A méret igenis lényeg: mikrofluidika a biológiában
|
|
- Ignác Szekeres
- 6 évvel ezelőtt
- Látták:
Átírás
1 SZTE Eötvös Loránd Kollégium Biológia Műhelye: Hálózatok a biológiában VI. szemeszter, 2010/2011-es tanév, II. félév A méret igenis lényeg: mikrofluidika a biológiában Galajda Péter i előadása alapján Mikrofluidika idegenül csengő kifejezés, ami talán némi magyarázatra szorul. A mikro szót még értjük is és jogosan gondolunk valami kicsire. A fluidika pedig a folyadékok, folyadékkezelő rendszerek tudományát jelenti. Írásomban tehát egy olyan, még viszonylag új, de gyorsan fejlődő technológiáról, illetve tudományterületről lesz szó, amely sok tekintetben forradalmasíthatja a biológiai kutatásokat. Előadónk, Galajda Péter az MTA SZBK Biofizikai Intézetének közelmúltban hazatért munkatársa, aki a 2010-es Lendület Program nyerteseként mikrofluidikai kutatócsoportot alapított anyaintézményében. Bevezetésként fontos tisztázni azt az érdekes jelenséget, hogy a méretek egy bizonyos határon túli csökkentésével a hétköznapi, makroszkopikus világban megszokott fizikai törvények megváltoznak. Ezzel kapcsolatban csak a (csőben) áramló folyadékok példájára szeretnék kitérni. Az áramlástan egyik fontos mérőszáma az ún. Reynolds-féle szám: Re = v * d * ρ / ν ; ahol v= áramlási sebesség, d= csőkeresztmetszet, ρ= sűrűség és ν= viszkozitás (a folyadék belső súrlódása). A makroszkopikus világot a nagy Reynolds-számok jellemzik: ha Re egy kritikus érték fölé emelkedik (pl. megnő a sebesség), akkor turbulenssé válik az áramlás, örvények keletkeznek, megnő a súrlódási ellenállás. (Pl. ha egy szűk keresztmetszetű öntözőcsőben túl gyorsan áramlik a víz, a turbulencia miatt megnőtt nyomás elrepesztheti a csövet vagy szétfeszítheti a tömítéseket.) A turbulencia gyakorlati megnyilvánulása viszont az, hogy a folyadék összekeveredik. Ha fordítva gondolkozunk és lecsökkentjük a keresztmetszetet (a fent egyenletben d), akkor kis Reynolds-számot kapunk. Ilyenkor az (egymás mellett) áramló folyadékok nem képesek összekeveredni. Erről érdekes videó látható az alábbi linken: Alaposabban szemügyre véve a fenti egyenletet, úgy is kis Re értékhez juthatunk, ha megnöveljük a folyadék viszkozitását. Viszkózus folyadék pl. a méz, a glicerin vagy egy nagyon tömény keményítőoldat, mint ami az alábbi linken elérhető videón is szerepel: 1
2 Itt makroszkopikus méretek között sikerült kis Reynolds-számot teremteni. A fentiek már előrevetítik, hogy egy miniatürizált rendszer nem csak azért jó, mert nem anyagigényes (kis helyen elfér, olcsón fenntartható stb.), hanem mert olyan jelenségeket is vizsgálhatunk vele, amit egy nagy műszerrel lehetetlen. Másrészt a baktériumok mérettartománya (néhány µm) már erősen a kis Reynolds-számok világába esik. Az elméleti háttér áttekintése után következzen egy gyakorlati bevezető. Egy mikrofluidikai rendszer technikai felépítése alapjában véve megegyezik egy nagyméretű folyadékkezelő eszközével: csatornákból, csövekből, kamrákból, szelepekből, pumpákból stb. áll csupán mindezt mikro- vagy nanométeres méretben (1. ábra). 1. ábra. Mikrofluidikai eszköz ( a láthatóság miatt festékkel feltöltve) 2. ábra. Szilíciumlapkára maratott mikrocastornák és kamrák. 2
3 Az ilyen kisméretű eszközök kialakítására már kiforrott technológia áll rendelkezésre, köszönhetően a mikroelektronikai iparágaknak, elsősorban a mikrochipgyártásnak. Nem meglepő, hogy a mikrofluidikai eszközök jelentős része is szilíciumból készül, bár használnak kvarcot és speciális üveget is (2. ábra). A jövő viszont polimereké! Ezek olcsók, könnyen megmunkálhatóak, rugalmasak és a baktériumsejtek is jobban kedvelik, pl. hajlamosak kitapadni az ilyen felületekre. Bár már léteznek olcsó és könnyen hozzáférhető technológiák, az ilyen eszközök gyártása még mindig nagy szakértelmet és precizitást igényel, ezért általában költséges is.. Az egyik legfontosabb kritérium a pormentesség! A számunkra észrevehetetlenül apró porszemcsék eltömhetik a mikrocsatornákat, használhatatlanná téve az egész eszközt. Értelemszerűen minél kisebbek a csatornák, annál apróbb szemcsék is problémát okoznak, ezért fokozottan ügyelni kell a tisztaságra. Galajda Péter szegedi laboratóriumában csak a µm-es mérettartományig miniatürizálnak, így elegendőek a kereskedelmi forgalomban beszerezhető, ipari szűrőberendezések is (pl. amilyenekkel a műtők légterét csírátlanítják). Mire is lehet használni egy ilyen mikrofluidikai rendszert? Alapvetően két csoportba sorolhatók az alkalmazások. Egyrészt a kis méret miatt bármely, nagyban már létező eszköz sokkal gazdaságosabban, gyorsabban és párhuzamosan működtethető ilyen módon. Így a kísérletek high throughput módon végezhetők, ami manapság lényegében megkerülhetetlen az élvonalbeli kutatásoknál. Folyhat PCR-reakció a szilikonlapkákon, használhatjuk áramlási citométerként a mikrofluidikai chipet, vagy folyamatosan növeszthetünk benne baktériumokat, akár egy kemosztát funkciójú fermentorban. És mindez elfér az asztal sarkán, emellett fogyaszt energiát és nyersanyagot. A legkomplexebb alkalmazás az ún. lab-on-achip, ahol teljes kémiai reakciósorozatokat lehet vizsgálni gyorsan, minimális költségek mellet. Főleg a gyógyszermolekulák tesztelésénél terjed ez a fajta nagyon is költséghatékony megoldás. Egy kutató számára azonban sokkal érdekesebb az a fentebb már említett tény, hogy nagyon kicsi rendszerekben mások a fizikai paraméterek, így élőlények (elsősorban baktériumok) olyan tulajdonságait is lehet vizsgálni, amit hétköznapi méretekben ( lombikban ) soha sem. Az egyik ilyen, a műhelyfoglalkozáson megvitatott téma a baktériumok (összehangolt) mozgásának tanulmányozása volt. Az önálló mozgásra képes baktériumok, mint amilyen az egyik legáltalánosabb labororganizmus, az Escherichia coli baktérium is, falgellumaik 3
4 segítségével képesek úszni. Az E. coli a teljes sejtfelszínt beborító, ún. peritrich ostorzattal rendelkezik. Az előrehaladáshoz a baktérium elkezdi forgatni az ostorokat, amelyek így összecsavarodnak egyetlen köteggé és előrehajtják a baktériumot. Ha a baktérium egy vagy néhány flagellumát az ellenkező irányba kezdi forgatni, az ostor kiválik a kötegtől, a sejt pedig úszásirányt vált. Így jön létre a jellegzetesen szakaszos, tört vonalú ún. bolyongó mozgás. Ha a sejt akadálynak, pl. egy falnak ütközik, szeret a fal mentén úszni. Ezt kihasználva szerkeszthető egy olyan eszköz, melynek két kamráját szorosan álló, V-alakú akadályok választják el (3. ábra). 3.ábra. Baktériumok bolyongó mozgása akadály jelenlétében. Ha a kamrákba úszni képes baktériumokat teszünk azonos mennyiségben, előbb-utóbb a sejtek kb. három negyede átkerül az egyik oldalra, mivel az akadályok egyik irányból mintegy csapdaként megakadályozzák az átjutást, míg a másik oldalról szinte terelik az úszó sejteket. Több ilyen akadálysor egymás után rendezésével több tízszeresére bekoncentrálható egy baktériumkultúra töménysége. Úszó kórokozók esetén ennek a megoldásnak gyakorlati haszna is lehet, pl. folyadékok csírátlanításában. Ám a baktériumok nem csak valamilyen akadály mentén hajlamosak úszni, hanem ha két sejt véletlenül egymásnak ütközik, akkor onnantól nagy eséllyel együtt, egy irányba fognak úszni. Ezért ha mikroszkóp alatt szemlélünk egy tömény baktériumkultúrát, abban csomósodások, áramlások, örvények figyelhetők meg. Ezt a 4
5 jelenséget nevezzük korrelált úszómozgásnak. Egy mikroszkopikus méretű, tipikus mikrofluidikai kamrában ez rendszerint körbe áramló mozgást jelent. Itt érdemes megjegyezni, hogy az állatvilágban ez a fajta összehangolt körmozgás nagyon elterjedt! Pl. ha vándorló sáskákat egy edénybe zárunk, azok nem össze-vissza fognak ugrálni, hanem nagyon gyorsan kialakul köztük egy összerendezett, ütemes, körbe haladó mozgás. A csapatokba verődő pörölycápák szintén lassan körözve, egy hatalmas örvényt alkotva pihennek. Tél végén, a tavasz közeledtével pedig mindenki látta már a varjakat hatalmas örvényekben kavarogni az égen. 4. ábra. Egy mikrokemosztát felépítése A baktériumok örvénylő mozgásának logikus magyarázata lehet, hogy egy mikrokemosztátban így jutnak a legtöbb tápanyaghoz. A 4. ábrán látható eszközön kivehetők a kamrák és az őket összekötő csatornák. Utóbbiakon a baktériumok átférnek ugyan, de csak lassan, egyszerre csak néhány sejt. A kamrák alsó és felső szélén látható keskeny csatornákon viszont nem fér át egy sejt, de ezeken át jut friss tápanyag a kamrákba. Így a falak mentén körbeáramló baktériumok mindig friss tápoldathoz juthatnak. Ez egyfajta altruista viselkedésként (önzetlenség) is felfogható, hiszen ha egyes sejtek inkább szorosan a falhoz tapadnának, ők bőségesen hozzájutnának a tápanyagokhoz, míg a kamra belső részében rekedt társaik éheznének. Nyilván nem feltételezhetünk tudatosságot a baktériumok részéről, hanem az összes sejt állandó versengésének egyfajta egyensúlyi megoldása az örvénylő keveredés. Tehát a sejtek egy mikrokemosztátban sokkal inkább rá vannak kényszerítve a kooperációra, mint mondjuk egy lombikban. Mindezt játékelméleti modellekkel is sikerült alátámasztani: egy mikroszkopikus, fragmentált élőhelyen sokkal jellemzőbbek a harmonikusan együttműködő stratégiák, még a nagy, homogén közegekben a csalás dominál. Ennek egyik fő magyarázata lehet, hogy a sejtek itt olyan sűrűségben találhatók, amit átlagos laborméretekben szinte lehetetlen megoldani. Gondoljunk bele: a fenti mikrokemosztát-kamrában a sejtek folyamatosan osztódnak (hiszen állandó a tápanyagellátás), de kijutni alig tudnak onnan. Így az 5
6 osztódásnak végül az szab határt, hogy elfogy a hely, nem pedig hogy elfogy a táplálék! Egy ilyen zsúfolt közegben sokkal inkább szerephez jut a baktériumok közötti kommunikáció, az ún. quorum sensing. A baktériumok kémiai jelekkel kommunikálnak, attraktánsokat, repellenseket bocsátanak ki, mellyel mind más fajba tartozó egyedekre, mind saját fajtársaikra képesek hatni. Megfigyelték, hogy ha egy, a 4. ábrán látható rendszerben kezdik felnöveszteni a baktériumkultúrát, a kamrák birtokbavétele során átmenetileg nagyon megnő a sejtkoncentráció az összekötő csatornákban, míg attól távolodva folyamatosan csökken. Az 5. ábra egy szimuláció eredménye, ahol a mikrokemosztát áramlási tulajdonságai ismeretében igyekeztek megjósolni, hogy egy tetszőleges anyag milyen koncentrációeloszlást mutat a kamrákban. 5. ábra. Koncentrációeloszlásszimuláció: kéktől pirosig nő a töménység Az ábrával szinte megegyező baktériumeloszlást lehet tapasztalni valós kísérleti körülmények között. Így az amúgy nehezen vagy alig tanulmányozható quorum sensing kutatásához új és igen hatékony eszközt szolgáltathat a mikrofluidika. Műhelyfoglalkozásunkon még számos téma előkerült, melyek kutatására alkalmasak lehetnek a mikrofluidikai chipek, de fenti példák is bőségesen demonstrálják, hogy mekkora jelentőségű tudományterületről van szó. Összefoglalásként a bevezetőben már említett tényt hozhatjuk fel: egy mikrométeres rendszerben annyira mások a paraméterek, hogy számos olyan jelenséget is vizsgálhatunk, melyek egy makroszkopikus rendszerben láthatatlanok. A baktériumok mozgásának, kommunikációjának, populációdinamikájának tanulmányozásban pedig már most új fejezeteket nyitott a mikrofluidika. Galajda Péter frissen alapult laboratóriumának tevékenységére a továbbiakban is nagy figyelemmel tekint műhelyünk. Draskovits Gábor II. PhD hallgató 6
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006
14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Út az egyes sejtektől a közösségig: baktériumok a csipen
Út az egyes sejtektől a közösségig: baktériumok a csipen Galajda Péter Biofizikai Intézet Szegedi Biológiai Központ Az egyének és a közösség Az egyének és a közösség? kölcsönhatás egyének (m!köd" strukturált)
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
ÁRAMLÁSTAN MFKGT600443
ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK
Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:
Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny
Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek
Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai
016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
SZAKDOLGOZAT VIRÁG DÁVID
SZAKDOLGOZAT VIRÁG DÁVID 2010 Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék SZÁRNY KÖRÜLI TURBULENS ÁRAMLÁS NUMERIKUS SZIMULÁCIÓJA NYÍLT FORRÁSKÓDÚ SZOFTVERREL VIRÁG
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
Ellenörző számítások. Kazánok és Tüzelőberendezések
Ellenörző számítások Kazánok és Tüzelőberendezések Tartalom Ellenőrző számítások: Hőtechnikai számítások, sugárzásos és konvektív hőátadó felületek számításai már ismertek Áramlástechnikai számítások füstgáz
Mikrofluidika I. - Alapok
Budapest Műszaki és Gazdaságtudományi Egyetem Mikro és nanotechnika Mikrofluidika I. - Alapok Elektronikus Eszközök Tanszéke www. Ender Ferenc ender@ 1. előadás Bevezetés Mikrofluidikai hatások, arányos
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
Kollár Veronika A biofizika fizikai alapjai
Kollár Veronika A biofizika fizikai alajai 013. 10. 14. Folyadékok alatulajdonságai folyadék: anyag, amely folyni kées térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel
Kémia: minden, ami körülvesz. 5.modul: Gyakorlati feladatok: anyagok és tulajdonságaik
Kémia: minden, ami körülvesz 5.modul: Gyakorlati feladatok: anyagok és tulajdonságaik TARTALOM 5.modul: Gyakorlati feladatok: anyagok és tulajdonságaik...2 1. Sodium PolYacrylate egy polimer a babák egészségéért...3
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI
Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,
Makroökonómia. 9. szeminárium
Makroökonómia 9. szeminárium Ezen a héten Árupiac Kiadási multiplikátor, adómultiplikátor IS görbe (Investment-saving) Árupiac Y = C + I + G Ikea-gazdaságot feltételezünk, extrém rövid táv A vállalati
Hőtágulás - szilárd és folyékony anyagoknál
Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám
Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.
Hatvani István fizikaverseny Döntő. 1. kategória
1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
Összefoglalók Kémia BSc 2012/2013 I. félév
Összefoglalók Kémia BSc 2012/2013 I. félév Készült: Eötvös Loránd Tudományegyetem Kémiai Intézet Szerves Kémiai Tanszékén 2012.12.17. Összeállította Szilvágyi Gábor PhD hallgató Tartalomjegyzék Orgován
Á R A M L Á S T A N. Áramlás iránya. Jelmagyarázat: p = statikus nyomás a folyadékrészecske felületére ható nyomás, egyenlő a csőfalra ható nyomással
Á R A M L Á S T A N Az áramlástan az áramló folyadékok (fluidok) törvényszerűségeivel foglalkozik. A mozgásfolyamatok egyszerűsítése végett, bevezetjük az ideális folyadék fogalmát. Ideális folyadék: súrlódásmentes
Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2
Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével
GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba
Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.
tervezési szempontok (igénybevétel, feszültségeloszlás,
Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet
Kémiai reakciók mechanizmusa számítógépes szimulációval
Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Elektromosság, áram, feszültség
Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
V e r s e n y f e l h í v á s
A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református
OXIGÉNIGÉNY ÉS LEVEG ZTETÉS
CO 2 OXIGÉNIGÉNY ÉS LEVEG ZTETÉS glükóz (6 C-atom) G-6-P F-6-P F-1,6-diP Gliceraldehid-P (3C-atom) PEP Pyr Ac-CoA ATP ADP ATP ADP 1,3-diP-glicerát ADP ATP ATP 3-P-glicerát ADP 2-P-glicerát 2H 2H BIM SB
VIZSGA ÍRÁSBELI FELADATSOR
NINCS TESZT, PÉLDASOR (150 perc) BMEGEÁTAM01, -AM11 (Zalagegerszegi BSc képzések) ÁRAMLÁSTAN I. Mechatronikai mérnök BSc képzés (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI:
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
EGYSZERŰ, SZÉP ÉS IGAZ
EGYSZERŰ, SZÉP ÉS IGAZ AVAGY EGY FIZIKUS (FIZIKATANÁR?) VILÁGKÉPE Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport 62. Országos Fizikatanári Ankét és Eszközbemutató,
Csapágyak szigetelési lehetőségei a kóbor áram ellen. Schaeffler Gruppe
Csapágyak szigetelési lehetőségei a kóbor áram ellen Kóbor áram Kóbor áram okozta csapágy károk Szigetelés a kóbor áram ellen 23.11.2009 Seite 2 Kóbor áram Kóbor áram okozta csapágy károk Szigetelés a
A mikroskálájú modellek turbulencia peremfeltételeiről
A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása
Hidrosztatika, Hidrodinamika
0/4/0 Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Vérkeringés. A szív munkája
Vérkeringés. A szív munkája 2014.11.04. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: vér pumpálása vér áramlása az erekben oxigén és tápanyag szállítása
Vérkeringés. A szív munkája
Vérkeringés. A szív munkája 2011.11.02. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: Oxigén és tápanyag szállítása a szöveteknek. Végtermékek elszállítása.
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
(Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége: Pascal (Pa) 1 Pascal
Hőkezelés az élelmiszeriparban
Hőkezelés az élelmiszeriparban A HŐKEZELÉS CÉLJAI A sejtközi gázok eltávolítása, gyümölcsök és zöldségek húzatása Fagyasztás előtt, kellemes íz kialakítása, főtt állomány, enzim bénítás, előfőzés Gyümölcs
A baktériumok (Bacteria) egysejtű, többnyire pár mikrométeres mikroorganizmusok. Változatos megjelenésűek: sejtjeik gömb, pálcika, csavart stb.
BAKTÉRIUMOK A baktériumok (Bacteria) egysejtű, többnyire pár mikrométeres mikroorganizmusok. Változatos megjelenésűek: sejtjeik gömb, pálcika, csavart stb. alakúak lehetnek. A mikrobiológia egyik ága,
Orvosi diagnosztika tenyérnyi eszközökön
Iván Kristóf Orvosi diagnosztika tenyérnyi eszközökön Budai Ciszterci Szent Imre Gimnázium Budapest, 2013. január 6. www.meetthescientist.hu 1 26 Diagnosztikai eszközök : Laboratórium egy chipen! (Massachusetts
1. előadás Alap kérdések: Polimer összefoglaló kérdések
1. előadás Alap kérdések: Polimer összefoglaló kérdések Ha ügyes vagy, a választ az előző kérdésnél megleled! hőre lágyuló: hevítéskor ömledék állapotba hozható hőre nem lágyuló: nem hozható ömledék állapotba,
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf
(www.biophys.dote.hu./icys).
1 (www.biophys.dote.hu./icys). A Debreceni Egyetem GVOP-3.2.1.-2004-04-0351/3.0 számú projektje során a Debreceni Egyetem Biofizikai és Sejtbiológiai Intézetében telepítésre került egy nagy értékű képalkotó
Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén
Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén Dr. Dallmann Klára A molekuláris biológia célja az élőlények és sejtek működésének molekuláris szintű
3. Mérőeszközök és segédberendezések
3. Mérőeszközök és segédberendezések A leggyakrabban használt mérőeszközöket és használatukat is ismertetjük. Az ipari műszerek helyi, vagy távmérésre szolgálnak; lehetnek jelző és/vagy regisztráló műszerek;
MIKROELEKTRONIKAI ÉRZÉKELİK I
MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 8. ELİADÁS: MECHANIKAI ÉRZÉKELİK I 8. ELİADÁS 1.
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1. feladat 8 pont A mérőműszerek felépítése A mérőműszer mely részére vonatkozik az alábbi állítás? Írja
Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév
Folyadékok és gázok mechanikája Fizika 9. osztály 2013/2014. tanév Szilárd testek nyomása Az egyenlő alaplapon álló hengerek közül a legsúlyosabb nyomódik legmélyebben a homokba. Belenyomódás mértéke a
Bármennyire hihetetlen: a rovarvilág legjobb repülõi a vízhez kötõdnek. Általában. Élõ helikopterek HÁROMSZÁZMILLIÓ ÉV ÓTA REPÜLNEK
01-EloHeli.qxd 10/3/2007 4:34 PM Page 1 HÁROMSZÁZMILLIÓ ÉV ÓTA REPÜLNEK Élõ helikopterek A nagyszitakötők szárnyainak töve és tori kapcsolódásuk bonyolult, fantasztikus röpképességüket lehetővé tevő architektúrája
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatokat Válasz lehetőségek: (1) a föld középpontja felé mutató erőhatást 1. fejt ki., (2) az alátámasztásra vagy a felfüggesztésre hat., (3) két 4:15 Normál különböző erő., (4) nyomja
VIZSGA ÍRÁSBELI FELADATSOR
ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál
Transzportjelenségek
Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít
VÍZKÉMIA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
KÖRNYEZETMÉRNÖKI MESTERKÉPZÉS TÖRZSANYAG TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014 1 Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyző, óraszám,
1. Cartesius-búvár. 1. tétel
1. tétel 1. Cartesius-búvár Feladat: A rendelkezésre álló eszközök segítségével készítsen el egy Cartesius-búvárt! A búvár vízben való mozgásával mutassa be az úszás, a lebegés és az elmerülés jelenségét!
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ
Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges
Gyermek bútor katalógus 2012
Gyermek bútor katalógus 2012 langabútor kft A Langa Bútor Kft. Föleg kárpitos, gyerekágyak gyártására specializálódott magyar tulajdonú kisvállalkozás vagyunk, de a jövöben egyéb gyerekbútor gyártását
Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség
Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd
FoodManufuture FP7 projekt
FoodManufuture FP7 projekt Virtuális és kibővített (augmented) valóság - Élelmiszeripari igények és alkalmazási lehetőségek dr. Sebők András Campden BRI Magyarország FoodManufuture workshop Budapest, Vidékfejlesztési
Hidraulika. 5. előadás
Hidraulika 5. előadás Automatizálás technika alapjai Hidraulika I. előadás Farkas Zsolt BME GT3 2014 1 Hidraulikus energiaátvitel 1. Előnyök kisméretű elemek alkalmazásával nagy erők átvitele, azaz a teljesítménysűrűség
Teljes dobó mozgás 10 lépésben
Teljes dobó mozgás 10 lépésben Első lépés: Fogadás Egy dobónak van bizonyos szabadsága annak megválasztásában, hogy kezdjen neki a feladatához. A legelső lépés a fogadás vagy készenléti pozíció, ahol a
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő
AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő Az NIH, az Egyesült Államok Nemzeti Egészségügyi Hivatala (az orvosi- és biológiai kutatásokat koordináló egyik intézmény) 2007 végén
KÖSZÖNTJÜK HALLGATÓINKAT!
2010. november 10. KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth Zoltán Módszerek, amelyek megváltoztatják a világot A számítógépes szimuláció és optimalizáció jelentősége c. előadását hallhatják! 1 Módszerek,
Az alábbi áttekintés Délkelet-Európa (a volt Jugoszlávia országai
OKTATÁSIRÁNYÍTÁS ÉS OKTATÁSPOLITIKA A BALKÁNON Az alábbi áttekintés Délkelet-Európa (a volt Jugoszlávia országai Szlovénia kivételével, Bulgária, Románia és Albánia) oktatási rendszerei előtt álló kihívásokat
Az élő sejt fizikai Biológiája:
Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai
Az egyszázalékos rácspont visszaadása a flexónyomtatásban
Az egyszázalékos rácspont visszaadása a flexónyomtatásban Maxim Siniak, PHD, X-Rite Inc, Pierre Paul Moyson, ASAHI Photoproducts (Europe)n.v/s.a. Fordította: Tátrai Sándor Az elmúlt néhány évben a flexónyomtatással
1. szemináriumi. feladatok. Ricardói modell Bevezetés
1. szemináriumi feladatok Ricardói modell Bevezetés Termelési lehetőségek határa Relatív ár Helyettesítési határráta Optimális választás Fogyasztási pont Termelési pont Abszolút előny Komparatív előny
Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m
Határelületi jelenségek 1. Felületi eültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eültség adhézió nedvesítés ázis ázisdiagramm
Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával
Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával Szerző: Hullár Hanna Dóra, Anyagmérnök BSc, IV. évfolyam Témavezető: Balczár Ida Anna, PhD hallgató Munka helyszíne: PE-MK,
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények Nanoanyagok és nanotechnológiák Albizottság ELTE TTK 2013. Havancsák Károly Nagyfelbontású