Statisztika. Politológus képzés. Daróczi Gergely május 4. Politológia Tanszék
|
|
- Márta Budai
- 6 évvel ezelőtt
- Látták:
Átírás
1 Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék május 4.
2 Outline 1 Korreláció 2 Standardizálás és dekompozíció 3 Grafikonok, ábrák Daróczi Gergely (PPKE BTK) Statisztika / 33
3 Korreláció Valós kapcsolat? Wind (miles per hour) Temperature (degrees Fahrenheit) Daróczi Gergely (PPKE BTK) Statisztika / 33
4 Korreláció Valós kapcsolat? Temp *** Wind Daróczi Gergely (PPKE BTK) Statisztika / 33
5 Korreláció Valós kapcsolat? May Jun Jul Aug Sep Oct date Temp May Jun Jul Aug Sep Oct date Wind Daróczi Gergely (PPKE BTK) Statisztika / 33
6 Korreláció Valós kapcsolat? date *** * Temp 0.46*** Wind Daróczi Gergely (PPKE BTK) Statisztika / 33
7 Kereszttábla Egy klinikai példa Kettős vak, randomizált kísérletet végeztünk végzős orvostanhallgatók körében. A kísérleti gyógyszert, ill. placebo-t fogyasztó alanyok egy éven keresztül minden nap benették a kiosztott pirulákat, majd a kísérlet végeztével az infarktusra való hajlamot vizsgálták: szívroham nincs szívroham Aspirin placebo Daróczi Gergely (PPKE BTK) Statisztika / 33
8 Kereszttábla Egy klinikai példa szívroham nincs szívroham ráta (1000 fő) Aspirin Placebo szívroham nincs szívroham Aspirin 0,9 % 99,1 % 100 % Placebo 1,7 % 98,3 % 100 % 1,3 % 98,7 % 100 % Daróczi Gergely (PPKE BTK) Statisztika / 33
9 Kereszttábla Egy klinikai példa Heart Attack? Yes No Total Aspirin Placebo Total Chi-Sq = = DF = 1, P-Value = Daróczi Gergely (PPKE BTK) Statisztika / 33
10 Kereszttábla Egy klinikai példa tizede Heart Attack? Yes No Total Aspirin Placebo Total Chi-Sq = = DF = 1, P-Value = Daróczi Gergely (PPKE BTK) Statisztika / 33
11 Standardizálás és dekompozíció Egy egyszerű példán keresztül bemutatva Henderson & Velleman (1981): Building multiple regression models interactively Weight (t) Horsepower Daróczi Gergely (PPKE BTK) Statisztika / 33
12 Standardizálás és dekompozíció Egy egyszerű példán keresztül bemutatva Henderson & Velleman (1981): Building multiple regression models interactively Standardized weight (t) Standardized horsepower Daróczi Gergely (PPKE BTK) Statisztika / 33
13 Standardizálás és dekompozíció A standardizálás egyszerű esete Normált érték (z-values, z-scores, normal scores, standardizált változó) alatt azt értjük, hogy a megfigyelések az átlagtól hány szórásnyira esnek: z = x µ σ Diamonds Diamonds Frequency Frequency Price (USD) Price (standardized) Daróczi Gergely (PPKE BTK) Statisztika / 33
14 Standardizálás és dekompozíció Dekompozíció Daróczi Gergely (PPKE BTK) Statisztika / 33
15 Standardizálás és dekompozíció Közvetlen transzformáció Meghatározás Közvetlen transzformáció (direct standardization) során a rétegspecifikus arányokat, rátákat értelmezzük a teljes populációra jellemző rétegnagyságokon. ráta = rétegspecifikus arány standard súlyok standard súlyok Miami = Alaska = (1.19x23,961) + + (39.11x10,685) 91, 208 (1.59x23,961) + + (39x10,685) 91, 208 = 6.92 = 6.71 Daróczi Gergely (PPKE BTK) Statisztika / 33
16 Standardizálás és dekompozíció Közvetett transzformáció Meghatározás A közvetett transzformáció (indirect standardization) esetében pontosan fordítva, a teljes populációból származtatjuk az arányokat/rátákat, a súlyokat pedig a rétegek alapján számoljuk. tapasztalt értékek ráta = várt értékek Várt értékek = Rétegspecifikus súlyok populációbeli arányok/ráta Minta Alapsokaság Directly-standardized rate ráta súly Indirectly-standardized rate súly ráta Daróczi Gergely (PPKE BTK) Statisztika / 33
17 Csoportosított oszlopdiagram Daróczi Gergely (PPKE BTK) Statisztika / 33
18 Rétegzett oszlopdiagram Daróczi Gergely (PPKE BTK) Statisztika / 33
19 Rétegzett oszlopdiagram Daróczi Gergely (PPKE BTK) Statisztika / 33
20 Vonal Daróczi Gergely (PPKE BTK) Statisztika / 33
21 Kördiagram Daróczi Gergely (PPKE BTK) Statisztika / 33
22 Kördiagram Daróczi Gergely (PPKE BTK) Statisztika / 33
23 Kördiagram Very Good Good Premium Fair Ideal Daróczi Gergely (PPKE BTK) Statisztika / 33
24 Kördiagram Ideal Premium Very Good Good Fair Daróczi Gergely (PPKE BTK) Statisztika / 33
25 Dot plot Daróczi Gergely (PPKE BTK) Statisztika / 33
26 Dot plot Daróczi Gergely (PPKE BTK) Statisztika / 33
27 Terület Daróczi Gergely (PPKE BTK) Statisztika / 33
28 Terület Daróczi Gergely (PPKE BTK) Statisztika / 33
29 Összetett, kombinált grafikonok Daróczi Gergely (PPKE BTK) Statisztika / 33
30 Összetett, kombinált grafikonok Daróczi Gergely (PPKE BTK) Statisztika / 33
31 Poláris Daróczi Gergely (PPKE BTK) Statisztika / 33
32 Heatmap Daróczi Gergely (PPKE BTK) Statisztika / 33
33 Heatmap Daróczi Gergely (PPKE BTK) Statisztika / 33
34 Heatmap Daróczi Gergely (PPKE BTK) Statisztika / 33
35 Waterfall Daróczi Gergely (PPKE BTK) Statisztika / 33
36 Boxplot Daróczi Gergely (PPKE BTK) Statisztika / 33
37 Violin plot Daróczi Gergely (PPKE BTK) Statisztika / 33
38 Mosaic chart Daróczi Gergely (PPKE BTK) Statisztika / 33
39 Szófelhő Daróczi Gergely (PPKE BTK) Statisztika / 33
40 Crayola Color Chart, Daróczi Gergely (PPKE BTK) Statisztika / 33
41 Érdekes, felkeresésre javasolt honlapok: Daróczi Gergely (PPKE BTK) Statisztika / 33
42 To be continued... Daróczi Gergely
Statisztika. Politológus képzés. Daróczi Gergely május 8. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. május 8. Outline 1 Mintaválasztás (ismétlés) 2 A változók közötti kapcsolatról 3 Korreláció Elméleti háttér Gyakorlat A korrelációs
Statisztika. Politológus képzés. Daróczi Gergely április 27. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2011. április 27. Outline 1 Ismétlés 2 Példa 3 Elméleti háttér 4 Elméleti háttér 5 Feladatok 6 A korrelációs együttható korlátai 7 Repeating
Statisztika. Politológus képzés. Daróczi Gergely február 20. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. február 20. Outline 1 A mérési hiba Megbízhatóság és érvényesség 2 A kutatás megtervezése A kutatás lehetséges céljai A kutatás
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
Statisztika. Politológus képzés. Daróczi Gergely február 23. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2011. február 23. Outline 1 A mérési hiba Megbízhatóság és érvényesség 2 A kutatás megtervezése A kutatás lehetséges céljai A kutatás
Statisztika. Politológus képzés. Daróczi Gergely. 2012. február 28. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. február 28. Outline 1 Változók és mérési szintek Mérési szintek Példák 2 A változók közötti kapcsolatról Grafikus példák A relációk
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Statisztika. Politológus képzés. Daróczi Gergely április 24. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 24. Outline 1 A mintavételi hiba és konfidencia-intervallum 2 A mintaválasztás A mintaválasztás célja Alapfogalmak A mintaválasztás
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Statisztika. Politológus képzés. Daróczi Gergely március 13. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. március 13. Outline 1 Beavatkozásmentes vizsgálatok 2 Kérdőíves vizsgálatok 3 Önkitöltős kérdőívek Postai kérdőív Online kérdőív
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
A társadalomkutatás módszerei I. Outline. 1. Zh Egyéni eredmények. Notes. Notes. Notes. 9. hét. Daróczi Gergely november 10.
A társadalomkutatás módszerei I. 9. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 10. Outline 1 1. Zh eredmények 2 Újra a hibatényezőkről 3 A mintavételi keret 4 Valószínűségi mintavételi
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI. Omnibusz 2003/08. A kutatás dokumentációja. Teljes kötet
A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI Omnibusz 2003/08 A kutatás dokumentációja Teljes kötet 2003 Tartalom BEVEZETÉS... 4 A MINTA... 6 AZ ADATFELVÉTEL FŐBB ADATAI... 8 TÁBLÁK A SÚLYVÁLTOZÓ KÉSZÍTÉSÉHEZ...
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
Mintavételi eljárások
Mintavételi eljárások Daróczi Gergely, PPKE BTK 2008. X.6. Óravázlat A mintavétel célja Alapfogalmak Alapsokaság, mintavételi keret, megfigyelési egység, mintavételi egység... Nem valószínűségi mintavételezési
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 9. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 10. Outline 1 1. Zh eredmények 2 Újra a hibatényezőkről 3 A mintavételi keret 4 Valószínűségi mintavételi
Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?
Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Adattípusok, ábrák és grafikonok az excelben
Adattípusok, ábrák és grafikonok az excelben Táblázatok és grafikonok Elsőként mindig érdemes táblázatokba rendezni és ábrázolni az adatokat! Miért? Ismerkedjünk az adatokkal! Milyen különbségek látszanak?
BIOMETRIA_ANOVA_2 1 1
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
KISTERV2_ANOVA_
Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását
A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI OMNIBUSZ 2004/05. A kutatás dokumentációja
A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI OMNIBUSZ 2004/05 A kutatás dokumentációja 2004 Omnibusz 2004/05 Mellékletek Tartalom BEVEZETÉS... 3 A MINTA... 5 AZ ADATFELVÉTEL FŐBB ADATAI... 7 Bevezetés A kutatást
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Logisztikus regresszió október 27.
Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai
Normál deviza és forint elszámolási értéknapok 2011. évben
Normál deviza és forint elszámolási értéknapok 2011. évben Magyarázat A devizakonverziók normál elszámolásának meghatározása: Minden normál devizakonverziót alap esetben T+2 napos elszámolással teljesít
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com
Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések
Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI
Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
Statisztika. Politológus képzés. Daróczi Gergely. 2012. március 20. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. március 20. Outline 1 Megbízhatóság és érvényesség 2 Az adatgyűjtés forrásai 3 Társadalomtudományi módszerek Beavatkozásmentes vizsgálatok
Grafikonok az R-ben március 7.
Normális eloszlás Grafikonok az R-ben 2012. március 7. Vendégelőadás módosított és végleges időpontja 2012. április 10., 3 óra. Új könyv a tankönyvtárban! Dalgaard, Peter (2008). Introductory statistics
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Petrovics Petra PhD Hallgató SPSS (Statistical Package for the Social Sciences ) 2 file: XY.sav - Data View XY.spv - Output Ez lehet hosszabb név is Rövid
Alkalmazott statisztika feladatok
Alkalmazott statisztika feladatok 1. Leíró statisztikák és grakonok 1.1. a. Olvassuk be a Davis adatsort a car vagy a cardata csomagból! Ábrázoljuk a weight változó boxplotját, majd értelmezzük az outlier
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika Autokorreláció white noise Autokorreláció: a függvény önnmagával számított korrelációja különböző
Regisztrál álláskeresők alakulása évben
Regisztrál álláskeresők alakulása 2011-2012 évben 1. számú melléklet Regisztrált álláskeresők száma zárónapon 2011/Jan 2011/Feb 2011/Mar 2011/Apr 2011/May 2011/Jun 2011/Jul 2011/Aug 2011/Sep 2011/Oct 2011/Nov
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Esetelemzések az SPSS használatával
Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 2. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. IX. 22. Outline 1 Bevezetés 2 Társadalomtudományi módszerek Beavatkozásmentes vizsgálatok Kvalitatív terepkutatás
Idõ-ütemterv há lók - I. t 5 4
lõadás:folia.doc Idõ-ütemterv há lók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelõ és Áttekintõ Technika ) semény-csomópontú, valószínûségi változókkal dolgozó
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Többszempontos variancia analízis. Statisztika I., 6. alkalom
Többszempontos variancia analízis Statisztika I., 6. alkalom Kétszempontos variancia analízis Ha két független változónk van, mely a csoportosítás alapját képezi, akkor kétszempontos variancia analízisrıl
A modellben az X és Y változó szerepe nem egyenrangú: Y (x n )
Kabos: Adatelemzés Regresszió-1 Regresszió (az adatelemzésben): Y (x n ) = l(x n ) + ε n, n = 1, 2,.., N, ahol ε 1,.., ε N független N(0, σ 2 ) eloszlású valószínűségi változók, és σ ismeretlen paraméter,
1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.
1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Aszályindexek és térképezési lehetıségeik. Lakatos Mónika, Szentimrey Tamás, Bihari Zita OMSZ lakatos.m@met.hu
Aszályindexek és térképezési lehetıségeik Lakatos Mónika, Szentimrey Tamás, Bihari Zita OMSZ lakatos.m@met.hu Vázlat Aszály fogalma, fajtái Aszály számszerősítése Aszályindexek osztályozása DMCSEE projektben
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
WIL-ZONE TANÁCSADÓ IRODA
WIL-ZONE TANÁCSADÓ IRODA Berényi Vilmos vegyész, analitikai kémiai szakmérnök akkreditált minőségügyi rendszermenedzser regisztrált vezető felülvizsgáló Telefon és fax: 06-33-319-117 E-mail: info@wil-zone.hu
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 A mintaválasztás célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi
Idő-ütemterv hálók - I. t 5 4
Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika
SPSS ALAPISMERETEK. T. Parázsó Lenke
SPSS ALAPISMERETEK T. Parázsó Lenke 2 Statistical Package for Social Scienses Statisztikai programcsomag a szociológiai tudományok számára 1968-ban Norman H. Nie, C.Handlai Hull és Dale H. Bent alkották
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta
Közlemény Biostatisztika és informatika alajai. előadás: Az orvostudományban előforduló nevezetes eloszlások 6. szetember 9. Veres Dániel Statisztika és Informatika tankönyv (Herényi Levente) már kaható
Minőség-képességi index (Process capability)
Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286
Minőségjavító kísérlettervezés
. példa J.J. Pignatiello, J.S. Ramberg: J. Quality Technology, 17 198-06 (1985) kézbentartható -1 1 A: high heat temperature ( 0 F) 1840 1880 B: heating time (s) 3 5 C: transfer time (s) 10 1 D: hold down
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
Változók eloszlása, középértékek, szóródás
Változók eloszlása, középértékek, szóródás Populáció jellemzése Empirikus kutatás (statisztikai elemzés) célja: a mintából a populációra következtetni. Minta: egy adott változó a megfigyelési egységeken
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Kabos Sándor. Térben autokorrelált adatrendszerek
Kabos Sándor Térben autokorrelált adatrendszerek elemzése Összefoglalás az előadás példákon szemlélteti a térben autokorrelált adatok blokkosításának és összefüggésvizsgálatának jellemző tulajdonságait.
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag)
, rangkorreláció Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
Az R statisztikai programozási környezet: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig
: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig Ferenci Tamás ferenci.tamas@nik.uni-obuda.hu 2017. február 23. Tartalom Az R mint programozási nyelv A könyvtárakról
GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens
GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA
Logisztikus regresszió
Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés
Statisztikai becslés
Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,
Polarizáló beruházások és változó gazdasági térszerkezet az átmenet Kínájában
Polarizáló beruházások és változó gazdasági térszerkezet az átmenet Kínájában Gyuris Ferenc ELTE TTK Regionális Tudományi Tanszék Kínai álom kínai valóság PPKE BTK Budapest 2014. november 22. Az egy főre
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Klaszteranalízis Hasonló dolgok csoportosítását jelenti, gyakorlatilag az osztályozás szinonimájaként értelmezhetjük. A klaszteranalízis célja A klaszteranalízis alapvető célja, hogy a megfigyelési egységeket
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Sztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
A társadalomkutatás módszerei I. Outline. Ismétlés. Notes. Notes. Notes. 6. hét. Daróczi Gergely október. 20.
A társadalomkutatás módszerei I. 6. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. október. 20. Outline 1 A mérésről Megbízhatóság és érvényesség A kutatás egységei Beavatkozásmentes vizsgálatok
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
TÁRKI ADATFELVÉTELI ÉS ADATBANK OSZTÁLYA. Változás SPSS állomány neve: Budapest, 2002.
TÁRKI ADATFELVÉTELI ÉS ADATBANK OSZTÁLYA Változás 2002 SPSS állomány neve: F54 Budapest, 2002. Változás 2002 2 Tartalomjegyzék BEVEZETÉS... 3 A SÚLYOZATLAN MINTA ÖSSZEHASONLÍTÁSA ISMERT DEMOGRÁFIAI ELOSZLÁSOKKAL...
Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése
Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık
Statistical Inference
Petra Petrovics Statistical Inference 1 st lecture Descriptive Statistics Inferential - it is concerned only with collecting and describing data Population - it is used when tentative conclusions about
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 6. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. október. 20. Outline 1 Ismétlés A mérésről Megbízhatóság és érvényesség A kutatás egységei Beavatkozásmentes vizsgálatok
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Okozati következtetések levonása megfigyeléses adatokból
Okozati következtetések levonása megfigyeléses adatokból Ferenci Tamás tamas.ferenci@medstat.hu 18. október 1. Kauzalitás vizsgálata megfigyeléses adatokból Annyit mondtunk, hogy tenni tehetünk a confounding