A Gólem. Két kísérlet, amely bizonyította a relativitás elméletét. A Gólem BME Filozófia és Tudománytörténet Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Gólem. Két kísérlet, amely bizonyította a relativitás elméletét. A Gólem BME Filozófia és Tudománytörténet Tanszék"

Átírás

1 A Gólem Két kísérlet, amely bizonyította a relativitás elméletét

2 Kérdések és fogalmak Kérdések: Mi történik, ha egy elméletnek ellentmondó eredményre vezet egy kísérlet? Mikor igazol és mikor cáfol egy megfigyelés egy elméletet? Hogyan alakul ki konszenzus egy elmélet megítélése körül a tudományos közösségben? Fogalmak: Döntő kísérlet Igazolás (verifikáció) és cáfolás (falszifikáció) A társas elfogadás viszonyai A kísérletek elméletfüggése Elméleti elköteleződések és várakozások Tudományos forradalmak

3 Miről lesz szó? két esettanulmány Két kísérlet, amely az értő közvélemény szemében bizonyította a relativitás elméletét: az 1887-es Michelson Morley-kísérletet a speciális, Eddington 1919-es expedícióját az általános relativitáselmélet melletti döntő bizonyítékként szokták említeni Kik? Elsősorban a fizikatankönyvek és a tudományos népszerűsítő irodalom Ezek olvasói a mi célközönségünk is: NEM az adott részterülettel foglalkozó tudósok és tudománytörténészek nekik általában alapos tudásuk van ezekről az esetekről, ők a szakértői ennek Viszont szinte mindenki más laikus ezzel kapcsolatban: nemcsak a tudomány iránt érdeklődők általában, hanem a más területen dolgozó kutatók is!

4 Egy új gondolat elsöprő sikere A relativitáselmélet sok mindennek vált a szimbólumává: az emberi géniusz csúcsteljesítménye az érthetetlenség netovábbja a relativizmus mételye a bátor tudományos állítások és kísérleti igazolásuk iskolapéldája

5 Néhány idézet A Michelson-Morley kísérlet bebizonyította, hogy nincs éterszél, és megállapította, hogy a fénysebesség állandó minden inerciarendszerhez viszonyítva ( Albert Einstein nevéhez fűződik a tudományos élet egyik legnagyobb felfedezése, a relativitáselmélet megalkotása. A híres német tudóst barátság fűzte kortársához, az angol tudományos élet kiemelkedő képviselőjéhez, Sir Arthur Eddingtonhoz. Az angol fizikus volt ugyanis az első, aki megértette Einstein elméletét. A két lángelme felvette egymással a kapcsolatot, levelezésük során megosztották egymással észrevételeiket és gondolataikat. (port.hu, az Einstein és Eddington c as film ismertetője)

6 Az elméletek igazolása Honnan tudjuk, hogy egy elmélet igaz? Megmérjük? Tudunk olyan kísérletről, ami igazolja a jóslatait? Minden kísérlet igazolja a jóslatait? Belátjuk, hogy szükségszerűen igaz? Mindenki elhiszi? Ha van olyan mérés, amely igazolja az elméletünket, azaz az elmélet jóslatait megbízható adatokkal tudja alátámasztani, akkor az elméletünk helyes. Ez logikailag nyilvánvalóan sántít, mégis sokszor ebben a formában szoktak hivatkozni kísérletekre Milyen döntő kísérletekről tudunk, amelyek igazoltak kérdéses elméleteket?

7 I. felvonás: Elmászó csillagok A relativitáselmélet drámája időben visszafelé! A főszerepben:

8 A szokásos forgatókönyv Einstein forradalmi elmélete bátor jóslatot tesz a newtoni világképhez képest Mindkét elméletben elhajlik a fény erős gravitáció esetén, de az általános relativitáselmélet szerint nagyobb mértékben. Kérdés: kinek van igaza? Eddington csillagászati mérései Einstein elméletét igazolták Egy csapásra hősök lesznek, akik a nemzetek közötti viszálykodás helyett együttműködve érnek el világraszóló eredményt Szalagcímek a sajtóból: "The Revolution In Science/ Einstein Versus Newton" (The London Times, nov. 8.) "Lights All Askew In The Heavens/ Men Of Science More Or Less Agog Over Results Of Eclipse Observations/ Einstein Theory Triumphs" (The New York Times, nov. 10.)

9 A relativitáselmélet általánosítása Nézzük meg a történetet kicsit közelebbről Einsteint az 1905-ös eredményei után is tovább foglalkoztatták a különböző megfigyelők közötti relációk Ekvivalencia-elv: egy külső gravitációs erő hatására szabadon eső rendszer lokálisan megkülönböztethetetlen az erőmentes mozgástól (1907) Ez a felismerés, ha többnek tekintjük puszta véletlennél, a gravitáció és a mozgásegyenletek alapvető összegyúrását követeli meg Einstein egy évtizedig küzd a problémával, mire rátalál a megfelelő matematikai alakra, és 1916-ban eljut a ma általános relativitáselméletnek nevezett megfogalmazáshoz

10 A fényelhajlás jóslata Einstein elgondolásai fokozatosan öltöttek formát 1911-ben egy még félig klasszikus gondolatmenet alapján arra jut, hogy közvetlenül a Nap mellett elhaladó fénysugár 0,87 (szögmásodperc) elhajlást szenved 1916-ban, a teljes elmélet birtokában egy második levezetést is ad, amely pontosan egy kettes szorzóban tér el a korábbitól: 1,74 Eddington 1918-as összefoglalójában az első számot nevezte az elhajlás newtoni értékének Pedig Einstein ezt is már az ekvivalencia-elv alapján vezette le, viszont még hagyományos téridő-képben Newton természetesen nem mondott ilyesmit ahhoz a fény és a tömeggel bíró testek közötti valamiféle kölcsönhatás feltételezésére lett volna szükség Később kiderült, hogy egy bizonyos Johann Georg von Soldner 1804-ben (!) publikált egy hasonló számolást, ami teljesen visszhang nélkül maradt

11 Csak három lehetőség Nincs fényelhajlás A fényelhajlás newtoni mértéke: 0,87 A fényelhajlás Einstein szerint: 1,74

12 Kísérleti ellenőrzés? Einstein már az 1911-es cikkében felvetette, hogy teljes napfogyatkozáskor lehetne ellenőrizni a jóslatát Elméletileg a kor technológiája alapján kimérhető a jósolt eltérés Gyakorlatban azonban mint azt látni fogjuk jóval nehezebb a feladat Az öt legközelebbi teljes napfogyatkozás: október 10.: Erwin Freundlich Brazíliába utazott ahol a fogyatkozás idején végig esett augusztus 21.: három kutatócsoport is egy kitörő háborúban találja magát Oroszországban 1916: mindenki háborúskodik június 8.: egy amerikai csoport (W. Campbell és H. D. Curtis) felvételeket készít, de az eredményeket a kiértékelés nehézsége és bizonytalansága miatt soha nem publikálták május 29.: pont igen jó a csillagok állása erről szól a mi történetünk

13 A megfigyelés nehézségei Cél: összehasonlítani a csillagok pozícióit normál körülmények között, valamint akkor, amikor a Nap közelében vannak Nehézségek: A Nap mellett a csillagok csak teljes napfogyatkozás idején látszanak, amik csak ritkán és tipikusan nem az obszervatóriumok felett történnek Olyan kicsi az eltérés, hogy csak akkor lehet kimutatni, ha ugyanazt az égboltterületet fotózzák le Nappal és Nap nélkül Ez több hónapos várakozást jelent, hiszen az egyik esetben a Nap jelen van az ég ugyanazon pontján, míg a másik esetben nincs, vagyis az éjszakai égboltot jócskán egy másik oldaláról kell lássuk A megfigyelések ezért más-más évszakra tevődnek, ami eltérő környezeti hőmérsékletet, és így a távcsövek nehezen kontrollálható deformációját okozhatja, ami módosítja a fókusztávolságot is A távoli, eldugott helyen esedékes napfogyatkozásokhoz csak kisebb távcsöveket lehet használni, amelyeknek hosszabb záridőre van szükségük az éles képhez; ez újabb problémához vezet: A távcsövet vagy egy tükröt mozgatni kell, hogy kövesse a Föld forgását Az időjárás minden előkészületet meghiúsíthat

14 A megfigyelés nehézségei Meg kell tudni különböztetni a berendezés torzító hatásait a kimérni kívánt effektustól a) fényelhajlás b) skálázási hiba

15 Arthur Stanley Eddington mérése

16 Expedíció Brazíliába és Príncipe szigetére Príncipe szigete (Afrika) Eddington & Cottingham egy nagyobb, asztrográfiai teleszkóp Sobral (Brazília) Commelin & Davidson egy nagyobb, asztrográfiai teleszkóp, és egy kisebb távcső, probléma esetére Probléma lett is: Príncipén felhős volt az ég Sobralban a felhők éppen eltűntek a fogyatkozás körül, viszont a nagyobb távcső alatt mozgatandó tükörrel akadtak gondok

17 A Sobral-csoport eszközei Príncipe szigete (Afrika) Eddington & Cottingham egy nagyobb, asztrográfiai teleszkóp Sobral (Brazília) Commelin & Davidson 19 fotó egy nagyobb és 8 egy kisebb távcsővel (ebből 1 felhős)

18 A mérések eredménye Príncipe (Eddingtonék): a felhőzet nem volt nagyon vastag, ezért készítettek felvételeket, hátha valami látszik majd 16 fotólemez készült, de otthon kiderült, hogy ezek közül csak 2 használható, és azokon is csak öt csillag látszik Sobral (Commelin & Davidson): 19 fotó a nagyobb teleszkóppal a tükör problémája miatt elmosódott képek (nagyon nehéz és bizonytalan a kiértékelésük) 8 a kisebb távcsővel szép éles képek, csak egy felhős viszont kisebb területet mutatnak (kevesebb az adat a torzítási korrekciók kiszámítására)

19 A mérések kiértékelése A fotólemezek kiértékelése hónapokig tart A különféle hibák miatt több féle módszertant is alkalmaznak 1. eredmény (Sobral) A Nap melletti csillag-elmozdulás (fényhajlás) mértéke: 1,86 és 2,1 szögmásodperc között van a kisebb távcső adatai alapján (Einsteinnek van igaza?) DE!! A nagyobb teleszkóp képei szerint csak 0,86 szögmásodperc (Newtonnak van igaza?) 2. eredmény (Príncipe) A két rossz minőségű fotó alapján számított szögelhajlás 1,31 1,91 szögmásodperc (mégis inkább Einsteinnek van igaza?)

20 Az eredmények értelmezése november 6.: Frank Watson Dyson, a királyi főcsillagász bejelenti, hogy a megfigyelések Einstein elméletét igazolták. A kisebb sobrali távcső adatait tekintették döntő bizonyítéknak, és támogató adatként kezelték a két rossz minőségű Príncipe-i fotót, míg a 18 db, nagyobb távcsővel készült képet figyelmen kívül hagyták A publikált anyagból a sobrali nagy távcsővel készített képek már kimaradtak, így a mérések közzétett eredményei inkább Einsteint igazolták. A 2.0 körüli érték viszont Einsteint sem igazolja egyértelműen Nem bizonyítható egyértelműen, de valószínű, hogy Dyson és Eddington az adatok kiértékelése során valamennyire szem előtt tartották a tesztelendő elméleteket is Így az elmélet és a kísérlet idő előtt kapcsolatba került egymással (pedig a kísérletektől azt szokás elvárni, hogy függetlenek legyenek az elmélettől)

21 Az eredmények értelmezése Később természetesen sok további mérés igazolta ezt az értéket, az 1919-es adatok kiértékelése azonban korántsem volt egyértelmű Mi volt a siker titka? Szerencse? Helyes tudományos megérzés? Valamennyire mindkettő, de az bizonyos, hogy az utókor megítélésében nagy szerepet játszott a retorika

22 II. felvonás: Éterszél a Föld körül USA, 1887 Albert A. Michelson és Edward Morley A kísérlet: a fény sebességét próbálták megmérni a Föld mozgásának mentén, és arra merőleges irányokban is. Miért? ( ) ( )

23 Miért fontos ez a mérés? Nyilván a relativitáselmélettől függetlenül, hiszen az csak 25 évvel később születik megvolt a saját relevanciája A 19. század elméleti fizikai csúcsteljesítménye, az elektromágneses jelenségeket leíró Maxwell-egyenletek szerint a fény sebessége természeti állandó, kb km/s ez elég pontosan egyezett a korabeli mérésekkel Newtoni világképben természetesen felmerül a kérdés, hogy mihez képest, milyen megfigyelő szerint? A század második felében az volt az általános nézet, hogy a fényhullámokat egy sajátos közeg, az éter közvetíti, tehát (értelemszerűen) a fénysebesség az éterhez viszonyítva állandó Ebből arra következtettek, hogy a fényhullámok sebessége a Föld mozgásával változik fog, hiszen a Föld felszínén állva, ha az ún. éterszéllel szembe nézünk, a fénynek gyorsabban kellene közelednie, mintha az éterszél hátulról érne minket.

24 A Naprendszer az éterben

25 A kísérlet elméleti háttere Cél: A Föld éterbeli sebességének megmérése A fénysebesség nagysága: kb km/másodperc Az éter becsült legnagyobb sebessége Föld felszínén (kb. egyenlő a Föld keringési sebességével): 30 km/másodperc A különbség tehát szeres. Módszer: interferometria Egy fénysugarat kettébontanak, majd újraegyesítenek. Az egyesített sugár esetén interferenciára lehet számítani, ha a külön megtett utakon eltérő volt a sebesség (az effektus már csak 1/ ) Ha a Föld mozgásával más-más szöget zár be a megtört fénysugár, akkor elmozdul az interferenciakép is (hiszen az éter eltérő mértékben lassítja a különböző sugarakat). A kísérlet fő elemei: A fénysugarakat megfelelő szögekben kell vezetni és visszaverni A megfigyeléseket több irányban el kell végezni A megfigyeléseket a Föld forgása miatt különböző időpontokban is meg kell ismételni A megfigyeléseket minden évszakban el kell végezni, tekintettel a Föld keringési pályájára A kísérletet egy nyitott, könnyű épületben, lehetőleg minél magasabban kell végezni

26 A kísérleti berendezés Michelson két kísérletsorozata: 1881 és 1887 (Morley-val) A kísérletek szerkezete: osztott fénysugár, tükrökkel a megfelelő szögben vezetve, majd a forrásnál újraegyesítve egy teljes körben 16 különböző szög megfigyelése éjszakai kísérletezés (csökkentett zajforrás) nyugodt környezet Változók: a berendezés anyaga a fénysugarak hossza

27 Az első két kísérlet 1881:Michelson (Potsdam) Fénysugár hossza: 120 cm Elvárás: a gyűrűk 4/100-nyi eltolódása Problémák: vibráció és torzítás a berendezés állítgatása során Publikált eredmény: nem figyelhető meg a várt eltolódás (csak kisebb, de túl bizonytalan volt az egész) Kritika: nem vette figyelembe azt, hogy az éterre merőleges mozgás is kap valamekkora eltolódást, ami felezi a várt effektust (H.A. Lorentz) 1887: Michelson és Morley (Cleveland) Helyszín: az egyetem pincéje Anyag: öntöttvas kád téglákon, higannyal töltve; ezen úszott egy nagy, könnyen forgatható homokkő (akár hat órán keresztül is forgott nagyon lassan a kádban, ha meglökték). Ezen a kőlapon volt a prizma, a tükrök és a fényforrás. Fénysugár hossza: 11 méter Elvárás: az interferencia 4/10-nyi eltolódása (1/100 már látható volna) Eredmény: nincs változás

28 A Michelson-Morley-féle higanykád

29 Továbblépés: a relativitáselmélet A Michelson-Morley kísérlet nem tudta megmérni a Föld sebességét, de rámutatott, hogy a fény azonos sebességgel terjed a mozgó bolygón minden irányban (pedig a sebességének változnia kellett volna attól függően, hogy mekkora szöget zár be a Föld mozgásvektorával). Morley-Miller kísérletek a századfordulón 1905: továbbfejlesztett kísérlet egy dombtetőn, üvegkunyhóban az eredmény: ugyanaz Közben a relativitáselmélet egyre népszerűbbé válik. 1925: Miller (Mount Wilson, USA, 2000 méter magasan) Mind a négy évszakban mér Eredményes kísérlet: a Föld sebessége 10 km/órának adódik Ezzel a relativitáselmélet cáfolatát jelentené Reakciók: a kísérlet minden ismétlése nulla eredménnyel zárul, ami szakmai ellentétekhez vezet, és kezdik figyelmen kívül hagyni Miller egyedi eredményeit

30 A két kísérlet tanulsága Van olyan eset, hogy egy-egy mérés eredménye alátámaszt egy elméletet, azonban nem igazolja azt sosem Ha egy mérés egy elmélet igazolásának látszik, akkor is még számos emberi tényezőt kell számításba vennünk, és semmiképpen nem érdemes véglegesnek tekintenünk az eredményeket. Fel kell adnunk a döntő kísérlet mítoszát, hiszen jól látszik, hogy az ilyen kísérletek nem mindig igazolják a kérdéses elméletet, és döntővé nyilvánításuk és népszerűségük pedig számos (tudomány)szociológiai tényezőtől is függ.

31 Döntő kísérletek A döntő kísérlet szinte sohasem egyetlen kísérlet, hanem mérések gondosan (sőt: egyre gondosabban) kivitelezett sorozata A kísérletek különböző kritikákat vonnak maguk után, a következő mérések ezekre próbálnak meg válaszolni Az utókor ezek közül egyet emel ki és jegyez meg (általában időben az elsőt), ami eléggé hamis tudományképhez vezet

A relativitáselmélet története

A relativitáselmélet története A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,

Részletesebben

SZE, Fizika és Kémia Tsz. v 1.0

SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:

Részletesebben

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika

Részletesebben

Typotex Kiadó. Záró megjegyzések

Typotex Kiadó. Záró megjegyzések Záró megjegyzések Az olvasó esetleg hiányolhatja az éter szót, amely eddig a pillanatig egyáltalán nem fordult elő. Ez a mulasztás tudatos megfontoláson alapul: Ugyanazért nem kerítettünk szót az éterre,

Részletesebben

Az éter (Aetherorether) A Michelson-Morley-kísérlet

Az éter (Aetherorether) A Michelson-Morley-kísérlet Az éter (Aetherorether) A Michelson-Morley-kísérlet Futó Bálint Modern Fizikai Kísérletek Szeminárium Fizika a XIX. században Mechanika Optika Elektrodin. Abszolút tér és idő Young és mások Az éter a medium

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

A Gólem. Két kísérlet, amely bizonyította a relativitás elméletét. A Gólem BME Filozófia és Tudománytörténet Tanszék

A Gólem. Két kísérlet, amely bizonyította a relativitás elméletét. A Gólem BME Filozófia és Tudománytörténet Tanszék A Gólem Két kísérlet, amely bizonyította a relativitás elméletét A elméletek igazolásának problémája Ha van olyan mérés, amely igazolja az elméleteinket, azaz az elmélet jóslatait mérési adatokkal tudjuk

Részletesebben

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására

Részletesebben

Speciális relativitás

Speciális relativitás Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban

Részletesebben

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25. A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer

Részletesebben

Mi a fata morgana? C10:: légköri tükröződési jelenség leképezési hiba arab terrorszervezet a sarki fény népies elnevezése

Mi a fata morgana? C10:: légköri tükröződési jelenség leképezési hiba arab terrorszervezet a sarki fény népies elnevezése A fény melyik tulajdonságával magyarázható, hogy a vizes aszfalton elterülő olajfolt széleit olyan színesnek látjuk, mint a szivárványt? C1:: differencia interferencia refrakció desztilláció Milyen fényjelenségen

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

A világtörvény keresése

A világtörvény keresése A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

Hogyan lehet meghatározni az égitestek távolságát?

Hogyan lehet meghatározni az égitestek távolságát? Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

A speciális relativitáselmélet alapjai

A speciális relativitáselmélet alapjai A speciális relativitáselmélet alapjai A XIX-XX. századforduló táján, amikor a mechanika és az elektromágnességtan alapvető törvényeit már jól ismerték, a fizikát sokan befejezett tudománynak gondolták.

Részletesebben

A gravitáció összetett erőtér

A gravitáció összetett erőtér A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (a) Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2015. január 11.. 1 Egy egyszerű probléma (1) A K nyugvó vonatkoztatási rendszerben tekintsünk

Részletesebben

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Értékelési útmutató az emelt szint írásbeli feladatsorhoz

Értékelési útmutató az emelt szint írásbeli feladatsorhoz Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

A Wigner FK részvétele a VIRGO projektben

A Wigner FK részvétele a VIRGO projektben Kettős rendszerek jellemzőinek meghatározása gravitációs hullámok segítségével A Wigner FK részvétele a VIRGO projektben Vasúth Mátyás PhD, MTA Wigner FK A Magyar VIRGO csoport vezetője MTA, 2016.05.05

Részletesebben

Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja

Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával Szondy György ELFT tagja? GPS ELFT Fizikus Vándorgyűlés Szombathely, 2004. Augusztus 24.-27. Ált. Rel. GRAVITÁCIÓ

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 11. Bevezetés a speciális relativitáselméletbe I. Tér, Idő, Téridő Cserti József, jegyzet, ELTE, 2007 (Dávid Gyula jegyzete alapján). Maxwell-egyenletek

Részletesebben

A Föld mint fizikai laboratórium

A Föld mint fizikai laboratórium A Föld mint fizikai laboratórium Az atomoktól a csillagokig Dávid Gyula 2006. 01. 12. A Föld - régóta ismert fizikai objektum triviális jól ismert nem ismert fizikai tulajdonságok alkalmazások más rendszerek,

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Előzmények: matematika Előzmények: fizika Az általános relativitáselmélet Furcsa következmények Tanulságok. SZE, Fizika és Kémia Tsz. v 1.

Előzmények: matematika Előzmények: fizika Az általános relativitáselmélet Furcsa következmények Tanulságok. SZE, Fizika és Kémia Tsz. v 1. Fizikatörténet Az általános relativitáselmélet története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 AFKT 5.2.6 AFKT 5.2.7 A párhuzamossági axióma Euklidesz geometriája 2000 évig megingathatatlannak

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

ERŐ-E A GRAVITÁCIÓ? 1

ERŐ-E A GRAVITÁCIÓ? 1 ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási rendszer, ahol érvényes Newton első törvénye (! # = 0 ' = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben tett felfedezések:

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Készítsünk fekete lyukat otthon!

Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! BH@HOME Barnaföldi Gergely Gábor, Bencédi Gyula MTA Wigner FK Részecske és Magfizikai Kutatóintézete AtomCsill 2012, ELTE TTK Budapest

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

(Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban?

(Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban? Próba vizsgakérdések (A téridő fizikájától a tér és idő metafizikájáig) (Természetesen, nem lesz ilyen sok kérdés feladva a vizsgán!) Hogy szól a relativitási elv a lehető legjobb megfogalmazásban? Mit

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek. Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.

Részletesebben

Pszichológiatörténet. Aczél Balázs 2011

Pszichológiatörténet. Aczél Balázs 2011 Pszichológiatörténet Aczél Balázs 2011 Mi értelme van pszichológiatörténetről tanulni? Útkeresések története: Mi a téma? Mi a módszer? Mivel foglalkozik a pszichológia? Klasszikus hagyomány: önmegfigyeléssel

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

A SEBESSÉG. I. kozmikus sebesség (Föld körüli körpályán való keringés sebessége): 7,91 km/s

A SEBESSÉG. I. kozmikus sebesség (Föld körüli körpályán való keringés sebessége): 7,91 km/s A SEBESSÉG A sebesség az, ami megmutatja, mi mozog gyorsabban. Minél nagyobb a sebessége valaminek, annál gyorsabban mozog Fontosabb sebességek: fénysebesség: 300.000 km/s (vákumban) hangsebesség: 340

Részletesebben

Csillagászati eszközök. Űrkutatás

Csillagászati eszközök. Űrkutatás Csillagászati eszközök Űrkutatás Űrkutatás eszközei, módszerei Optikai eszközök Űrszondák, űrtávcsövek Ember a világűrben Műholdak Lencsés távcsövek Első távcső: Galilei (1609) Sok optikai hibája van.

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

A színek fizikája szakdolgozat

A színek fizikája szakdolgozat A színek fizikája szakdolgozat Készítette: Csépány Tamara fizika szakos hallgató Témavezető: Dr. Martinás Katalin ELTE, TTK Atomfizikai Tanszék Budapest, 2009 A szakdolgozat célja Szakdolgozatom célja

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Modellek és változásaik a fizikában V. A XX. Század fizikája Albert Einstein

Modellek és változásaik a fizikában V. A XX. Század fizikája Albert Einstein Modellek és változásaik a fizikában V. A XX. Század fizikája Albert Einstein Albert Einstein (1879-1955) "A kérdés, ami néha elbizonytalanít: én vagyok őrült, vagy mindenki más?" "Csak két dolog végtelen.

Részletesebben

A relativitáselmélet alapjai

A relativitáselmélet alapjai A relativitáselmélet alapjai További olvasnivaló a kiadó kínálatából: Bódizs Dénes: Atommagsugárzások méréstechnikái Frei Zsolt Patkós András: Inflációs kozmológia Geszti Tamás: Kvantummechanika John D.

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Az ultrahangos mérőeszközök elterjedése a vízrajzi szolgálatban

Az ultrahangos mérőeszközök elterjedése a vízrajzi szolgálatban Országos Vízügyi Főigazgatóság General Directorate of Water Management 42. Meteorológiai Tudományos Napok 2016. Az ultrahangos mérőeszközök elterjedése a vízrajzi szolgálatban Lábdy Jenő főosztályvezető

Részletesebben

A galaxisok csoportjai.

A galaxisok csoportjai. A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,

Részletesebben

ERŐ-E A GRAVITÁCIÓ? 1. példa:

ERŐ-E A GRAVITÁCIÓ? 1. példa: ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási r rendszer, ahol érvényes Newton első törvénye ( F e = 0 " a r = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben

Részletesebben

Különféle erőhatások és erőtörvényeik (vázlat)

Különféle erőhatások és erőtörvényeik (vázlat) Különféle erőhatások és erőtörvényeik (vázlat) 1. Erőhatás és erőtörvény fogalma. Erőtörvények a) Rugalmas erő b) Súrlódási erő Tapadási súrlódási erő Csúszási súrlódási erő Gördülési súrlódási erő c)

Részletesebben

A speciális relativitáselmélet alapjai

A speciális relativitáselmélet alapjai A speciális relativitáselmélet alapjai A XIX-XX. századforduló táján, amikor a mechanika és az elektromágnességtan alapvető törvényeit már jól ismerték, a fizikát sokan befejezett tudománynak gondolták.

Részletesebben

Összeállította: Juhász Tibor 1

Összeállította: Juhász Tibor 1 A távcsövek típusai Refraktorok és reflektorok Lencsés távcső (refraktor) Galilei, 1609 A TÁVCSŐ objektív Kepler, 1611 Tükrös távcső (reflektor) objektív Newton, 1668 refraktor reflektor (i) Legnagyobb

Részletesebben

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1813 ÉRETTSÉGI VIZSGA 2018. október 29. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

TÉNYLEG EINSTEIN FEDEZTE FEL, HOGY E = mc 2?

TÉNYLEG EINSTEIN FEDEZTE FEL, HOGY E = mc 2? TÉNYLEG EINSTEIN FEDEZTE FEL, HOGY E = mc 2? Ki a szerzôje a híres egyenletnek? Nem is olyan egyszerû a kérdés, mint gondolnánk. Maxwell tôl von Laueig egész sor 20. századbeli fizikusról tételezték fel,

Részletesebben

Bor Pál Fizikaverseny tanév 7. évfolyam I. forduló Név: Név:... Iskola... Tanárod neve:...

Bor Pál Fizikaverseny tanév 7. évfolyam I. forduló Név: Név:... Iskola... Tanárod neve:... Név:... Iskola... Tanárod neve:... A megoldott feladatlapot 2019. január 8-ig küldd el a SZTE Gyakorló Gimnázium és Általános Iskola (6722 Szeged, Szentháromság u. 2.) címére. A borítékra írd rá: Bor Pál

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

A modern fizika születése

A modern fizika születése A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,

Részletesebben

Ütközések vizsgálatához alkalmazható számítási eljárások

Ütközések vizsgálatához alkalmazható számítási eljárások Ütközések vizsgálatához alkalmazható számítási eljárások Az eljárások a kiindulási adatoktól és a számítás menetétől függően két csoportba sorolhatók. Az egyik a visszafelé történő számítások csoportja,

Részletesebben

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Relativisztikus elektrodinamika röviden

Relativisztikus elektrodinamika röviden Relativisztikus elektrodinamika röviden További olvasnivaló a kiadó kínálatából: Patkós András: Bevezetés a kvantumfizikába: 6 előadás Feynman modorában Bódizs Dénes: Atommagsugárzások méréstechnikái Frei

Részletesebben

ALAPVETŐ TUDNIVALÓK Átmérő, fókusz A csillagászati távcsövek legfontosabb paramétere az átmérő és a fókusztávolság. Egy 70/900 távcső esetében az első szám az átmérőre utal, a második a fókusztávolságára

Részletesebben

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS 7-13.

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS 7-13. 2014. 07. 7. Hétfő Kísérletek héliummal, Időpont:, Hely: Bod László Művelődési Ház, (ea: Dr. Vida József, Zoller Gábor). Történelmi nap-és holdfogyatkozások, A diaképes előadás során, megismerkedhetünk

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1413 ÉRETTSÉGI VIZSGA 014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája Kora modern kori csillagászat Johannes Kepler (1571-1630) A Világ Harmóniája Rövid életrajz: Született: Weil der Stadt (Német -Római Császárság) Protestáns környezet, vallásos nevelés (Művein érezni a

Részletesebben

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben

Természetismereti- és környezetvédelmi vetélkedő

Természetismereti- és környezetvédelmi vetélkedő Miskolc - Szirmai Református Általános Iskola, Alapfokú Művészeti Iskola és Óvoda OM 201802 e-mail: refiskola.szirma@gmail.com 3521 Miskolc, Miskolci u. 38/a. Telefon: 46/405-124; Fax: 46/525-232 Versenyző

Részletesebben

Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására

Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására A bolygók és kisbolygók pályájának analitikus meghatározása rendszerint több éves egyetemi előtanulmányokat igényel. Ennek oka

Részletesebben

Geometria és gravitáció

Geometria és gravitáció Geometria és gravitáció Az atomoktól a csillagokig Dávid Gyula 2014. 09. 18. Geometria és gravitáció Az atomoktól a csillagokig Dávid Gyula 2014. 09. 18. Geometria és gravitáció Az atomoktól a csillagokig

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,

Részletesebben

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

AZ UNIVERZUM SUTTOGÁSA

AZ UNIVERZUM SUTTOGÁSA AZ UNIVERZUM SUTTOGÁSA AVAGY MIT HALLANAK A GRAVITÁCIÓSHULLÁM-DETEKTOROK Vasúth Mátyás MTA Wigner FK A Magyar VIRGO csoport vezetője Wigner FK 2016.05.27. Gravitációs hullámok obszervatóriumok Einstein-teleszkóp

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt szint 080 ÉRETTSÉGI VIZSGA 008. május 4. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Eszközszükséglet: Erők összetevőit bemutató asztal 4 db csigával, nehezékekkel (Varignon-asztal)

Eszközszükséglet: Erők összetevőit bemutató asztal 4 db csigával, nehezékekkel (Varignon-asztal) A Varignon-féle asztallal végzett megfigyelések és mérések célkitűzése: Az erők testekre való hatásának és az erők összeadódásának(eredő erő) megfigyelése. Az egyensúlyi erő és az eredő erő kapcsolatának

Részletesebben