Implicit tanulás vizsgálata mesterséges nyelvtan-elsajátítással
|
|
- Endre Hegedüs
- 9 évvel ezelőtt
- Látták:
Átírás
1 Implicit tanulás vizsgálata mesterséges nyelvtan-elsajátítással Varga Ádám 1. Bevezetés Az implicit tanulás olyan tanulási folyamat, amely során a személy úgy sajátít el bizonyos ismereteket, hogy a megtanultaknak nincs tudatában, azonban használni, alkalmazni tudja azokat. Ilyen folyamatnak tekinthető például olyan kézségek elsajátítása, mint az úszás, de az anyanyelv-elsajátítás során is hasonló mechanizmusok működnek. Az implicit tanulás vizsgálatának egyik bevett kísérleti paradigmája a mesterséges nyelvtanelsajátítás vizsgálata. A módszer eredetileg Arthur S. Reber nevéhez fűződik, aki az 1960-as években dolgozta ki az eljárást[1]. Én ennek egy egyszerűsített változatát dolgoztam ki és végeztem el a tesztalanyokon. 2. A kísérlet 2.1. Alapkoncepció, feltevések A kísérlet alapfeltevése az, hogy ha az alany bizonyos szabályok alapján felépülő mondatokat lát, akkor implicit módon valamilyen mértékben elsajátítja ezeket a szabályokat, anélkül, hogy erre külön felszólítást kapna vagy hogy azokat explicit módon meg tudná nevezni. Ezt úgy tesztelhetjük, hogy a tanulási szakasz után további mondatokkal szembesítjük, amelyekről grammatikalitási ítéleteket kell hoznia. Ebben a tesztfázisban a mondatok egy része a korábbi szabályoknak megfelel, egy másik részük viszont nem. Mivel feltételezzük, hogy implicit tanulási folyamat játszódik le, ezért a várakozásunk az, hogy a kísérleti alany bizonyos mértékben el fogja tudni különíteni a grammatikus mondatokat az agrammatikusaktól, azaz a teszten a véletlenszerű tippelésnél jobb eredményt produkál. A vizsgálatban egy kontroll-csoport is részt vesz, amely tagjai a tanulási szakaszban is véletlenszerűen generált mondatokat kapnak, így a tesztfázisban a tippelésen túl nincs esélyük eltalálni a mondatok helyességét. Az implicit nyelvtan-elsajátítás meglétét végül a két csoport eredményeinek összevetésével vizsgálhatjuk. 1
2 2.2 A mesterséges nyelvtan Varga Ádám 2.2. A mesterséges nyelvtan A kísérlet során egy kitalált nyelvet építettem fel. A nyelv tizenhat egyszótagos szóból áll, amelyek öt szófajba lettek kategorizálva: A: dok, zsin, kan, tiz B: von, zev, lot, pod C: laf, rol D: ras, jok, rew, lekk E: kup, heg A nyelv mondatait ezt követően négy újraíró szabály generálja: S AP BP (CP) AP A (D) BP CP D CP C E A zárójeles összetevők opcionálisak, a mondatok generálása során 50%-os eséllyek jelentek meg. A szófaji kategóriákból egyenlő valószínűséggel választottuk a szavakat, azaz az A, B és D típusú szavak közül mindegyik 25%, míg a C és E típusúak közül mindegyik 50% eséllyel lett kiválasztva A kísérlet megvalósítása A kísérleteket egy számítógépes programmal végeztem, amelyet C++-ban írtam meg. A program volt felelős a tesztalanyokkal való kommunikációért, a mondatok előállításáért és az eredmények regisztrálásáért, így a vizsgálatot otthonról, személyes felügyelet nélkül lehetett végezni. A tesztet alannyal végeztem el (éles- és kontrollcsoport). A program futtatáskor üdvözölte a vizsgált személyt, és bekérte az életkorát, nemét valamint a beszélt idegen nyelvek számát (bár nem terveztem ezeknek a faktoroknak a vizsgálatát, úgy gondoltam, hogy a jövőben még hasznosak lehetnek). Ezt követően az alany felszólítást kapott, hogy a most következő mondatok közül minél többet próbáljon meg memorizálni. Erre azért volt szükség, hogy fennmaradjon a figyelem, hiszen 2
3 2.3 A kísérlet megvalósítása Varga Ádám 1. ábra. Részlet a kísérlethez használt program forráskódjából ha mással kezdenek el foglalkozni, az implicit tanulás nem vagy csak rosszul működhetett volna. Gombnyomás után 40 mondat jelent meg egymás után a képernyőn, mindegyik négy másodpercig. Ebben a részben az éles teszt során a mondatok a fent leírt szabályoknak megfelelően lettek előállítva, míg a kontroll-kísérletek esetén véletlenszerűen előállított, de ugyanabból a tizenhat szóból álló mondatok jelentek meg. A véletlenszerű mondatok hossza 4 és 7 szó között változott egyenletes eloszlás szerint, és minden egyes helyre 1 16 valószínűséggel került valamelyik egyszótagos szó. A tanulási fázis következtével a tesztalanyoknak elárulta a program, hogy az eddigi mondatok egy rejtélyes földönkívüli nyelvből a Mortujok nyelvéből származtak, és annak nyelvtani szabályai alapján voltak felépítve. Ez után felszólítást kaptak, hogy a következő negyven mondatról próbálják meg eldönteni, hogy megfelelnek-e ezeknek a szabályoknak. Igen válasz esetén az 1-es, nem esetén a nullás billentyűt kellett lenyomni (más választ nem fogadott el a program). A tesztelési szakaszban 50-50%-os valószínűséggel jelentek meg a szabályoknak megfelelő, illetve véletlenszerű mondatok, amelyek a fentiekkel azonos módon lettek előállítva. A program egy fájlban regisztrálta az eredményeket, amit a kísérletben résztvevőknek vissza kellett küldeniük. A teszt elvégzése nagyjából tíz percet vett igénybe, a résztvevők nem kaptak anyagi ellenszolgáltatást. 3
4 Varga Ádám 3. Eredmények 2. ábra. A kísérlethez használt program futás közben 3.1. A csoportok összetétele és eredményei Az elemzést az R statisztikai programmal végeztem. A kísérleti csoportot 22 fő alkotta, 15 nő és 7 férfi, átlagéletkoruk 19,27, többségük két idegen nyelven beszél. A kontrollcsoport szintén 22 főből állt össze, 16 nő és 6 férfi, 18,73 év átlagéletkorral. Szintén két idegen nyelvet beszéltek többségben. A kísérlet tesztfázisában a kísérleti csoport átlagosan a mondatok 74,78%-áról tett helyes grammatikaltási ítéletet, míg a kontrollcsoport átlagosan csak 53,05%-os eredményt produkált. A pontos adatok az alábbi táblázatban vannak összefoglalva: Éles Kontroll Életkor x = 19,27 s = 1,58 x = 18,73 s = 1,24 Idegen nyelvek x = 2,09 s = 0,81 x = 2,05 s = 0,49 Eredmény (%) x = 74,78 s = 10,42 x = 53,05 s = 6,9 Az eredmények eloszlása a 3.3 ábrán tekinthető meg; bal oldalon a kísérleti- jobb oldalon a kontrollcsoporthoz tartozó eloszlás látható. 4
5 3.2 Az eredmények összehasonlítása Varga Ádám ábra. Az éles- és a kontroll-eredmények 3.2. Az eredmények összehasonlítása A két minta átlagának összevetéséhez a Welch-próbát alkalmaztam, amivel megvizsgálható, hogy van-e szignifikáns különbség az eredmények átlagai között. A próba feltételei közül a valószínűségi változók függetlensége teljesült, valamint az adatok arányskálán vannak mérve. A normális eloszlásnak azonban csak a kontrollcsoport eredményei feleltek meg (Shapiro- Wilk-próba: W = 0,97 p = 0,62), a kísérleti csoport eredményeinek eloszlása eltért ettől (W = = 0,9 p = 0,03). A jobbra való eltolódást az ábrára ránézve is láthatjuk. Ahhoz, hogy a tesztet mégis alkalmazni tudjam, transzformálom az adatokat. Mivel a sztenderd transzformációs eljárások a balra eltolódott eloszlásokat tudják kezelni, ezért előbb tükröztem az adatokat, majd eggyel megnöveltem őket, hogy alkalmazni tudjam a logaritmikus transzformációt (hiszen 0 logaritmusa nincs értelmezve), hogy közelebb kerüljenek a normális eloszláshoz. Ezt követően visszatükröztem őket, hogy visszanyerjem az eredeti sorrendet[2]: t(f(x)) = max{ln(1+max{f(x)} f(x))} ln(1+max{f(x)} f(x)) Ezt követően a Shapiro-Wilk-próba már elfogadható eredményt ad (W = 0,92 p = 0,08). Az adatok összehasonlíthatósága érdekében a kontrollcsoport eredményein is elvégzem ugyanezt a transzformációt. 5
6 3.2 Az eredmények összehasonlítása Varga Ádám ábra. Az éles- és a kontroll-eredmények a transzformáció után éles kontroll ábra. A két minta transzformált sűrűségfüggvényei 6
7 Varga Ádám A Welch-próba nullhipotézise, hogy a két minta átlaga megegyezik. A tesztet lefuttatva a következő eredményekhez jutunk: t = 4,08 p = 0,0002. Tehát elutasítjuk a nullhipotézist, és kijelenthetjük, hogy a két mintában az eredmények átlagai szignifikánsan eltérnek egymástól 0,05-ös szignifikanciaszint mellett. 4. Összefoglalás A kísérlet elvégzése és az eredmények összevetése után láthattuk, hogy azok az alanyok, akik a tanulási fázisban a mesterséges nyelvtan alapján generált mondatokkal találkoztak, szignifikánsan jobb eredményt értek el a kontrollcsoport tagjainál. Ezek alapján kijelenthetjük, hogy a teszt kimenetele megfelelt várakozásainknak, azaz feltételezhetjük a szintaktikai szabályok implicit elsajátítását és tudatalatti használatát. Hivatkozások [1] Reber, Arthur S.: Implicit Learning of Artificial Grammars. Journal of Verbal Learing and Verbal Behavior 6: , Providence [2] Osborne, Jason W.: Notes on the use of data transformations. Practical Assessment, Research & Evaluation 8(6),
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Nemparametrikus tesztek. 2014. december 3.
Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
Centura Szövegértés Teszt
Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.
Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
A korai kéttannyelvű oktatás hatása a kisiskolások anyanyelvi szövegértési és helyesírási kompetenciájára
Gyermeknevelés 4. évf. 1. szám 55 64. (2016) A korai kéttannyelvű oktatás hatása a kisiskolások anyanyelvi szövegértési és helyesírási kompetenciájára Szaszkó Rita Jezsik Kata Szent István Egyetem Alkalmazott
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Szakpolitikai programok és intézményi változások hatásának elemzése
Szakpolitikai programok és intézményi változások hatásának elemzése Kézdi Gábor Közép-európai Egyetem (CEU) és MTA KRTK A Magyar Agrárközgazdasági Egyesület konferenciája Budapest A hatás tényellentétes
Félidőben félsiker Részleges eredmények a kutatásalapú kémiatanulás terén
Félidőben félsiker Részleges eredmények a kutatásalapú kémiatanulás terén Szalay Luca 1, Tóth Zoltán 2, Kiss Edina 3 MTA-ELTE Kutatásalapú Kémiatanítás Kutatócsoport 1 ELTE, Kémiai Intézet, luca@caesar.elte.hu
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
nem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59
1. feladat Egy szer rákellenes hatását vizsgálták úgy, hogy 9 egér testébe rákos sejteket juttattak be. Közülük 3 véletlenszerűen kiválasztott egérnek kezelésként beadták a vizsgálandó szert, 6-nak pedig
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete
A számítógépes nyelvészet elmélete és gyakorlata Formális nyelvek elmélete Nyelv Nyelvnek tekintem a mondatok valamely (véges vagy végtelen) halmazát; minden egyes mondat véges hosszúságú, és elemek véges
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT. Szakmai Nap II. 2015. február 5.
AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT Szakmai Nap II. (rendezvény) 2015. február 5. (rendezvény dátuma) Nagy Éva (előadó) Bemeneti mérés - német (előadás)
Gyakorló feladatok a 2. dolgozathoz
Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Egésznapos iskola vagy tanoda?
Egésznapos iskola vagy tanoda? A 2013-as tanoda monitoring-program fő eredményeinek továbbgondolása Lannert Judit Országos Neveléstudományi Konferencia, 2014, Debrecen 1 Kérdés: A tanodába járás összefüggésben
DOKUMENTUM. EDUCATlO 1995/3 DOKUMENTUM pp. 555-560.
DOKUMENTUM Az EDUCATIO dokumentumrovata ezúttal az ún. "Nemzetközi Érettségi" magyar leírását közli. A szöveget a nemzetközi érettségire való felkészítést és megméretést kísérleti jelleggel ellátó Karinthy
Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.
Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj
Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság
Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság SZIGNIFIKANCIA Sándorné Kriszt Éva Az MTA IX. Osztály Statisztikai és Jövőkutatási Tudományos Bizottságának tudományos ülése
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
Iskolai veszélyeztetettség és pályaszocializáció*
PÁLYAVÁLASZTÁS LÁSZLÓ KLÁRA RITOÖKNÉ ÁDÁM MAGDA SUSANSZKY EVA Iskolai veszélyeztetettség és pályaszocializáció* A megfelelő szocializációs minták hiányában bizonytalan, esetleges, könynyen megzavarható
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
fa drogprevenciós Miért van szükség a drogprevenciós rész (ege ff (létesítésére? A Nemzeti Drogstratégia a büntetésvégrehajtás
fa drogprevenciós A szabadságvesztés és az előzetes letartóztatás végrehajtási szabályairól szóló 18/2002. (XI. 30.) IM rendelettel módosított 6/1996. (VII. 12.) IM rendelet (továbbiakban: Rendelet) lehetővé
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
NEVEZETES FOLYTONOS ELOSZLÁSOK
Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó
A kísérletes módszertan térnyerése az elméleti nyelvészetben. Pintér Lilla
A kísérletes módszertan térnyerése az elméleti nyelvészetben Pintér Lilla Kutatási kérdések I. Különbözőképp értelmezzük-e az alábbi mondatokat? (1) Csak Micimackó látogatta meg Malackát. (2) MICIMACKÓ
Adatelemzés az R-ben. 2014. április 25.
Adatelemzés az R-ben 2014. április 25. Kísérleti adatok elemzése Kísérlet célja: valamilyen álĺıtás vagy megfigyelés empirikus és szisztematikus tesztelése. Pl. a nők többet beszélnek, mint a férfiak,
Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok
Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok
Statisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
2. MÉRÉSELMÉLETI ISMERETEK
2. MÉRÉSELMÉLETI ISMERETEK A fejezet célja azoknak a módszereknek a bemutatása, amelyekkel adatokat gyűjthetünk annak érdekében, hogy kérdéseinkre választ kapjunk. Megvizsgáljuk azokat a feltételeket is,
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
MÓDSZERTANI ESETTANULMÁNY. isk_4kat végzettségek négy katban. Frequency Percent Valid Percent. Valid 1 legfeljebb 8 osztály ,2 43,7 43,7
MÓDSZERTANI ESETTANULMÁNY 1. Az elemzés kérdésfeltevése Egy 2009-es kutatásban (pszichiátriai ellátásban szociális lévők körében) attitűdöket vizsgáltunk, melyből a foglalkoztatás egyes modelljeinek egészségmegóvó
V. Gyakorisági táblázatok elemzése
V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák
Kérelem kutatásetikai engedélyhez (A kérelmet kitöltés után kérjük kinyomtatni és a kérelmező aláírásával ellátni.)
ELTE PPK Kutatásetikai engedélykérelem 1 Kérelem kutatásetikai engedélyhez (A kérelmet kitöltés után kérjük kinyomtatni és a kérelmező aláírásával ellátni.) Kérjük, olvassa el figyelmesen a 4. oldalon
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
Érettségi feladatok: Függvények 1/9
Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett
Iskolai jelentés. 10. évfolyam szövegértés
2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói
Kérdıívek, tesztek I. Kérdıívek
Kérdıívek, tesztek I. Kérdıívek Kérdıíves vizsgálat céljára alkalmas témák A kérdıíves vizsgálatok alkalmasak leíró, magyarázó és felderítı célokra. Leginkább olyan kutatásban használják, amelyekben az
AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT. Szakmai Nap II. 2015. február 5.
AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT Szakmai Nap II. (rendezvény) 2015. február 5. (rendezvény dátuma) Budai Attila (előadó) Bemeneti mérés - angol (előadás)
Jó befektetési lehetőség kell? - Ebben van minden, amit keresel
Jó befektetési lehetőség kell? - Ebben van minden, amit keresel 2014.11.18 14:17 Árgyelán Ágnes A jelenlegi hozamsivatagban különösen felértékelődik egy-egy jó befektetési lehetőség. A pénzpiaci- és kötvényalapok
Osztott algoritmusok
Osztott algoritmusok A benzinkutas példa szimulációja Müller Csaba 2010. december 4. 1. Bevezetés Első lépésben talán kezdjük a probléma ismertetésével. Adott két n hosszúságú bináris sorozat (s 1, s 2
Normális eloszlás paramétereire vonatkozó próbák
Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású
Online melléklet. Kertesi Gábor és Kézdi Gábor. c. tanulmányához
Online melléklet Kertesi Gábor és Kézdi Gábor A roma és nem roma tanulók teszteredményei közti ekről és e ek okairól c. tanulmányához A1. A roma etnikai hovatartozás mérése A2. A mintaszelekcióból adódó
Statisztikai módszerek 7. gyakorlat
Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i
IV. Változók és csoportok összehasonlítása
IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta
A kontrollált kísérlet módszere és alkalmazása a diszkriminációkutatásban. Simonovits Bori Budapest, 2011
A kontrollált kísérlet módszere és alkalmazása a diszkriminációkutatásban Simonovits Bori Budapest, 2011 A KLASSZIKUS KÍSÉRLET definíciója és hozzávalói A kísérletek az oksági folyamatok kontrollált vizsgálatának
Az emberi vér vizsgálata. Vércsoportmeghatározás, kvalitatív és kvantitatív vérképelemzés és vércukormérés A mérési adatok elemzése és értékelése
Az emberi vér vizsgálata Vércsoportmeghatározás, kvalitatív és kvantitatív vérképelemzés és vércukormérés A mérési adatok elemzése és értékelése Biológia BSc. B gyakorlat fehérvérsejt (granulocita) vérplazma
Irányított TULAJDONSÁGRA IRÁNYULÓ Melyik minta sósabb?, érettebb?, stb. KEDVELTSÉGRE IRÁNYULÓ Melyik minta jobb? rosszabb?
ÉRZÉKSZERVI VIZSGÁLATI MÓDSZEREK RENDSZEREZÉSE I. Kókai Zoltán - dr.erdélyi Mihály v.6. 26 ÉRZÉKSZERVI VIZSGÁLATI MÓDSZEREK CSOPORTOSÍTÁSA SZAKÉRTôI módszerek analitikus tesztek és eljárások FOGYASZTÓI
"Úgy nőtt fel egy nemzedék, hogy nem látott senkit dolgozni"
"Úgy nőtt fel egy nemzedék, hogy nem látott senkit dolgozni" (Hírszerző, 2008 december 9.) Az Út a munkához program biztosan kielégíti majd a tömegigényt, hogy az ingyenélőket most jól megregulázzuk, az
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
HAZAI KÉRDÕÍV-ADAPTÁCIÓK
OROSZ GÁBOR, RÓZSA SÁNDOR HAZAI KÉRDÕÍV-ADAPTÁCIÓK Pszichológia (2014) 34, 2, 103 108 DOI: 10.1556/Pszicho.34.2014.2.1 Ez a különszám egyéni különbségeket mérõ kérdõívek magyar adaptációját tartalmazza.