Folyadéklap instabilitása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Folyadéklap instabilitása"

Átírás

1 - - Leyező alakú spay olyadéklapban kialakuló keesztiányú áamlás. Ez a jelensé poblematikus pl. elületek bevonásánál, amiko a bevonó olyadéküönynek eyenletesnek kell lennie. A jelenséet elkeülni nem, de csökkenteni lehet. Véül, a üelékben saját kezdeti kíséleteinkől számolunk be. E témákkal ounk az alábbiakban olalkozni. Folyadéklap instabilitása A olyadéklapnak két alapvető instabilitási módusza van: a szimmetikus és antiszimmetikus (az anol iodalomban ezeket ende vaicose = visszészeű illetve sinuous = szinuszomájú móduszoknak nevezik). Ezeket a móduszokat sematikusan a. ábán láthatjuk.. ába. Az asszimmetikus (a) és a szimmetikus instabilitási hullám sematikus mejelenítése. (Senecal et al., 999) Ha a olyadéklap tökéletesen sima, a á ható eők eyensúlyban vannak. Ha azonban valami zavaás miatt ey kitüemkedés keletkezik, akko az eyensúly mebomlik. A elületi eszültséi eők mepóbálják visszaállítani az eedeti (sík) állapotot, mí mind a ázban, mind a olyadékban keletkező nomális eszültséek általában eősítik az instabilitást, azaz a zavaás amplitúdóját. A olyadék és ázázis közötti elatív sebessé addi növeli a zavaások amplitúdóját, amí azok szétesnek, és a keletkező olyadékszálak hamaosan cseppeke

2 - - Leyező alakú spay bomlanak. Ha a elületi eszültséi eők dominálnak, a zavaás elhal, mí ha az aeodinamikai eők dominálnak, a zavaás eősödik. A két eő aányával deiniálunk ey dimenziótlan számot, a Webe számot (We). Ha a Webe szám elé ey kitikus étéket akko lesz instabil a olyadéklap. A témával számos szező olalkozott, kezdve Squie-el (95), majd Haety és Shea (955), akik a mind olyadéklapot, mind a könyező ázt súlódásmentesnek, a olyadéklapot pedi eyenletes vastasáúnak tételezték el. Eedményeik azt mutatták, hoy a yakolat számáa édekes tatományban mindi az antiszimmetikus módusz dominál, a szimmetikus módusz eősítési tényezője jóval kisebb, íy nem iyelhető me. Ezt más szezők is íy találták, két szezőpáost kivéve (Li és Tankin, 99; Ranel és Siiano (99)), akik maas Webe számoknál és szokatlanul maas ázsűűsénél találtak ey tatományt, ahol a szimmetikus zavaás eősödik jobban. Ennek azonban, a paaméteek szokatlansáa miatt, kicsi a yakolati jelentősée. A önti eltételezések mellett a kitikus áz Webe szám We = ρ/ρ = Q, azaz a áz és a olyadék sűűséének aánya. (We = U hρ/σ, ahol U a olyadéklap és a könyező áz elatív sebessée, h a olyadéklap vastasáa, σ a elületi eszültsé.) A teljessé kedvéét összeolaljuk a kökeesztmetszetű olyadéksuá tulajdonsáait és összehasonlítjuk a lappal, mielőtt olytatjuk a olyadéklap táyalását. (i) A suá esetében a domináns instabilititási mód a szimmetikus, szemben a lappal; (ii) A suá esetében alacsony sebessénél a elületi eszültsé az instabilitást eősíti, mí nayobb sebessénél ellene dolozik. A lap esetében a elületi eszültsé mindi az instabilitás ellen dolozik, mí az instabilitást az aeodinamikai eők okozzák. Íy a lap vákuumban mindi stabil maadna; (iii) A suá elbomlásához nem szüksées a elatív sebessé, de seíti a elbomlást. A lap elatív sebessé nélkül nem bomlik el; Az alábbiakban a vékony, eyenletes vastasáú olyadéklap lineáis stabilitási elemzését közöljük, ahol a olyadék viszkozitását is iyelembe vesszük. A levezetés első észe elsősoban Li és Tankin (99) munkájáa alapozódik. Tekintsünk ey eyenletes, h vastasáú, ρ sűűséű, σ elületi eszültséű kétdimenziós olyadéklapot, amely U sebesséel mozo a súlódásmentes, ρ sűűséű könyező ázban. A koodinátaendszet a ázhoz özítjük, tehát U a olyadék és a áz elatív sebesséének tekinthetjük. A sebessé kicsi a hansebesséhez képest, íy mindkét közeet összenyomhatatlannak tekintjük, a avitációs hatásokat elhanyaoljuk. Az x tenely a lap közepén, az áamlás iányával páhuzamosan, az y tenely aa meőleesen van. A két olyadékelszínt a következő eyenletek adják me: y h ; exp( t ikx) () ahol y = ±h a olyadékelszín eyensúlyi helyzetei; a zavaás kezdeti amplitúdója, ami a lap élvastasáánál, h-nál sokkal kisebb; k = π/λ a hullámszám, λ a zavaás hullámhossza; ω = ω + iωi a komplex köekvencia. A valós ész ω a zavaás növekedési vay csökkenési átáját (az előjeltől üően), a képzetes ész ωi pedi π-sze a zavaás ekvenciája; ezzel a zavaás tejedési sebessée -ωi /k, t az idő. A olyadék mozása Mint említettük, az alapáamlás U naysáú x iányú sebessé, naysáú y iányú sebessé és könyező nyomás. Ee szupeponálódnak a kicsinek eltételezett (u, v) zavaási sebesséek az (x, y) iányban, valamint a p zavaási nyomás. A () kontinuitási eyenletet és a

3 - 4 - Leyező alakú spay () és (4) mozáseyenleteket lineaizálva közöljük, azaz elhaytuk a kis mennyiséek szozatait, illetve maasabb hatványait: u U t v U t u v x y u x v x p u x p v y () () (4) ahol a olyadék kinematikai viszkozitása. A ()-(4) eyenletekhez a következő peemeltételek kapcsolódnak. A olyadék-áz hatáelületen, ami elsőendű közelítésben továbba is y ±h-nak vehető, nincsen átáamlás, tehát a olyadék nomális sebessée a hatáelületen eyenlő a hatáelület nomális sebesséével. A csúsztatóeszültsé eltűnik a elületen (a áz súlódásmentes) és a nomális eszültsé olytonos. Ezeket a peemeltételeket matematikai omába öntve kapjuk: v U y ±h-nál (5) t x u v xy y ±h-nál (6) y x ahol p xy és yy, p y ±h-nál (7) yy yy a olyadék csúsztató- és nomális eszültsé,, yy a áz nomális eszültsé és a elületi eszültsé által okozott nyomás. ()-(4) meoldásához az ú. n. Helmholz dekompozíciót hívjuk seítséül. Ez azt jelenti, hoy a sebessémezőt elbontjuk két észe: a potenciálos (-es index) és a súlódásos (-es index) észe. Előbbihez potenciálüvényt, utóbbihoz áamüvényhez hasonló üvényt, ψ-t lehet deiniálni. u u u ; v v v (8) Levich (96) kimutatta, hoy a nyomás uyanaz a súlódásmentes és a súlódásos olyadékban, met a viszkozitás csak a hullám ekvenciáját beolyásolja, a nyomást nem. Íy a nyomást az -es sebessémezőből hatáozzuk me. Deiniáljuk a sebessépotenciált, -t. u v x y ; (9) A nyomást mekaphatjuk: () p U t x ()

4 - 5 - Leyező alakú spay A () és a (8)-() eyenletekből következik, hoy u x v y A () és (4) eyenletekből ende ezt kapjuk: u t U u x u v t U. () () v. (4) x v Deiniáljuk ψ-t: u ; v. (5) y x Behelyettesítve kapjuk: t U x. (6) A zavaások, hasonlóan ()-hez a következő omát öltik: ( y)exp( t ikx) (7) ( y)exp( t ikx). (8) (7)-et és (8)-at ()-be és (6)-ba behelyettesítve adódik: ( y ) k ( y) (9) ( y ) s ( y) () ahol s iku k. A (9) és () eyenletek meoldásai könnyen mekaphatók: ky ky ( y) Ce Ce () sy sy ( y) Ce C4e, () ahol C, C, C, C4 később mehatáozandó inteációs konstansok. Íy ky ky C e Ce exp( t ikx) sy sy C e C e exp( t ) (). (4) 4 ikx Az (5) és (6) peemeltételekből kiszámolhatók a konstansok: mí a nomális eszültsé a olyadéklapban k s C C (5) k cosh C kh ik C4, (6) cosh sh

5 - 6 - Leyező alakú spay yy v p y ky ky sy sy iku k e e C i kse e C exp( t ) ikx (7) A áz mozása A áz mozásáa hasonló alapeyenleteket íhatunk öl, mint a olyadékéa, csak itt a viszkozitást -nak tekintjük. u x u t v y p x (8) (9) v t A peemeltételek azt kívánják, hoy a hatáelületen olytonos leyen a nomális sebessé és távol a olyadéklaptól a zavaások elhalnak. Azaz: p y () v y ±h-nál () t v, ha y ±. () Mivel a áz súlódásmentes, itt is deiniálható sebessépotenciál. Ezt szintén az eddi meszokott alakban tételezzük el: (8), () és ()-ből következik: ( y)exp( t ikx). () / k exp( k( h y)) exp( t ikx) y h-a (4) (9)-ből és ()-ból következik, hoy a nomális eszültsé:, yy p / k exp( k( h y)) exp( t ikx) (5) t Felületi eszültsé által indukált nyomás A elületi eszültsé által létehozott nyomás elsőendű közelítésben: p, ahol R R x a hatáelület öbületi suaa. Eszeint: p k exp( t ikx) (6)

6 - 7 - Leyező alakú spay Diszpeziós eyenlet az antiszimmetikus zavaása (7)-et, (5)-öt és (6)-ot (7)-be helyettesítve y = h esetée adódik a diszpeziós összeüés a komplex növekedési áta és zavaási hullámszám között: iku k k s tanh( 4 k s tanh( sh) k (7) Diszpeziós eyenlet a szimmetikus zavaása A szimmetikus zavaás diszpeziós eyenlete endkívül hasonló az antiszimmetikus esetée. A levezetés hasonló, az eyenletet levezetés nélkül közöljük. A (7)-es eyenletben a tanh taok helyett coth taok jelennek me. iku k k s coth( 4 k scoth h( sh) k (8) Ezek az eyenletek komplikáltak, analitikus meoldásuk nem lehetsées. Bizonyos hatáesetekben azonban van analitikus meoldás. További elemzés (Senecal et al. (999) alapján) A további elemzéshez kicsit más alakba hozzuk a (7) eyenletet. Elosztunk ρ-el, amivel mejelenik az eyenletben a két sűűsé aánya, Q, valamint koodinátatanszomációt hajtunk vée; koodinátaendszeünket most az U sebesséel mozó olyadéklaphoz özítjük. Ezt metehetjük, hiszen az eész instabilitási jelensé Galilei-invaiáns. Matematikaila ez annyi változást eedményez, hoy -t iku -val helyettesítjük, valamint, hoy U előjele ellentétes lesz. Következésképpen s deiníciója is átalakul: az új koodinátaendszeben s k.íy eyenletünk átendezés után a következő alakot ölti: 4 tanh( Q 4 k iqku k s tanh( sh) Qk U k / 4 k 4. (9) Előszö elhanyaoljuk a olyadékviszkozitást, hoy bizonyos útmutatást kapjunk a meenedhető elhanyaolásokhoz. Később, a pontosabb számításoknál visszatéünk a viszkózus eyenlethez. A viszkozitás elhanyaolása után ende a következő másodokú eyenleteket kapjuk az asszimmetikus és a szimmetikus móduszoka: tanh( QiQkU Qk U k / (4) coth( QiQkU Qk U k /, (4) amiket zát alakban meoldva kapjuk a következő kiejezéseket a köekvencia valós észée, ami nem más, mint a zavaás növekedési átája. Meintcsak (4) az asszimmetikus, (4) a szimmetikus módusza vonatkozik. Qk U k / Q (4) Q

7 - 8 - Leyező alakú spay coth( Qk U k / coth( Q (4) coth( Q A 4. és az 5. ábán láthatjuk az antiszimmetikus és a szimmetikus dimenziótlan növekedési átát két különböző áz Webe szám esetée (We = ρu h/σ). (A továbbiakban a áz Webe számot index nélkül, eyszeűen We-nek ojuk jelölni. Az alacsony Webe szám esetében nyilvánvaló, hoy a teljes tatományon az antiszimmetikus hullámok dominálnak maasabb növekedési átájuk miatt. A maas Webe szám esetében a tatomány ey észében a két öbe nayon közel van eymáshoz, szinte mekülönböztethetetlenek. Ahoyan a bevezetésben említettük, Li és Tankin, 99 valamint Ranel és Siiano (99) nayon maas ázsűűsénél találtak ey kis Webe szám tatományt, ahol a szimmetikus zavaás növekedési átája nayobb, ennek azonban nincs yakolati jelentősée. 4. ába. Növekedési áta a hullámszám üvényében. Súlódásmentes eset, We =,5 (Senecal et al., 999) Ménöki szempontból tehát kijelenthetjük, hoy a yakolatila édekes tatományban az antiszimmetikus zavaások maximális növekedési átája mindi nayobb vay eyenlő a szimmetikusokénál. Kis kh, azaz hosszú hullámok esetén viszont eyételműen dominálnak az aszimmetikus hullámok. Ee az eedménye jutott Squie (95), majd Haety és Shea (955) is. A hosszú hullám eltételezésével khés ezzel a közelítéssel (4) (44)-e eyszeűsödik. Qk U h k kh Q / kh Q Ha ezenkívül mé azt is eltételezzük, hoy Q «kh, ami esetünkben ennáll akko az alábbi kiejezést kapjuk. Ez meeyezik Squie (95) eedményével. (44)

8 - 9 - Leyező alakú spay Qk U k / (45) kh Ezt a kiejezést mutatja a 4. és 5. ába lon wave assumption név alatt. Azt láthatjuk, hoy alacsony Webe számnál a hosszú hullám közelítés endkívül jó, viszont maas Webe számnál, a lealacsonyabb kh tatományt kivéve yene. Ez aa utal, hoy alacsony sebesséű olyadéklapnál a hosszabb hullámok, maasabb sebesséű olyadéklapnál a övidebb hullámok eősödnek jobban. Ha tehát a övid hullámú közelítést tesszük, tanh( kh ) coth h(, és akko mindkét ajta zavaás eősítése: 5. ába. Növekedési áta a hullámszám üvényében. Súlódásmentes eset, We = 5, (Senecal et al., 999) ami a további eltétel Q «bevonásával Qk U k / Q, (46) Q Qk U k / (47) lesz. (45) és (47) összehasonlításával látjuk, hoy. Másszóval, ha kh>,, övid kh, hosszú azaz, ha λ/h<π, akko a övid hullámok növekedése o dominálni, mí ellenkező esetben a hosszú hullámoké. Ez viláos az 5. ábából, ami We = 5 -e készült. A 4. ába viszont, ami We =,5 esetét mutatja, az eész tatományon a hosszú hullámok dominálnak. Az a tény, hoy kisebb Webe száma a hosszú hullámú közelítés, mí nayobb Webe száma a övid

9 - - Leyező alakú spay hullámú közelítés bizonyul jobbnak, azt sejteti, hoy van ey kitikus Webe szám, ami alatt a hosszú, és ami ölött a övid hullámok dominálnak. Mivel mindkét esetben a maximális növekedési áta a mehatáozó, ezzel ounk számolni, és Ω-val illetve K-val jelöljük. A dimenziótlan és mehatáozható a két hatáesete a (45) és (47) eyenletből. h U hosszú QWe ; Kh =/We -nél (48) h U övid We Q ; Kh =/We -nél (49) A két maximális növekedési átát eyenlővé téve adódik, hoy a kitikus Webe szám 7/6. Most visszatéünk a viszkózus olyadék esetéhez, és póbáljuk a (9) eyenletet eyszeűsíteni. Előszö is, naysáendi elemzés azt mutatja, hoy a viszkozitásban másodendű taok tipikus K és Ω étékek esetén elhanyaolhatóak a többi tahoz képest. Ezzel az eyszeűsítéssel az antiszimmetikus instabilitás növekedési átája: k 4 k 4 Q k U Q Hosszú hullámok és Q «kh esetén közelítőle adódik: tanh( Q k / Qk U. (5) 4 k 4 k U Qk / h k / h. (5) Rövid hullámhossz és Q «eltételezésével: 4 k 4 k U Qk k / (5) A 6. és 7. ábán látható a hosszú hullámú és a övid hullámú közelítése a súlódásmentes és a súlódásos közelítés összehasonlítása, ende We =,5-e és We = 5-e. Alacsony We esetén a súlódásmentes közelítés nayon jó a teljes kh tatományon, mindkét hatáesete. Maas We esetén viszont mindkét hatáeset súlódásmentes közelítése ossz. Véső ellenőzésként a (9) pontos eyenletet numeikusan meoldva, összehasonlítjuk a viszkózus közelítésekkel, az (5) és (5) eyenletekkel. Az eltéés általában -4%, de sehol sem haladja me a 8%-ot, íy a közelítéseket kieléítőnek tekinthetjük. Li és Tankin (99) szeint a viszkozitásnak mé további hatása az, hoy a súlódásmentes esethez képest kitejeszti a hullámszámtatományt, amiben az instabilitás öllép, nayobb hullámszámoka is. Ibahim (998) a olyadéklap sebessépoiljának hatását vizsálta a stabilitási viselkedése, hiszen eddi implicite eltettük, hoy a olyadéklap sebesséeloszlása eyenletes. Azt találta, hoy a leinstabilabb az eyenletes sebessépoil, és a paabolikusba való átmenet soán az instabilitás météke eye csökken. Íy utóla iazolódott az eyenletes sebesséeloszlás eltételezése. Bemond et al. (7) újabb instabilitási mechanizmust edezett el, ami keesztiányú hullámokhoz, majd áamlás iányú olyadékszálak keletkezéséhez vezet. Ennek seítséével sikeesen jósolták me a cseppátméő eloszlását. Munkájukat észletes kíséleti alátámasztás kíséte, ien látványos ényképekkel.

10 - - Leyező alakú spay Számítóépes modellezés Az előző eedményeket Senecal et al. (999) úy használta el a számítóépes modellezésben, hoy deiniált ey kitikus hullámamplitúdót, aminél a olyadéklap szétszakad. Az eősítési tényező seítséével mehatáozható az idő, amí ezt eléi, abból pedi ey elbomlási távolsá számolható, ahol az összeüő lap cseppeke bomlik. A modell seítséével becslés adható az átlaos cseppátméőe is. A szotve elsősoban autóban használt injekto modellezésée készült, és számos eyéb édekes tulajdonsáa van, ami jelen jelentés 6. ába. Növekedési áta a hullámszám üvényében. Súlódásmentes és súlódásos eset összehasonlítása, We =,5 (Senecal et al., 999)

11 - - Leyező alakú spay 7. ába. Növekedési áta a hullámszám üvényében. Súlódásmentes és súlódásos eset összehasonlítása, We = 5, (Senecal et al., 999) szempontjából nem édekes. Mindenesete az eyezés a méésekkel minden mennyisében kiváló, példaként tekintsük a 8. ábát, ahol a cseppek Saute átlaátméőjét ábázoltuk.

A hullámsebesség számítása különféle esetekben. Hullám, fázissebesség, csoportsebesség. Egy H 0 amplitúdójú, haladó hullám leírható a

A hullámsebesség számítása különféle esetekben. Hullám, fázissebesség, csoportsebesség. Egy H 0 amplitúdójú, haladó hullám leírható a A hullámsebessé számítása különéle esetekben Hullám, ázissebessé, csoportsebessé y H 0 amplitúdójú, haladó hullám leírható a H ( x, t ) H 0 cos ( kx ωt ) üvénnyel. Itt k jelöli a hullámszámot, ω a körrekvenciát.

Részletesebben

Matematika a fizikában

Matematika a fizikában DIMENZIÓK 53 Matematikai Közlemények III kötet, 015 doi:10031/dim01508 Matematika a fizikában Nay Zsolt Roth Gyula Erdészeti, Faipari Szakközépiskola és Kolléium nayzs@emknymehu ÖSSZEFOGLALÓ A cikkben

Részletesebben

Tartalom Fogalmak Törvények Képletek Lexikon

Tartalom Fogalmak Törvények Képletek Lexikon Fizikakönyv ifj. Zátonyi Sándor, 016. Tartalom Foalmak Törvények Képletek Lexikon A szabadesés Az elejtett kulcs, a fáról lehulló alma vay a leejtett kavics füőleesen esik le. Ősszel a falevelek azonban

Részletesebben

Solow modell levezetések

Solow modell levezetések Solow modell levezetések Szabó-Bakos Eszter 25. 7. hét, Makroökonómia. Aranyszabály A azdasá működését az alábbi eyenletek határozzák me: = ak α t L α t C t = MP C S t = C t = ( MP C) = MP S I t = + (

Részletesebben

XII. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 2015 Miskolc, augusztus

XII. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 2015 Miskolc, augusztus XII. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 25 Miskolc, 25. auusztus 25-27. KÉT PONTON GÖRDÜLŐ GOLYÓ NEM-FOLYTONOS DINAMIKÁJA Antali Máté, Stépán Gábo 2,2 Budapesti Műszaki és Gazdasátudományi Eyetem, Műszaki

Részletesebben

u ki ) = 2 x 100 k = 1,96 k (g 22 = 0 esetén: 2 k)

u ki ) = 2 x 100 k = 1,96 k (g 22 = 0 esetén: 2 k) lektronika 2 (MVIMIA027 Számpélda a földelt emitteres erősítőre: Adott kapcsolás: =0 µ = k 4,7k U t+ = 0V 2 k 2 = 0µ u u =3 k =00µ U t- =-0V Számított tranzisztor-paraméterek: ezzel: és u ki t =0k Tranzisztoradatok:

Részletesebben

Felületi jelenségek + N F N. F g

Felületi jelenségek + N F N. F g TÓTH A.: Felületi jelenséek (kibővített óravázlat) 1 Felületi jelenséek Számos tapasztalat mutatja, hoy ey olyadék szabad elszíne másképpen viselkedik, mint azt a hidrosztatika törvényei alapján várnánk.

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

FFT =0.. 1! 1 %=0.. 1! 2. Legyen az ú.n. egységgyök a következő definícióval megadva: &# = 3

FFT =0.. 1! 1 %=0.. 1! 2. Legyen az ú.n. egységgyök a következő definícióval megadva: &# = 3 FFT. oldal A DFT alkalmas valamely időüő jel Fourier transzormáltjának előállítására és íy a spektrum elvételére is. Futási ideje azonban o(n ) ami ien korlátozottá teszi használatát - a spektrum uyanis

Részletesebben

Sugárszivattyú H 1. h 3. sugárszivattyú. Q 3 h 2. A sugárszivattyú hatásfoka a hasznos és a bevezetett hidraulikai teljesítmény hányadosa..

Sugárszivattyú H 1. h 3. sugárszivattyú. Q 3 h 2. A sugárszivattyú hatásfoka a hasznos és a bevezetett hidraulikai teljesítmény hányadosa.. Suárszivattyú suárszivattyúk működési elve ey nay eneriájú rimer folyadéksuár és ey kis eneriájú szekunder folyadéksuár imulzusseréje az ún. keverőtérben. rimer és szekunderköze lehet azonos vay eltérő

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. t 2 = 1, s

Hatvani István fizikaverseny forduló megoldások. 1. kategória. t 2 = 1, s Hatani Istán fizikaerseny 017-18.. forduló meoldások 1. kateória 1..1. a) Közelítőle haonta. b) c = 9979458 m s Δt =? május 6-án s 1 = 35710 km = 35710000 m t 1 =? t 1 = s 1 t 1 = 1,19154 s c december

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

0. mérés A MÉRNÖK MÉR

0. mérés A MÉRNÖK MÉR 0. mérés A MÉRNÖK MÉR 1. Bevezetés A mérnöki ismeretszerzés eyik klasszikus formája a mérés, és a mérési eredményekből levonható következtetések feldolozása (a mérnök és a mérés szó közötti kapcsolat nyilvánvaló).

Részletesebben

Fizika 1X, pótzh (2010/11 őszi félév) Teszt

Fizika 1X, pótzh (2010/11 őszi félév) Teszt Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A 01/013. Tanévi FIZIKA Orszáos Középiskolai Tanulmányi Verseny első fordulójának feladatai és meoldásai I. kateória A dolozatok elkészítéséhez minden seédeszköz használható. Meoldandó

Részletesebben

Számítógéppel vezérelt projektor szimulációja asztali képmegjelenítőn

Számítógéppel vezérelt projektor szimulációja asztali képmegjelenítőn Számítóéppel vezéelt pojekto szimulációja asztali képmejelenítőn Samu Kisztián, Fod Attila udapesti Műszaki és azdasátudományi Eyetem Minden előadó kolléánál általánosan előfoduló szituáció a következő:

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ izika középszint 1012 ÉRETTSÉGI VIZSGA 11. május 17. IZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐORRÁS MINISZTÉRIUM JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ELSŐ RÉSZ A feleletválasztós

Részletesebben

A MÁGNESES VEKTORPOTENCIÁL, MINT VALÓSÁGOSAN LÉTEZÔ VEKTORMEZÔ. A hazai mûhely A FIZIKA TANÍTÁSA

A MÁGNESES VEKTORPOTENCIÁL, MINT VALÓSÁGOSAN LÉTEZÔ VEKTORMEZÔ. A hazai mûhely A FIZIKA TANÍTÁSA Rejtõ ándo Geleji ándo Kovács István haai mûhely Véül meemlítem a silád testek plastikus defomációját és a dislokációk kontinuum-modelljét kutató Kovács István (1911) fiikust, a Eötvös Loánd Tudományeyetem

Részletesebben

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ. 5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági

Részletesebben

Faipari anyagszállítás II. Bútoripari lapmegmunkáló gépsoregységhez továbbító hengeres görgısorok tervezése

Faipari anyagszállítás II. Bútoripari lapmegmunkáló gépsoregységhez továbbító hengeres görgısorok tervezése Faipari anyaszállítás II. Bútoripari lapmemunkáló épsoreyséhez továbbító heneres örısorok tervezése 1. Gépelrendezés vázlata:. Fordító vázlata, és teljesítıképesséének számítása: T= [s] (átfordítási idı)

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

1. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) 1. Alapfogalmak:

1. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) 1. Alapfogalmak: SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-MECHNIZMUSOK ELŐDÁS (kidolozta: Szüle Veronika, ey. ts.). lapfoalmak:.. mechanizmus foalmának bevezetése: modern berendezések, épek jelentős részében

Részletesebben

Cölöpcsoport függőleges teherbírásának és süllyedésének számítása

Cölöpcsoport függőleges teherbírásának és süllyedésének számítása 17. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport füőlees teherbírásának és süllyedésének számítása Proram: Fájl: Cölöpcsoport Demo_manual_17.sp Ennek a mérnöki kézikönyvnek a célja, a

Részletesebben

Hatvani István fizikaverseny forduló. 1. kategória

Hatvani István fizikaverseny forduló. 1. kategória 1. kateória 1.1.1. Zümi a méhecske Aprajafalvától az erdői repült. Délután neyed 3 után 23 perccel indult. Aprajafalvától az erdői eyenes pályán történő mozásának sebesséét az idő füvényében a rafikon

Részletesebben

Feladatok gázokhoz (10. évfolyam) Készítette: Porkoláb Tamás

Feladatok gázokhoz (10. évfolyam) Készítette: Porkoláb Tamás Feladatok ázokhoz (10. évfolyam) Készítette: Porkoláb Tamás Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jelleű feladatok A feladatok szakmai jelleűek, alkalmazásuk mindenképpen a tanulók motiválását szolálja. Seít abban, hoy a tanulók a tanultak alkalmazhatósáát melássák. Értsék me, hoy

Részletesebben

1 Csıhálózatok hıveszteségének számítása

1 Csıhálózatok hıveszteségének számítása Csıhálózaok hıveeséének ámíása. alajba ekee elıieel csıvezeékek Ey rener eseében az üzemeleési paraméerek aoak: elıremenı és visaérı hımérsékle, elhanálók hıiénye, álaos éves léhımérsékle sb. A alajba

Részletesebben

A FÖLD PRECESSZIÓS MOZGÁSA

A FÖLD PRECESSZIÓS MOZGÁSA A ÖLD PRECEZIÓ MOZGÁA Völgyesi Lajos BME Általános- és elsőgeodézia Tanszék A öld bonyolult fogási jelenségeinek megismeéséhez pontos fizikai alapismeetek szükségesek. A fogalmak nem egységes és hibás

Részletesebben

É É É é é é é é í ű ó é É ö á ó é ő ő í ó á ö ő é ö ö é ó í í ú í é é í íú ó í ó é ő é ö é í é é ó é á á é á á ó ő ű é é ő ő ő í ó é é é í é é ó á Ű é

É É É é é é é é í ű ó é É ö á ó é ő ő í ó á ö ő é ö ö é ó í í ú í é é í íú ó í ó é ő é ö é í é é ó é á á é á á ó ő ű é é ő ő ő í ó é é é í é é ó á Ű é É É É ű É ö á ő ő á ö ő ö ö ú ú ő ö á á á á ő ű ő ő ő á Ű á á á ű ö á á á Ű Á á áú ű á ú ő ü á á ő á á ü ő á á ú ö Á ő á á ő ő á ö á á ű á ü á á ö á á ü ő ü á ö á ö ű á á á ő ű ü á ö á ő á ü á ö ő á ő

Részletesebben

KÖRNYEZETVÉDELEM- VÍZGAZDÁLKODÁS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÖRNYEZETVÉDELEM- VÍZGAZDÁLKODÁS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Környezetvédele-vízazdálkodás iseretek eelt szint Javítási-értékelési útutató 1811 ÉRETTSÉGI VIZSGA 018. ájus 16. KÖRNYEZETVÉDELEM- VÍZGAZDÁLKODÁS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI

Részletesebben

VALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI

VALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI D. Gausz Tamás VALÓSÁGOS ÖRVÉNYEK Az aeodinamikában igen gyakan találkozunk az övény fogalmával. Ez az övény a epülőgép köüli áamlásban kialakuló otációból (fogásból) számazik. Egy általában kis téész

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3 októbe 7 technológia és a költségek dualitása oábban beláttuk az alábbi összefüggéseket: a) Ha a munka hatáteméke nő akko a hatáköltség csökken

Részletesebben

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez lméleti összefoglaló a I. éves vegyészhallgatók oláis molekula dipólusmomentumának meghatáozása című mééséhez 1.1 ipólusmomentum Sok molekula endelkezik pemanens dipólus-momentummal, ugyanis ha a molekulát

Részletesebben

Az egyszeres függesztőmű erőjátékáról

Az egyszeres függesztőmű erőjátékáról Az eyszeres üesztőmű erőjátékáró A címbei szerkezet az 1 ábrán szeméhető részeteive is 1 ábra orrása: [ 1 ] A szerkezet működésének jeemzése: ~ a vízszintes kötőerenda a két véén szabadon eekszik a közepén

Részletesebben

A karpántokról, a karpántos szerkezetekről V. rész

A karpántokról, a karpántos szerkezetekről V. rész A karpántokról, a karpántos szerkezetekről V. rész Karpántos sorozatunk ezen úja részéen az I. részen táryalt. feladatot fejlesztjük tová. Elő azonan ey szóhasználatot tisztázunk. Mí koráan fejkötőkkel

Részletesebben

Kinematika 2016. február 12.

Kinematika 2016. február 12. Kinematika 2016. február 12. Kinematika feladatokat oldunk me, szamárháromszö helyett füvényvizsálattal. A szamárháromszöel az a baj, hoy a feladat meértése helyett valami szabály formális használatára

Részletesebben

Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1

Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1 Suárzásos hőátadás misszióképessé:, W/m. eljes hősuárzás elnyelt hő visszavert hő a testen áthaladó hő R D R D R D a test elnyelő képessée (aszorció), R a test a visszaverő-képessée (reflexió), D a test

Részletesebben

1.9. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA

1.9. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA 1.9. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA A mérés kivitelezése és az eredmények meadása tekintetében ez a leírás az irányadó.

Részletesebben

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,

Részletesebben

Motorteljesítmény mérés diagnosztikai eszközökkel Készült a Bolyai János Ösztöndíj támogatásával

Motorteljesítmény mérés diagnosztikai eszközökkel Készült a Bolyai János Ösztöndíj támogatásával Motorteljesítmény mérés dianosztikai eszközökkel Készült a Bolyai János Ösztöndíj támoatásával Dr. Lakatos István h.d., eyetemi docens* * Széchenyi István Eyetem, Közúti és Vasúti Járművek Tanszék (e-mail:

Részletesebben

Pannon Egyetem. Informatikai Tudományok Doktori Iskola

Pannon Egyetem. Informatikai Tudományok Doktori Iskola Pannon Eyetem Infomatka Tudományok Dokto Iskola Tanuló és adaptív vdeófeldolozó eljáások Dokto (PhD) étekezés Lcsá Attla Képfeldolozás és Neuoszámítóépek Tanszék Témavezető: Pof. Szány Tamás Veszpém 007.

Részletesebben

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é é é ö ő é é é ö é é é é ö ö ö Í Í é Í é ö é Í ö é é é é é ö é ü í é ű é é ö é ö é Í ö ö é é é ú ö ö Ú ö í é í é é í é ö é é é é é é ö í ű ű é é ű Í ö é é é éé é í é é í ö í é é Ü é ő é í é é é é ö í Ü

Részletesebben

Radioaktív bomlások. = 3/5, ebből t=t 1/2 ln(3/5)=...

Radioaktív bomlások. = 3/5, ebből t=t 1/2 ln(3/5)=... Radioaktív bomlások Radioaktív bomlások időbeli lefolyása Eyszerű bomlások 1. A hétköznapokban előforduló radioaktív anyaok közül az eyik lehosszabb felezési idejű a kálium A=40-es izotópja. T 1/2 = 1.3

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal k t a t á si Hivatal 01/01. tanévi rszáos Középiskolai Tanulmányi Verseny Kémia I. kateória. orduló I. FELADATR Meoldások 1. A helyes válasz(ok) betűjele: B, D, E. A lenayobb elektromotoros erejű alvánelem

Részletesebben

25. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA

25. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA 25. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA A szüksées elméleti háttér: - a fáziseyensúly termodinamikai feltétele; - Gibbs-féle

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különlees a lézernyaláb?). Atomok eymástól füetlenül suároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Inkoherens fény Termikus suárzó. Atomok eymástól füetlenül

Részletesebben

vagy közelítően egyenáram esetére

vagy közelítően egyenáram esetére . Staconárus áram Áramerőssé : ey adott felület teljes keresztmetszetén dőeysé alatt átáramló töltésmennysé, vays: t Q t vay közelítően eyenáram esetére Q t Áramsűrűsé z elektromos áramsűrűsévektor: abszolút

Részletesebben

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között? Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái

Részletesebben

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsálata A mérésben a hallatók meismerkedhetnek a szélessávú transzformátorok fıbb jellemzıivel. A mérési utasítás elsı része a méréshez szüksées elméleti ismereteket

Részletesebben

6. Kérdés A kormányzati kiadások növelése hosszú távon az alábbi folyamaton keresztül vezet a kamat változásához: (a)

6. Kérdés A kormányzati kiadások növelése hosszú távon az alábbi folyamaton keresztül vezet a kamat változásához: (a) Feleletválasztós kédések 1. Hosszú távú modell 02 Olvassa el figyelmesen az alábbi állításokat és kaikázza be a helyes válasz előtt álló betűjelet. 1. Kédés Egy zát gazdaság áupiacán akko van egyensúly,

Részletesebben

Ú ű Á ű

Ú ű Á ű Ú ű Á ű ű ű ű ű Ü Ü Ü Ü Ü Ü Ü Ú Ü Ü Ü Ü Ü ű ű Ú ű ű ű ű Ü ű Ö ű ű Ó Ő ű Ö ű Ö Ü Ő ű ű Ü ű ű Á Á Á Á Á ű Á Ú Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á ű ÁÁ ű Á Á Á ű Á ű Á Á Á Á ű Á Á Á Á Á Á Á Á Á Á ű

Részletesebben

FIZIKA I. KATEGÓRIA 2015-ben, a Fény Évében

FIZIKA I. KATEGÓRIA 2015-ben, a Fény Évében Oktatási Hivatal A 014/015. taévi Oszágos Középiskolai Taulmáyi Vesey dötő oduló FIZIKA I. KATEGÓRIA 015-be, a Féy Évébe MEGOLDÁSI ÚTMUTATÓ Zóalemez leképezési tulajdoságai Bevezető: A méési eladat egy

Részletesebben

EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA. 1. Bevezetés

EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA. 1. Bevezetés Alkalmazott Matematikai Lapok 26 (2009), 9-15. EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA SZEMLÉLETES BIZONYÍTÁST ADUNK A FELÜLETELMÉLET FONTOS TÉTELÉRE FARKAS MIKLÓS 1.

Részletesebben

32. MIKOLA SÁNDOR FIZIKAVERSENY második fordulójának megoldása március 19. Gimnázium 9. évfolyam

32. MIKOLA SÁNDOR FIZIKAVERSENY második fordulójának megoldása március 19. Gimnázium 9. évfolyam IKOLA SÁDOR FIZIKAVERSEY ásdik rdulójának eldása árcius 9 Gináziu 9 évlya Ey lejtő tetejéről vízszintes irányban a lejtő alapjával párhuzasan indítunk ey testet v /s sebesséel A lejtő aljára a test v sebesséel

Részletesebben

Sűrűáramú nyomótartályos pneumatikus szállítóberendezés. Keverékek áramlása. 8. előadás

Sűrűáramú nyomótartályos pneumatikus szállítóberendezés. Keverékek áramlása. 8. előadás Készítette: dr. Váradi Sándor Budaesti Műszaki és Gazdasátudományi Eyetem Géészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budaest, Műeyetem rk. 3. D é. 334. Tel: 463-16-80 Fa: 463-30-91 htt://www.ize.bme.hu

Részletesebben

úö ő Á É É Ó É ö ö ö ő ő Á ú ö ö ü ö ő Ó ő ő ú ú ö

úö ő Á É É Ó É ö ö ö ő ő Á ú ö ö ü ö ő Ó ő ő ú ú ö ö É É É Ó Á É Ő Á Á Á É Á É É ö Á É ö ű ö ú Á É Ó É Ó Á Á ő ű ő ő É úö ő Á É É Ó É ö ö ö ő ő Á ú ö ö ü ö ő Ó ő ő ú ú ö ü ő ü ő ö ő ú ő ö ú Á ö ú ö ő ő ő ö ú ő ő ő ö É ú ö ö ü ö ő ü ő ö ö ö ü ő ő ő ü ő

Részletesebben

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE Íta: Hajdu Ende Egy pénzémének vagy egyéb lemezidomnak saját síkjában töténő elmozgathatósága meggátolható oly módon, hogy a lemez peeme mentén, alkalmasan megválasztott

Részletesebben

7. Komparátorok (szintdetektorok)

7. Komparátorok (szintdetektorok) 1 7. (szintdetektook) A kompaátook agy más néen szintdetektook két ementi jel összehasonlítását égzik: a kimenti jel aszolút étéke mindig konstans, de előjele a nagyoik aszolút étékű ementi jel előjeléel

Részletesebben

SMART Notebook Math Tools

SMART Notebook Math Tools SMART Notebook Math Tools Windows operációs rendszerek Felhasználói kézikönyv Hihetetlenül eyszerű Védjeyel kapcsolatos fiyelmeztetés A SMART Board, SMART Notebook szoftver, a smarttech, a SMART embléma

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Tásulat Aany Dániel Matematikai Tanulóveseny 017/018-as tanév 1. foduló Haladók III. kategóia Megoldások és javítási útmutató 1. Anna matematika házi feladatáa áfolyt a tinta.

Részletesebben

Lehetséges minimumkérdések Méréstechnika tárgyból 2015.

Lehetséges minimumkérdések Méréstechnika tárgyból 2015. Lehetséges minimumkédések Mééstechnika tágyból 015. (A válaszokat póbálja lényege töően megogalmazni, az ábáknál töekedjen a pontosan elidézni, a képletek esetén töekedjen a képletben szeeplő betűk megadásáa.)

Részletesebben

Mobilis robotok irányítása

Mobilis robotok irányítása Mobiis obotok iánítása. A gakoat céja Mobiis obotok kinematikai modeezése Matab/Simuink könezetben. Mobiis obotok Ponttó Pontig (PTP) iánításának teezése és megaósítása.. Eméeti beezet Mobiis obotok heátoztatása

Részletesebben

ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö

ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ü É Ü Ú ö É ö ö É ö Ú ű ö Ö É ű É ö ö ö ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ó Ú É ö ű ö ű ű Ú ö ű ö ű Ú ö ö ű ö Ú ű ö

Részletesebben

Intermodális közösségi közlekedési csomópont kialakítása Győrött. Melléklet Környezeti helyzetértékelés

Intermodális közösségi közlekedési csomópont kialakítása Győrött. Melléklet Környezeti helyzetértékelés FŐMTERV ENVECON Konzorcium Tsz: 12.12.125 Intermodális közösséi közlekedési csomópont kialakítása Győrött (KÖZOP-5.5.0-09-11-2011-0005) Melléklet Környezeti helyzetértékelés Mebízó: Győr Meyei Joú Város

Részletesebben

SW 200C Szárnyaskapu nyitó Kezelési Útmutató. Műszaki adatok:

SW 200C Szárnyaskapu nyitó Kezelési Útmutató. Műszaki adatok: SW 200C Szárnyaskapu nyitó Kezelési Útmutató Műszaki adatok: Model Kimeneti feszültsé SW-200A 12VDC Átlaos felvett áram 2.0A A kétszárnyú kapu szélessée 3 M max. A kétszárnyú kapu össztömee 200k max. Motor

Részletesebben

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú é é ő ü é í ó é é ő Í Í é é é é óó ó é é Í Á é é í í é ő é é í é é é é é é ü é é ü é é é é ő é ő é é ő ü ü é é é é é é é í ő é é ű é é ü ü ő é é ő é é é ő é é ő ó ó é ő ü é Ú é ü é é ű é é í é í é é í

Részletesebben

HIDROMOTOROK. s azaz kb. 1,77 l/s. A folyadéknyelésből meghatározható az elérhető maximális fordulatszám: 3

HIDROMOTOROK. s azaz kb. 1,77 l/s. A folyadéknyelésből meghatározható az elérhető maximális fordulatszám: 3 íz- és széltrbiák - ok IROMOTOROK I. Ey 6,8 bar túlyomású idraliks redszerről kívák üzemelteti ey 0 cm -es axiál dattyús idrosztatiks motort. Milye maximális fordlatszám és yomaték érető el, a a kívát

Részletesebben

DINAMIKA. Newtonnak a törvényei csak inerciarenszerben érvényesek.

DINAMIKA. Newtonnak a törvényei csak inerciarenszerben érvényesek. DINAMIKA A ozást indi viszonyítanunk kell valaihez. Azt a környezetet, aihez viszonyítjuk a test helyzetét vonatkoztatási rendszernek, nevezzük. A sokféle vonatkoztatási rendszer közül indi azt választjuk

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

AZ ELSÔ SZÁMJEGYEK BENFORD-TÖRVÉNYE ÉS A RADIOAKTÍV IZOTÓPOK FELEZÉSI IDEJE

AZ ELSÔ SZÁMJEGYEK BENFORD-TÖRVÉNYE ÉS A RADIOAKTÍV IZOTÓPOK FELEZÉSI IDEJE AZ ELSÔ SZÁMJEGYEK BENFORD-TÖRVÉNYE ÉS A RADIOAKTÍV IZOTÓPOK FELEZÉSI IDEJE Gyürky Györy, Farkas János MTA Atommakutató Intézet, Debrecen Mindennapi életünkben körülvesznek minket a számok és e számoknak

Részletesebben

Indoklás: Hamis a D, mert csak az a rezgőmozgás egyúttal harmonikus rezgőmozgás is, amelyik kitérése az idő függvényében szinuszfüggvénnyel írható le.

Indoklás: Hamis a D, mert csak az a rezgőmozgás egyúttal harmonikus rezgőmozgás is, amelyik kitérése az idő függvényében szinuszfüggvénnyel írható le. Bolyai Farkas Orszáos Fizika Tantáryverseny 04 Bolyai Farkas Eléleti Líceu Válaszoljatok a következő kérdésekre:. feladat Az alábbi állítások közül elyik a hais? A) A test rezőozást véez, ha két szélső

Részletesebben

Gruber József, a hidrodinamikai szingularitások művelője

Gruber József, a hidrodinamikai szingularitások művelője Gube József, a hidodinamikai szingulaitások művelője Czibee Tibo Személyes kapcsolatom Gube pofesszoal: Egyetemi tanulmányaimat a miskolci Nehézipai Műszaki Egyetemen végezvén nem hallgathattam egyetemi

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 izika ménm nök k infomatikusoknak 1. BNxE-1 Mechanika 6. előadás D. Geetovszky Zsolt 2010. októbe 13. Ismétl tlés Ütközések tágyalása Egymáshoz képest mozgó vonatkoztatási endszeek egymáshoz képest EVEM-t

Részletesebben

ó ó ü ľ ó ü ó ľ ü ń ó ó ó ö ę ź ź ö ö ö ö ę ę ö ó ľ ó ę ź ó ö ó ź Ĺ ź ó ť ú ü ű ö ó ź ó ö ó ö ľ ö ľ ń ó ľ ź ű ö ń ó ź ź ť ľ ó ľ ź ü ť ź ó ü ť ö ó źů ý ťü ľ ú ó ď ľ ľ ľ ľ ó ó ľ ń ľ ľ ö ó ľ ó ľ ö ź ó ľ ľ

Részletesebben

Olvassa el figyelmesen a következő kérdéseket, állításokat, s karikázza be a helyesnek vélt választ.

Olvassa el figyelmesen a következő kérdéseket, állításokat, s karikázza be a helyesnek vélt választ. Feleletválasztós kédések 1. Hosszú távú modell Pénz Olvassa el figyelmesen a következő kédéseket, állításokat, s kaikázza be a helyesnek vélt választ. 1. Kédés A pénz olyan pénzügyi eszköz, amely betölti

Részletesebben

Dr. Molnár László hadtudomány (haditechnika) kandidátusa 2. Rész A HARCANYAGOKRA VONATKOZÓ HATÉKONYSÁGI FÜGGVÉNYEK

Dr. Molnár László hadtudomány (haditechnika) kandidátusa 2. Rész A HARCANYAGOKRA VONATKOZÓ HATÉKONYSÁGI FÜGGVÉNYEK XXI. évfolyam -4. szám 0 NÉÁNY PERSPETIVIS LEETŐSÉG GYOMÁNYOS ROBBNÓ RCNYGO/RCIRÉSZE TÉONYSÁGÁN NÖVELÉSÉRE JELEN OR TDOMÁNYOS ISMERETEINE LPJÁN Dr. Molnár László hadtudomány (haditechnika) kandidátusa.

Részletesebben

f r homorú tükör gyűjtőlencse O F C F f

f r homorú tükör gyűjtőlencse O F C F f 0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

Vegyjel Mg O Vegyértékelektronok száma 55. 2 56. 6 Párosítatlan elektronok száma alapállapotban 57. 0 58. 2

Vegyjel Mg O Vegyértékelektronok száma 55. 2 56. 6 Párosítatlan elektronok száma alapállapotban 57. 0 58. 2 IV. ANYAGI HALMAZOK IV. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 B B D C B A B D A 1 C C C E C A B C C D 2 C E C D D E(D*) D C A A B D C A B A B D B C 4 B C A D A B A D D C 5 A D B A C *A D

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é

Részletesebben

FELSİGEODÉZIA. Dr. Bácsatyai László. Sopron - Székesfehérvár

FELSİGEODÉZIA. Dr. Bácsatyai László. Sopron - Székesfehérvár FELSİGEODÉZIA Dr Bácsatyai László Sopron - Székesfehérvár 8 Bevezetés Az elektronika a számítástechnika az őrtechnika vívmányai a eodézia tudományáában is az utóbbi évtizedekben nay változásokat indítottak

Részletesebben

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét

Részletesebben

ü ő ü ü ő ő Á ü Ö ő ő ő ő ő ü ő ú ő ü ü ő ü ő ő ü ü ő ú ú ü ő ü ü ő ő ő ú ő ő ú ő ő ú ő ő ő ő ő ő ő ű ő ő ő

ü ő ü ü ő ő Á ü Ö ő ő ő ő ő ü ő ú ő ü ü ő ü ő ő ü ü ő ú ú ü ő ü ü ő ő ő ú ő ő ú ő ő ú ő ő ő ő ő ő ő ű ő ő ő Á Á ü ő ő ő ő ú ő ő ú ő ú ő ő ő ő ő ő ő ú ő ő ő ő ő ő ő ő ő ő ú ő ő ü ő ü ü ő ő Á ü Ö ő ő ő ő ő ü ő ú ő ü ü ő ü ő ő ü ü ő ú ú ü ő ü ü ő ő ő ú ő ő ú ő ő ú ő ő ő ő ő ő ő ű ő ő ő ő ő ő ő ő ő ő ű ő ő ő ő ő

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

III. Differenciálszámítás

III. Differenciálszámítás III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

É É Ó É É ő É É Ú É É ő Ú Ú Ó Ü ő É Ü É Ó ő É Ó Ú Ö Ö Ó ő Ó Ú Ú Ó ő Ú Ú É É É É Ü É Ó É É É Ó É Ó É Ú É É É Ó É ő ő ű ő ő ő ő ő ő ő Ú ű Ú ő ő ű ő ő ű ű ő Ú Ü ő Ú Ú ő Ú Ú ő ő ű ő ő ő ő ű ű ő ő Ü ő ű ő ő

Részletesebben

Centrifugálás alapjai (vázlat)

Centrifugálás alapjai (vázlat) Centrifuálás alapjai (vázlat) Szepesi G. - Venczel G. - Völyes L. 004. október 17. A centrifuálás szuszpenziók és folyadékeleyek (emulziók) szétválasztására alkalmazott m½uvelet, amelyben a szétválasztás

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

IV x. 2,18 km magasan van a hôlégballon.

IV x. 2,18 km magasan van a hôlégballon. 8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk

Részletesebben

1. Egyenáramú feszültséggenerátor teljesítményviszonyainak elemzése

1. Egyenáramú feszültséggenerátor teljesítményviszonyainak elemzése . Eyenáramú eszültséenerátor teljesítményviszonyaina elemzése Áramerıssé: A apocseszültsé (eszültséosztással özvetlenül elírható): A enerátor által ejlesztett teljesítmény: A oyasztóna átadott teljesítmény:

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben