 18. század végéig
A gyógyszerek hatásának bizonyítása a 18. század végéig Görög-római ókor Három orvosi irányzat létezik, a racionális (dogmatikus), az empirikus és a methodikus. A racionális a természet vizsgálatát (phüsziologia)
Evans-Searles fluktuációs tétel
Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
3. Az indukció szerepe
3. Az indukció szerepe Honnan jönnek a hipotézisek? Egyesek szerint az előzetesen összegyűjtött adatokból induktív (általánosító) következtetések útján. [Az induktív következtetésekről l. Kutrovátz jegyzet,
5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!
FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai
Fejezet. Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások
Fejezet 2 Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,
Termodinamika és statisztikus fizika
Termodinamika és statisztikus fizika abszolút hőmérséklet és skála (1848-1851) Kelvin a folyamatok iránya Clausius (1850) Kelvin (1851) az entrópia (Clausius, 1865) zárt rendszerben állandó (reverzibilis
A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.
Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.
BEVEZETÉS A PSZICHOLÓGIÁBA
BEVEZETÉS A PSZICHOLÓGIÁBA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
Szociolingvisztikai. alapismeretek
Szociolingvisztikai alapismeretek 10. A szociolingvisztika kialakulásának okai Hagyományos nyelvészet: A nyelv társadalmi normák strukturált halmaza (invariáns, homogén) Noam Chomsky: A nyelvelmélet elsődlegesen
2. Energodinamika értelmezése, főtételei, leírási módok
Energetika 7 2. Energodinamika értelmezése, főtételei, leírási módok Az energia fogalmának kialakulása történetileg a munkavégzés definícióához kapcsolódik. Kezdetben az energiát a munkavégző képességgel
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
A tudományos forradalom 2.
Vázlat A tudományos forradalom 2. Newton-kurzus, 2014.02.17. 0. Mi az a tudományos forradalom? I. Mihez képest forradalom? Az arisztoteliánus-középkori világkép II. A természet matematizálása III. A manipulatív-kísérletező
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
BEVEZETÉS A PSZICHOLÓGIÁBA
BEVEZETÉS A PSZICHOLÓGIÁBA BEVEZETÉS A PSZICHOLÓGIÁBA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
Betegség elméletek. Bánfalvi Attila
Betegség elméletek Bánfalvi Attila A halál kihordásának módjai A halál utáni élet a halál mint átjáró A halál idejének elhalasztása csak az evilági élet reális Az emlékezetben való megőrződés Halál és
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás