GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ"

Átírás

1 GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ Génklónozás Bármilyen klónozási eljárás célja, hogy egy ún. klónt, azaz tökéletesen egyforma szervezetek csoportját állítsák elő. Néhány növény, egyszerűen dugványozással klónozható, míg más növényfajokat klónozhatunk az egyed elkülönített sejtjeiből is. Még a gerinceseket is klónozhatók. A génklónozási kísérletekben rendszerint baktériumsejtbe viszik be az idegen gént, majd a módosított baktériumok szaporításával klónt állítanak elő. A klónozott sejtek mindegyike tartalmazza a bevitt idegen gént, és amíg biztosított a gén replikációja, a gazdasejt klónozásával klónozzuk a gént is. Az első klónozási kísérletet Stanley Cohen, Herbert Boyer és a munkatársaik végezték 1973-ban. Klónozás A restrikciós endonukleázok Cohen és Boyer kísérletét a felbecsülhetetlen jelentőségű enzimek, a restrikciós endonukleázok tették lehetővé. Nevüket arról kapták, hogy megakadályozzák az idegen DNS, például a baktériumot fertőző vírus DNS-ének invázióját, a molekula feldarabolásával (restrict = korlátozni). Az endonukleáz megjelölése, pedig arra utal, hogy az idegen DNS-t a molekula belsejében levő helyeken hasítják el, és nem a végén kezdik lebontani ( görög: endo=belső).

2 A restrikciós endonukleázok legfőbb előnye, hogy reprodukálhatóan, mindig ugyanott vágják el a DNS-t. Ezen a tulajdonságon alapul sok, a gének szerkezetét és működését vizsgáló módszer. De nem ez az egyetlen előnyük a restrikciós endonukleázoknak. Sokuk nem pontosan szemben vágja el a DNS két szálát, hanem kissé eltolódva, tehát egyfonalas túlnyomó szálakat, ún. ragadós végeket képez, ami megkönnyíti két DNS in vitro összekapcsolását rekombináns DNS-sé. A restrikciós enzimek azért alakíthatnak ki túlnyúló végeket, mert az általuk felismert szekvenciák rendszerint szimmetrikusak, azaz visszafelé olvasva is azonosak. Az ilyen szimmetrikus szekvenciákat palindromoknak is nevezik. Minden génklónozási kísérletben szükséges hordozó ún. vektor. A legtöbb eljárásban csak egy vektor szerepel és egy idegen DNS-darab, aminek replikációja a vektortól függ. Két nagy csoportjukat különböztetjük meg: plazmid és a fág vektorokat. Ragadós végek A plazmid vektorok A plazmidot úgy tervezték meg, hogy a gyakran használt restrikciós enzimeknek csak egy-egy hasítási helyük legyen rajta. Ez azért előnyös, mert mindegyik enzim használható idegen DNS beépítésére anélkül, hogy közben a plazmid egy része elveszne. A plazmid vektorba úgy építjük be az idegen DNSdarabot, hogy a plazmidot adott helyen megfelelő restrikciós endonukleázzal elhasítjuk. Ilyenkor pl. a psc101 jelű plazmid EcoRI hatására egy helyen hasad és komplementer ún. ragadós végek keletkeznek. Ha a beillesztendő DNS-darabot is ugyanilyen restrikciós enzimmel hasítottuk ki valahonnan, akkor annak is ugyanilyen ragadós végei lesznek. A kettőt összekeverve kétfajta rekombináns molekula is keletkezik, amelyek DNS-ligáz révén kovalensen is összekapcsolódnak. Kémiai szintézis révén is lehet olyan kettős szálú DNS-t szintetizálni, ami hasítóhelyet tartalmaz egy restrikciós endonukleáz számára. T4 ligáz révén az egy tompa végű DNS kettős lánc 3 OH és 5 P végéhez hozzákapcsolható. Adapterek használata is lehetséges. Ilyenkor olyan kettős szálú DNS-darabot szintetizálnak, ami eleve tartalmazza a ragadós véget, és ezt kapcsolják fel a DNS-fragmentre vagy vektorra, szintén T4 ligázzal a tompa végek révén Az egyik hasznos klónozó plazmid a pbr322. ez kétféle rezisztenciagént hordoz (tetraciklin, ampicilin). Az is lehet, hogy a klónozó plazmid csak egy rezisztenciagént tartalmaz, ami majd azt jelzi, hogy a plazmidot felvette a transzformált E.coli sejt. Azt viszont, hogy az idegen DNS-t felvette-e a plazmid, az jelzi, hogy az E.coli sejttenyészetek színtelenek lesznek megfelelő táptalajon.

3 A fág vektorok A λ-fágot is gyakran használják klónozó vektorként. Ehhez speciális λ-fág mutánst készítettek. Ennek a DNS-e csak két hasítóhelyet tartalmaz az EcoRI enzim számára. EcoRI-vel hasítva a λ-fág DNS-ét izolálni lehet a rúdszerű fág-dns bal és jobb karját a kihasadó középső résztől. Ennek helyére pedig beépíthető a ragadósvég módszerrel az ugyanilyen enzim hasítása révén nyert idegen DNS. A plazmidokkal szemben a λ-vektorok óriási előnye hogy sokkal több idegen DNS-t képesek befogadni. A Charon-fágok például, mintegy 20 kilobázisnyit. Ezeket a fágokat leggyakrabban génkönyvtárak készítésekor alkalmazzák. DNS könyvtár

4 A kozmidok A vektorok másik, kifejezetten a nagyobb DNS fragmentumok klónozására kifejlesztett csoportját a kozmidok alkotják, amelyeknek a plazmidokra, illetve a fágokra jellemző tulajdonságaik is vannak. A kozmidok, a Charon-fágoknál is nagyobb, akár 50 kilobázisnyi darabokat is felvehetnek, ezért szintén a génkönyvtárak készítésének eszközei. M13 fág vektorok A fág vektorok másik nagy csoportja az M13 fágokból készült. Jól használható sokszoros klónozóhelyük mellett további előnyük, hogy egyszálú rekombináns DNS-t termelnek, ami alkalmassá teszi őket a DNS szekvenálására és a helyspecifikus mutagenezisre. Fágmidok Ezek annyiban hasonlítanak a kozmidokra, hogy fág- és plazmidjellegzetességeik is vannak, erre utal nevük is. A fágmidok helperfágjaik jelenlétében ugyancsak egyfonalas DNS-t termelnek. Specifikus klón azonosítása, specifikus próbával A specifikus klónok olyan polinukleotid próbákkal azonosíthatók, amelyek magához a génhez kapcsolódnak. Egy géntermék aminosavsorrendjének ismeretében megtervezhető a polipeptidlánc egy darabját kódoló oligonukleotid. Ez utóbbi egy adott klón azonosításának egyik leggyorsabb és legpontosabb módszere. A cdns klónozása A cdns-nek egy időben csak egy szála szintetizálható. Az első szál templátja az mrns, a másodiké, pedig az első szál. A kétfonalas cdns-t olyan oligonukleotid-végekkel látják el, amelyek kapcsolódhatnak a klónozó vektor komplementer végeihez, majd az így összeállított rekombináns DNSsel baktériumokat transzformálnak. A pozitív klónokat radioaktív DNS-próbákkal telephibridizálás során azonosítják, vagy pedig ellenanyagokkal, ha expressziós vektort, például λgt11-et használnak Expressziós vektor Az expressziós vektorokat úgy szerkesztik meg, hogy a lehető legnagyobb mennyiségben képződjön a klónozott gén fehérjeterméke. A működés optimalizálására a vektorokba erős bakteriális promotereket és bakteriális riboszómakötő helyeket építenek, ezek ugyanis hiányozhatnak a klónozótt eukarióta génekből. A legtöbb klónozó vektor indukálható, így elkerülhető az idegen géntermék idő előtti túltermelése, ami toxikus lehet a baktériumsejtre. Az expressziós vektorokkal gyakran fúziós fehérjéket állítanak elő, amelyek N-terminálását a vektorban lévő kódoló szekvenciák, C-terminálását pedig a klónozott gén határozza meg. A fúziós fehérjéknek előnyeik is vannak: a prokarióta sejtekben stabilabbak, mint az eredeti eukarióta fehérjék, és izolálásuk is egyszerűbb lehet. A λgt11 vektorral előállított fúziós fehérjék specifikus antiszérummal mutathatók ki a plakkokban. Műveletek klónozott génekkel A klónozótt gének alkalmazásával bármilyen változás megvalósítható a fehérjetermék aminosavsorrendjében. Ez legegyszerűbben bakteriofág vagy fágmid vektorokba klónozott egyszálú DNS-sel és a megtervezett báziscserét tartalmazó szintetikus oligonukleotid primerekkel végezhető el.

5 DNS-próbák alkalmazása A klónozott DNS-ek kitűnő próbák, mert ugyanolyan vagy nagyon hasonló szekvenciájú DNS-hez és RNS-hez hibridizálhatók. Megjelölhetők radioaktív izotóppal, de nem-radioaktív jelölés is kötehtő rájuk. A jelölt próbát Southern-bloton DNS-sel hibridizálva meghatározható a hasonló szekvenciájú DNSfragmentumok mérete. A Northern-blot a komplementer RNS-ek méretének és mennyiségének megállapítására szolgál. A próbák teljes kromoszómákhoz is hibridizálhatók, ha a cél a gének helyének azonosítása. A gének bázissorrendjének meghatározása A klónozott gének olyan homogén DNS-molekula populációkat biztosítanak, amelyekből lehetővé válik a nukleotidszekvencia meghatározása. A Sanger-módszer didezoxi-ribonukleotidokat használ a DNSszintézis véletlenszerű megszakítására. A keletkező fragmentumok méretük alapján elektroforézissel választhatók szét egymástól. A fragmentumok utolsó bázisa ismert, mert tudják, melyik didezoxiribonukleotid állította meg a replikációt. A fragmentumokat méretük szerint sorba rendezik-mindegyik fragmentum egy (ismert) nukleotiddal hosszabb az előzőnél-,és megkapják a DNS bázissorrendjét. A GÉNKLÓNOZÁS GYAKORLATI ALKALMAZÁSA Az emberi génterápia A génterápia olyan eljárásokat jelent, amikor klónozott génekkel próbálnak kezelni, és esetleg gyógyítani emberi betegségeket, köztük öröklődő rendellenességeket, rákot, AIDS-t stb. A klónozott géneket vektorokkal, rendszerint fertőzésre képtelen retrovírusokkal juttatják a célsejtekbe. A génterápia eddig két esetben bizonyult sikeresnek, de jelenleg még nem elég hatékony, és rendkívül költséges. Klónozott gének termékeinek felhasználása Lehetségessé vált a baktériumok vagy más sejtek manipulálása abból a célból, hogy klónozott gének termékeit állítsák elő. A fehérjetermékek között van néhány nagyon hasznos, vagy nagyon ritka, esetleg egyszerre mindkettő, amelyek éppen ezért értékesek lehetnek. A klónozott gének és termékeik alkalmazása új lehetőségeket nyitnak az orvostudományban, a mezőgazdaságban és a genetikában. Fehérjék- Új korszak a gyógyszergyártásban Milyen fehérjék nagy mennyiségben való előállítása lehet fontos? Elsőként az emberi inzulint gyártották klónozással. A módszer kidolgozása két szempontból is lényeges volt: - először is azért, mert a cukorbetegek egy része allergiás lett a hagyományos eljárással készült sertésés szarvasmarha-inzulinra. A sertésinzulin kismértékben eltér az emberi inzulintól, az immunrendszer érzékeli ezt a különbséget, ezért immunválaszt, néha allergiás reakciót is indíthat az idegen fehérjével szemben. Elvben az emberi inzulin nem okoz ilyen problémát, hiszen a szervezet nem azonosítja antigénként. - másodszor, a klónozott gén szinte korlátlan inzulinforrást jelent, és így a gyártás független az állati termékek piacának ingadozásaitól. A klónozással előállított fehérjék másik példája az emberi növekedési hormon (hgh). A gyermekek egy része örökletes hipofizer törpeségben szenved, aminek oka, hogy agyalapi mirigyükben túl kevés növekedési hormon képződik, ezért kezelés hiányában testmagasságuk jelentősen elmarad az átlagostól. Az állati eredetű növekedési hormonok nem hatékonyak. Korábban a gyermekeket halott emberek agyalapi mirigyéből kivont hormonnal kezelték, de ez nagyon költséges volt. Ráadásul az első hormonkészítmények szennyezettek voltak. A megoldást tehát, a hgh génjének klónozása jelentette. A jövőben várható olyan tisztított vírusfehérjék előállítása is, amelyek biztonságos és hatékony oltóanyagként használhatók a halálos fertőzések ellen. Elképzelhető, hogy ártalmatlan vírusok módosításával immunizálni lehet a szervezetünket más rokonsági körbe tartozó, veszélyes vírusok ellen is.

6 Klónozott gének alkalmazása a mezőgazdaságban 1983-ban Richard Palmiter és Ralph Brinster korai stádiumú egérembrióba juttatták az ember növekedési hormon génjét. Az eredmény a sajtó által szuperegérnek becézett, az átlagosnál kétszer nagyobb testű óriás egér volt. Az ilyen állatokat transzgenikusnak nevezzük, mert egy másik élőlényből átültetett gént hordoznak. Hangsúlyozni kell, hogy a transzgenikus állatokba az idegen eredetű gén, az ún. transzgén bejuttatása az embrionális fejlődési igen korai stádiumában történik, így a transzgén beépülhet a gazda sejtjeibe, beleértve a csíravonalat is, és a normális génekhez hasonlóan továbbadható az utódokba. Amikor nyilvánosságra került a szuperegér létrehozása az emberek csodálkoztak. Miért nem szupertehén vagy szupersertés?. Az igazság az, hogy Palmiter és Brinster megkísérelték a szupersertés előállítását, de nem sok sikerrel. Létrehoztak transzgenikus sertéseket oly módon, hogy az ember hgh, illetve a szarvasmarha növekedési hormon bgh génjét injektálták sertés petesejtekbe. A szarvasmarha hormonja hatásosabbnak bizonyult, de a transzgenikus malacok nem szolgáltak rá a szuper jelzőre. Nem nőttek a normális méret többszörösére, de a takarmányhasznosításuk jobb volt. Ez fontos szempont, hiszen a takarmány teszi ki a sertéstartás költségeinek 70%-át. Előnyt jelentett az is, hogy tanszgenikus állatok bő alatti zsíéteg vékonyabb volt. Az étkezési szokások változása miatt ugyanis az állati eredetű zsiradékok fogyasztása jelentősen visszaszorult. Az előnyös tulajdonságok mellett a transzgenikus sertések súlyos egészségügyi problémákkal küszködtek. Gyomorfekély, izületi gyulladások, bőrgyulladás, vesebetegség.

7 KIEGÉSZÍTŐ ANYAGOK: - PCR - Vektorok

8

9

10

11

12

13

14

15

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása.

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Növények klónozása Klónozás Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Görög szó: klon, jelentése: gally, hajtás, vessző. Ami

Részletesebben

5. Molekuláris biológiai technikák

5. Molekuláris biológiai technikák 5. Molekuláris biológiai technikák DNS szaporítás kémcsőben és élőben. Klónozás, PCR, cdna, RT-PCR, realtime-rt-pcr, Northern-, Southernblotting, génexpresszió, FISH 5. Molekuláris szintű biológiai technikák

Részletesebben

Transzgénikus állatok előállítása

Transzgénikus állatok előállítása Transzgénikus állatok előállítása A biotechnológia alapjai Pomázi Andrea Mezőgazdasági biotechnológia A gazdasági állatok és növények nemesítése új biotechnológiai eljárások felhasználásával. Cél: jobb

Részletesebben

A molekuláris biológia eszközei

A molekuláris biológia eszközei A molekuláris biológia eszközei I. Nukleinsavak az élő szervezetekben Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje DNS feladata: információ tárolása és a transzkripció

Részletesebben

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia Fehérje expressziós rendszerek Gyógyszerészi Biotechnológia Expressziós rendszerek Cél: rekombináns fehérjék előállítása nagy tisztaságban és nagy mennyiségben kísérleti ill. gyakorlati (therapia) felhasználásokra

Részletesebben

A preventív vakcináció lényege :

A preventív vakcináció lényege : Vakcináció Célja: antigénspecifkus immunválasz kiváltása a szervezetben A vakcina egy olyan készítmény, amely fokozza az immunitást egy adott betegséggel szemben (aktiválja az immunrendszert). A preventív

Részletesebben

III/3. Gének átvitele vektorokkal

III/3. Gének átvitele vektorokkal III/3. Gének átvitele vektorokkal Vektor: (molekuláris) biológiai rendszer, amely képes új/idegen genetikai információt bejuttatni egy sejtbe. Független szaporodásra képes. Fajtái: Plazmidok (1-10 kb)

Részletesebben

A növény inváziójában szerepet játszó bakteriális gének

A növény inváziójában szerepet játszó bakteriális gének A növény inváziójában szerepet játszó bakteriális gének merisztéma korai szimbiotikus zóna késői szimbiotikus zóna öregedési zóna gyökér keresztmetszet NODULÁCIÓ növényi jel Rhizobium meliloti rhizobium

Részletesebben

Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei)

Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei) Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei) Az antiszenz elv története Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje

Részletesebben

A géntechnológiát megalapozó felfedezések

A géntechnológiát megalapozó felfedezések 2010. december BIOTECHNOLÓGIA Rova tvezető: Dr. Heszky László akadémikus A géntechnológia genetikai alapjai c. I. fejezet 1-5. részében azokat a tudományos eredményeket mutattuk be, melyek bizonyítják,

Részletesebben

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!!

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!! Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció 1859 1865 1869 1952 Hershey & Chase 1953!!! 1879 1903 1951 1950 1944 1928 1911 1 1. DNS szerkezete Mi az örökítő anyag? Friedrich Miescher

Részletesebben

NANOTECHNOLOGIA 6. előadás

NANOTECHNOLOGIA 6. előadás NANOTECHNOLOGIA 6. előadás A plazmid: Ha meg akarjuk ismerni egy fehérje működését, akkor sokat kell belőle előállítanunk. Ezt akár úgy is megtehetjük, hogy a kívánt géndarabot egy baktérumba ültetjük

Részletesebben

A BIOTECHNOLÓGIA ALKALMAZÁSI LEHETŐSÉGEI A GYÓGYSZERKUTATÁSBAN

A BIOTECHNOLÓGIA ALKALMAZÁSI LEHETŐSÉGEI A GYÓGYSZERKUTATÁSBAN Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 A BIOTECHNOLÓGIA

Részletesebben

Molekuláris biológiai technikák

Molekuláris biológiai technikák Molekuláris biológiai technikák Wunderlich Lívius A Molekuláris biológiai technikák jegyzet igyekszik átfogó képet adni a jövő tudományának, a molekuláris biológiának a módszertanáról. A technikák elméleti

Részletesebben

A GENOM MEGISMERÉSÉNEK MÓDSZEREI

A GENOM MEGISMERÉSÉNEK MÓDSZEREI A GENOM MEGISMERÉSÉNEK MÓDSZEREI 20 GENETIKA ALAPOK 3-1 Jóslatok és a valóság a molekuláris biológiában. Mennyire látható előre a tudomány fejlődése? 1968 Simone de Beauvoir "Minden ember halandó" 1-2

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

DNS klónozása DNS klóntárak előállítása és szűrése

DNS klónozása DNS klóntárak előállítása és szűrése DNS klónozása DNS klóntárak előállítása és szűrése Lontay Beáta 2016. Klónozás: A genetikai információt az egyik élőlényből (állat, növény, mikroorganizmus) mesterségesen visszük át egy másik organizmusba.

Részletesebben

DNS KLÓNOZÁS: Egy DNS molekula megsokszorozása. In vivo-különféle gazdasejtekben

DNS KLÓNOZÁS: Egy DNS molekula megsokszorozása. In vivo-különféle gazdasejtekben DNS KLÓNOZÁS DNS KLÓNOZÁS: Egy DNS molekula megsokszorozása In vitro-pcr In vivo-különféle gazdasejtekben POLIMERÁZ LÁNCREAKCIÓ (PCR) PCR A POLIMERÁZ LÁNC REAKCIÓ DNS MOLEKULÁK MEGSOKSZOROZÁSÁRA (AMPLIFIKÁLÁSÁRA)

Részletesebben

3.3 Gének átvitele vektorokkal

3.3 Gének átvitele vektorokkal 3.3 Gének átvitele vektorokkal Amikor vektorokról hallunk, elsőként a matematikában és a fizikában használatos vektormennyiségek jutnak eszünkbe (helyvektor, erő, térerősség, stb). De a vektor kifejezés

Részletesebben

DNS KLÓNOZÁS: Egy DNS molekula. In vivo-különféle gazdasejtekben

DNS KLÓNOZÁS: Egy DNS molekula. In vivo-különféle gazdasejtekben DNS KLÓNOZÁS DNS KLÓNOZÁS: Egy DNS molekula megsokszorozása In vitro-pcr In vivo-különféle gazdasejtekben POLIMERÁZ LÁNCREAKCIÓ (PCR) PCR A POLIMERÁZ LÁNC REAKCIÓ DNS MOLEKULÁK MEGSOKSZOROZÁSÁRA (AMPLIFIKÁLÁSÁRA)

Részletesebben

Kereskedelmi forgalomban lévő rekombináns gyógyszerkészítmények

Kereskedelmi forgalomban lévő rekombináns gyógyszerkészítmények Kereskedelmi forgalomban lévő rekombináns gyógyszerkészítmények Írta: Barta Zsolt Biomérnök hallgató 2007 Tartalomjegyzék 1 Rekombináns inzulin [1]... 3 2 A humán növekedési hormon rekombináns módon történő

Részletesebben

A BIOLÓGIAI GYÓGY- SZEREK FEJLESZTÉSÉNEK FINANSZÍROZÁSA ÉS TERÁPIÁS CÉLTERÜLETEI

A BIOLÓGIAI GYÓGY- SZEREK FEJLESZTÉSÉNEK FINANSZÍROZÁSA ÉS TERÁPIÁS CÉLTERÜLETEI Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére A BIOLÓGIAI GYÓGY- SZEREK FEJLESZTÉSÉNEK FINANSZÍROZÁSA

Részletesebben

DNS-szekvencia meghatározás

DNS-szekvencia meghatározás DNS-szekvencia meghatározás Gilbert 1980 (1958) Sanger 3-1 A DNS-polimerázok jellemzői 5'-3' polimeráz aktivitás 5'-3' exonukleáz 3'-5' exonukleáz aktivitás Az új szál szintéziséhez kell: templát DNS primer

Részletesebben

Poligénes v. kantitatív öröklődés

Poligénes v. kantitatív öröklődés 1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé

Részletesebben

5.2.5. ÁLLATGYÓGYÁSZATI IMMUNOLÓGIAI GYÓGYSZEREK ELŐÁLLÍTÁSÁRA SZÁNT ÁLLATI EREDETŰ ANYAGOK

5.2.5. ÁLLATGYÓGYÁSZATI IMMUNOLÓGIAI GYÓGYSZEREK ELŐÁLLÍTÁSÁRA SZÁNT ÁLLATI EREDETŰ ANYAGOK 1 5.2.5. ÁLLATGYÓGYÁSZATI IMMUNOLÓGIAI GYÓGYSZEREK ELŐÁLLÍTÁSÁRA SZÁNT ÁLLATI EREDETŰ ANYAGOK 07/2009:50205 javított 6.5 1. ALKALMAZÁSI TERÜLET Az állatgyógyászati célra szánt immunológiai gyógyszerek

Részletesebben

GENOMIKA TÖBBFÉLE MAKROMOLEKULA VIZSGÁLATA EGYIDŐBEN

GENOMIKA TÖBBFÉLE MAKROMOLEKULA VIZSGÁLATA EGYIDŐBEN GENOMIKA TÖBBFÉLE MAKROMOLEKULA VIZSGÁLATA EGYIDŐBEN Strukturális genomika Genomkönyvtárak DNS szekvenálás Genom programok Polimorfizmusok RFLP DNS könyvtár készítés humán genom 1. Emésztés RE-kal Emberi

Részletesebben

11. Dr. House. Biokémiai és sejtbiológiai módszerek alkalmazása az orvoslásban

11. Dr. House. Biokémiai és sejtbiológiai módszerek alkalmazása az orvoslásban 11. Dr. House. Biokémiai és sejtbiológiai módszerek alkalmazása az orvoslásban HIV fertőzés kimutatása - (fiktív) esettanulmány 35 éves nő, HIV fertőzöttség gyanúja. Két partner az elmúlt időszakban. Fertőzött-e

Részletesebben

Ellenanyag reagensek előállítása II Sándor Noémi

Ellenanyag reagensek előállítása II Sándor Noémi Ellenanyag reagensek előállítása II 2019.03.04. Sándor Noémi noemi.sandor@ttk.elte.hu Ellenanyagok módosítása 1. Kémiai módosítás Részleges redukció láncok közötti diszulfid hidak megszűnnek, szabad SH

Részletesebben

Az ellenanyagok szerkezete és funkciója. Erdei Anna Immunológiai Tanszék ELTE

Az ellenanyagok szerkezete és funkciója. Erdei Anna Immunológiai Tanszék ELTE Az ellenanyagok szerkezete és funkciója Erdei Anna Immunológiai Tanszék ELTE Bev. 1. ábra Immunhomeosztázis A veleszületett és az adaptív immunrendszer szorosan együttműködik az immunhomeosztázis fenntartásáért

Részletesebben

TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301)

TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) Biokémia és molekuláris biológia I. kurzus (bb5t1301) Tematika 1 TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) 0. Bevezető A (a biokémiáról) (~40 perc: 1. heti előadás) A BIOkémia tárgya

Részletesebben

GÉNSEBÉSZET- DNS-KLÓNOZÁS

GÉNSEBÉSZET- DNS-KLÓNOZÁS GÉNSEBÉSZET- DNS-KLÓNOZÁS A génsebészet olyan in vitro módszereket, technikát foglal magába, mely a génkészlet nagymérték megváltoztatását, célzott keveredését teszi lehetvé. A genetikai információt az

Részletesebben

DNS-számítógép. Balló Gábor

DNS-számítógép. Balló Gábor DNS-számítógép Balló Gábor Bevezetés A nukleinsavak az élő szervezetek egyik legfontosabb alkotórészei. Ezekben tárolódnak ugyanis az öröklődéshez, és a fehérjeszintézishez szükséges információk. Bár a

Részletesebben

Géntechnológiai módszerek

Géntechnológiai módszerek Géntechnológiai módszerek Rekombináns DNS technológia = génsebészet, genetic engineering Lehetővé teszi az élőlények egyes tulajdonságait meghatározó gének azonosítását, jellemzését és szabadon történő

Részletesebben

GMO = genetikailag módosított organizmusok. 1. Gének megváltoztatása. Gének megváltoztatása. Pécs Miklós: A biológia alapjai

GMO = genetikailag módosított organizmusok. 1. Gének megváltoztatása. Gének megváltoztatása. Pécs Miklós: A biológia alapjai GMO = genetikailag módosított organizmusok A gének megváltoztatása, vagy átvitele egyik organizmusból a másikba. 1 1. Gének megváltoztatása indukált mutáció + szelekció (mikroorganizmusoknál, alacsonyabb

Részletesebben

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert Mit tud a genetika Génterápiás lehetőségek MPS-ben Dr. Varga Norbert Oki terápia Terápiás lehetőségek MPS-ben A kiváltó okot gyógyítja meg ERT Enzimpótló kezelés Őssejt transzplantáció Genetikai beavatkozások

Részletesebben

Biológus MSc. Molekuláris biológiai alapismeretek

Biológus MSc. Molekuláris biológiai alapismeretek Biológus MSc Molekuláris biológiai alapismeretek A nukleotidok építőkövei A nukleotidok szerkezete Nukleotid = N-tartalmú szerves bázis + pentóz + foszfát N-glikozidos kötés 5 1 4 2 3 (Foszfát)észter-kötés

Részletesebben

A replikáció mechanizmusa

A replikáció mechanizmusa Az öröklődés molekuláris alapjai A DNS megkettőződése, a replikáció Szerk.: Vizkievicz András A DNS-molekula az élőlények örökítő anyaga, kódolt formában tartalmazza mindazon információkat, amelyek a sejt,

Részletesebben

Géntechnológia és fehérjemérnökség

Géntechnológia és fehérjemérnökség Géntechnológia és fehérjemérnökség elektronikus-jegyzet szerzők: Az ELTE Biokémiai Tanszék Munkaközössége Alexa Anita (12. és 13. fejezet), Fodor Krisztián (3. és 9. fejezet), Garai Ágnes (4. és 5. fejezet),

Részletesebben

HORMONOK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA

HORMONOK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 HORMONOK BIOTECHNOLÓGIAI

Részletesebben

Immunológia 4. A BCR diverzitás kialakulása

Immunológia 4. A BCR diverzitás kialakulása Immunológia 4. A BCR diverzitás kialakulása 2017. október 4. Bajtay Zsuzsa A klónszelekciós elmélet sarokpontjai: Monospecifictás: 1 sejt 1-féle specificitású receptor Az antigén receptorhoz kötődése aktiválja

Részletesebben

Az RNS-interferencia és távlatai

Az RNS-interferencia és távlatai Sipiczki Mátyás Az RNS-interferencia és távlatai Genetika és genom-projektek A modern biológia egyik leggyorsabban és leglátványosabban fejlődő területe a genetika, az a tudomány, amely az öröklődés mechanizmusát

Részletesebben

A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk.

A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk. A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk. A genetikai betegségek mellett, génterápia alkalmazható szerzett betegségek, mint

Részletesebben

Az örökítőanyag. Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase

Az örökítőanyag. Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase SZTE, Orv. Biol. Int., Mol- és Sejtbiol. Gyak., VIII. Az örökítőanyag Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase Ez az

Részletesebben

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Kovács Zoltán ügyvezető DEKUT Debreceni Kutatásfejlesztési Közhasznú Nonprofit Kft. Problémadefiníció Első generációs

Részletesebben

Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén

Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén Dr. Dallmann Klára A molekuláris biológia célja az élőlények és sejtek működésének molekuláris szintű

Részletesebben

A bioinformatika gyökerei

A bioinformatika gyökerei A bioinformatika gyökerei 1944: Avery a transforming principle a DNS 1952: Hershey és Chase perdöntő bizonyíték: a bakteriofágok szaporodásakor csak a DNS jut be a sejtbe 1953: Watson és Crick a DNS szerkezete

Részletesebben

Az ellenanyagok orvosbiológiai. PhD kurzus 2011/2012 II. félév

Az ellenanyagok orvosbiológiai. PhD kurzus 2011/2012 II. félév Az ellenanyagok orvosbiológiai alkalmazása PhD kurzus 2011/2012 II. félév Ellenanyagok előállítása, tisztítása, jelölése, fragmentálása Monoklonális vs. poliklonális ellenanyagok Ellenanyagok előállítása

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

ENZIMEK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA

ENZIMEK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 ENZIMEK BIOTECHNOLÓGIAI

Részletesebben

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál DNS replikáció DNS RNS Polipeptid Amino terminus Templát szál Karboxi terminus Szuper-csavarodott prokarióta cirkuláris DNS Hisztonok komplexe DNS hisztonokra történő felcsvarodása Hiszton-kötött negatív

Részletesebben

5. Előadás Nukleinsavak kimutatása, szekvenálás

5. Előadás Nukleinsavak kimutatása, szekvenálás 5. Előadás ukleinsavak kimutatása, szekvenálás A nukleinsav kimutatás etidiumbromid 3,8-diamino-5-etil-6-fenil-fenantrédiumbromid λ g =254-366 nm λ e =590 nm 2 2 + C25 Br - X + C3 C3 C3 C (C3)2 + (C2)3

Részletesebben

Transzgénikus növények előállítása

Transzgénikus növények előállítása Transzgénikus növények előállítása Növényi biotechnológia Területei: A növények szaporításának új módszerei Növényi sejt és szövettenyészetek alkalmazása Mikroszaporítás Vírusmentes szaporítóanyag előállítása

Részletesebben

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA 1. Nukleinsavak keresztrejtvény (12+1 p) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1. A nukleinsavak a.-ok összekapcsolódásával kialakuló polimerek. 2. Purinvázas szerves bázis, amely az

Részletesebben

CHO H H H OH H OH OH H CH2OH HC OH HC OH HC OH CH 2

CHO H H H OH H OH OH H CH2OH HC OH HC OH HC OH CH 2 4. Előadás ukleozidok, nukleotidok, nukleinsavak Történeti háttér Savas karakterű anyagok a sejtmagból 1869-71 DS a sejtmag fő komponense F. Miescher (Svájc) 1882 Flemming: Chromatin elnevezés Waldeyer:

Részletesebben

Egy új, a szimbiotikus gümőfejlődésben szerepet játszó ubiquitin ligáz funkcionális jellemzése

Egy új, a szimbiotikus gümőfejlődésben szerepet játszó ubiquitin ligáz funkcionális jellemzése Zárójelentés 76843 sz. pályázat 2009 2012 Egy új, a szimbiotikus gümőfejlődésben szerepet játszó ubiquitin ligáz funkcionális jellemzése A tervezett munka a kutatócsoportunkban korábban genetikai térképezésen

Részletesebben

Nanotechnológia. Nukleinsavak. Készítette - Fehérvári Gábor

Nanotechnológia. Nukleinsavak. Készítette - Fehérvári Gábor Nanotechnológia Nukleinsavak Készítette - Fehérvári Gábor Bevezető A nukleinsavak az élő anyag alapvetően fontos komponensei. Meghatározó szerepet töltenek be az átöröklésben, a fehérjék szintézisében

Részletesebben

Géntechnológia és fehérjemérnökség

Géntechnológia és fehérjemérnökség Géntechnológia és fehérjemérnökség Szerkesztette: Nyitray László Alexa Anita (12. és 13. fejezet) Fodor Krisztián (3. és 9. fejezet) Garai Ágnes (4. és 5. fejezet) Glatz Gábor (6. és 7. fejezet) Radnai

Részletesebben

ADATBÁNYÁSZAT I. ÉS OMICS

ADATBÁNYÁSZAT I. ÉS OMICS Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 ADATBÁNYÁSZAT

Részletesebben

Szervrendszerek szintje. Szervek szintje. Atomok szintje. Sejtek szintje. Szöveti szint. Molekulák szintje

Szervrendszerek szintje. Szervek szintje. Atomok szintje. Sejtek szintje. Szöveti szint. Molekulák szintje Egyed szintje Ökoszisztéma Szervrendszerek szintje Szervek szintje Szöveti szint Sejtek szintje Atomok szintje Molekulák szintje TARTALOM: 1. Molekuláris biológiai/genetikai technikák 2. A genomika technikái

Részletesebben

13. RNS szintézis és splicing

13. RNS szintézis és splicing 13. RNS szintézis és splicing 1 Visszatekintés: Az RNS típusai és szerkezete Hírvivő RNS = mrns (messenger RNA = mrna) : fehérjeszintézis pre-mrns érett mrns (intronok kivágódnak = splicing) Transzfer

Részletesebben

Az Ig génátrendeződés

Az Ig génátrendeződés Az Ig génátrendeződés Háromféle változás játszódik le a molekula szerkezetét tekintve: B sejtek fejlődése alatt: VDJ átrendeződés (rekombináció) IgH izotípusváltás rekombináció (CSR) Szomatikus hipermutáció

Részletesebben

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti

Részletesebben

Vírusok Szerk.: Vizkievicz András

Vírusok Szerk.: Vizkievicz András Vírusok Szerk.: Vizkievicz András A vírusok az élő- és az élettelen világ határán állnak. Önmagukban semmilyen életjelenséget nem mutatnak, nincs anyagcseréjük, önálló szaporodásra képtelenek. Paraziták.

Részletesebben

Engedélyszám: 18211-2/2011-EAHUF Verziószám: 1. 2460-06 Humángenetikai vizsgálatok követelménymodul szóbeli vizsgafeladatai

Engedélyszám: 18211-2/2011-EAHUF Verziószám: 1. 2460-06 Humángenetikai vizsgálatok követelménymodul szóbeli vizsgafeladatai 1. feladat Ismertesse a gyakorlaton lévő szakasszisztens hallgatóknak a PCR termékek elválasztása céljából végzett analitikai agaróz gélelektroforézis során használt puffert! Az ismertetés során az alábbi

Részletesebben

I. A sejttől a génekig

I. A sejttől a génekig Gén A gének olyan nukleinsav-szakaszok a sejtek magjainak kromoszómáiban, melyek a szervezet működését és növekedését befolyásoló fehérjék szabályozásához és előállításához szükséges információkat tartalmazzák.

Részletesebben

Szakkifejezések III.

Szakkifejezések III. a hónap témája BIOTECHNOLÓGIA ROVA TVEZETŐ: Dr. Heszky László akadémikus Az előző 11-16. részekben a transzgénikus (GM) fajták nemesítésének alternatív módszereit mutattuk be. A korábbi I-II. fejezetekhez

Részletesebben

7. A b-galaktozidáz indukciója Escherichia coliban

7. A b-galaktozidáz indukciója Escherichia coliban 7. A b-galaktozidáz INDUKCIÓJA ESCHERICHIA COLIBAN 7. A b-galaktozidáz indukciója Escherichia coliban dr. Bauer Pál 7.1. Az enzimindukció jelensége Az élõlények valamennyi génjének állandó és folyamatos

Részletesebben

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak

Részletesebben

Az inzulin története és előállítása

Az inzulin története és előállítása INZULIN Az inzulin története és előállítása Az inzulin (a latin insula = sziget szóból) a hasnyálmirigy Langerhans-szigeteiben található béta-sejtek által termelt polipeptid hormon, amely a szénhidrátok,

Részletesebben

4. A humorális immunválasz október 12.

4. A humorális immunválasz október 12. 4. A humorális immunválasz 2016. október 12. A klónszelekciós elmélet sarokpontjai: Monospecifictás: 1 sejt 1-féle specificitású receptor Az antigén receptorhoz kötődése aktiválja a limfocitát A keletkező

Részletesebben

2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód)

2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2.1 Nukleotidok, nukleinsavak Információátadás (örökítőanyag) Információs egység

Részletesebben

A biológia szerepe az egészségvédelemben

A biológia szerepe az egészségvédelemben A biológia szerepe az egészségvédelemben Nagy Kinga nagy.kinga@mail.bme.hu 2017.10.24 Mikróbák az ember szolgálatában (Néhány példán keresztül bemutatva) Antibiotikumok (gombák, baktériumok) Restrikciós

Részletesebben

Az adenovírusok morfológiája I.

Az adenovírusok morfológiája I. Adenovírusok A vírusok Elnevezésük a latin virus szóból ered, amelynek jelentése méreg. A vírusok a legkisebb ismert entitások. Csak elektronmikroszkóppal tanulmányozhatóak, mert méretük 20-400 nanométerig

Részletesebben

A biotechnológia alapjai A biotechnológia régen és ma. Pomázi Andrea

A biotechnológia alapjai A biotechnológia régen és ma. Pomázi Andrea A biotechnológia alapjai A biotechnológia régen és ma Pomázi Andrea A biotechnológia fogalma Alkalmazott biológia A fogalom állandó változásban van A biológia és a biotechnológia közötti különbség a méretekben

Részletesebben

A BIOTECHNOLÓGIA ÉS A BIOBANKOK. Takács László Fehér Arnold

A BIOTECHNOLÓGIA ÉS A BIOBANKOK. Takács László Fehér Arnold A BIOTECHNOLÓGIA ÉS A BIOBANKOK Takács László Fehér Arnold Biotechnológiai felhasználások Fehér (ipari-környezetvédelmi) biotechnológia Kék (tengeri) biotechnológia Zöld (agrár-élelmiszeripari) biotechnológia

Részletesebben

3. Kombinált, amelynek van helikális és kubikális szakasza, pl. a bakteriofágok és egyes rákkeltő RNS vírusok.

3. Kombinált, amelynek van helikális és kubikális szakasza, pl. a bakteriofágok és egyes rákkeltő RNS vírusok. Vírusok Szerkesztette: Vizkievicz András A XIX. sz. végén Dmitrij Ivanovszkij orosz biológus a dohány mozaikosodásának kórokozóját próbálta kimutatni. A mozaikosodás a levél foltokban jelentkező sárgulása.

Részletesebben

A DNS replikációban kulcsszerepet játszó PCNA fehérje variánsok előállítása és rekombináns DNS technológia segítségével való kifejezése

A DNS replikációban kulcsszerepet játszó PCNA fehérje variánsok előállítása és rekombináns DNS technológia segítségével való kifejezése A DNS replikációban kulcsszerepet játszó PCNA fehérje variánsok előállítása és rekombináns DNS technológia segítségével való kifejezése PCNA (Proliferating Cell Nuclear Antigen) Csiszár Mónika, Kós Tamás,

Részletesebben

Géntechnológia és fehérjemérnökség

Géntechnológia és fehérjemérnökség Géntechnológia és fehérjemérnökség elektronikus-jegyzet szerzők: Az ELTE Biokémiai Tanszék Munkaközössége Alexa Anita (12. és 13. fejezet), Fodor Krisztián (3. és 9. fejezet), Garai Ágnes (4. és 5. fejezet),

Részletesebben

Mutáció detektáló módszerek

Mutáció detektáló módszerek Mutáció detektáló módszerek Molekuláris genetikai vizsgáló módszerek 2014.03.19. Bármilyen eltérés a referencia szekvenciától Lehet Egy bázispárnyi szubsztitúció, deléció, inzerció Kromoszóma deléció,

Részletesebben

módosított, akkor meg az a baj

módosított, akkor meg az a baj Ha genetikailag il módosított, tt az a baj, ha nem genetikailag módosított, akkor meg az a baj Kovári Zoltán Kovári és Társai Szabadalmi és Védjegy Iroda Kft. MIE Szeged MIE Szeged 2012. május 10 11. Science,

Részletesebben

Genomadatbázisok Ld. Entrez Genome: Összes ismert genom, hierarchikus szervezésben (kromoszóma, térképek, gének, stb.)

Genomadatbázisok Ld. Entrez Genome: Összes ismert genom, hierarchikus szervezésben (kromoszóma, térképek, gének, stb.) Genomika Új korszak, paradigmaváltás, forradalom: a teljes genomok ismeretében a biológia adatokban gazdag tudománnyá válik. Új kutatási módszerek, új szemlélet. Hajtóerõk: Genomszekvenálási projektek

Részletesebben

RNS SZINTÉZIS ÉS ÉRÉS

RNS SZINTÉZIS ÉS ÉRÉS RNS SZINTÉZIS ÉS ÉRÉS A genom alapvetõ funkciója, hogy a sejt mûködéséhez esszenciális gépek (fehérjék) elõállí tására vonatkozó információt tartalmazza. A DNS-ben rejlõ információ egy kétlépéses folyamatban

Részletesebben

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A NÖVÉNYGENETIKA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A citológia és a genetika társtudománya Citogenetika A kromoszómák eredetét, szerkezetét, genetikai funkcióját,

Részletesebben

Elcsendesített RNS-ek vagy a genom immunrendszere

Elcsendesített RNS-ek vagy a genom immunrendszere BIOTECHNOLÓGIAI FEJLESZTÉSI OLITIKA, KUTATÁSI IRÁNYOK Elcsendesített RNS-ek vagy a genom immunrendszere Tárgyszavak: genom; védelem; immunrendszer; RNS-csendesítés. A génkészlet fokozatos változása vírusok

Részletesebben

Gyógyszerrezisztenciát okozó fehérjék vizsgálata

Gyógyszerrezisztenciát okozó fehérjék vizsgálata Gyógyszerrezisztenciát okozó fehérjék vizsgálata AKI kíváncsi kémikus kutatótábor 2017.06.25-07.01. Témavezetők : Telbisz Ágnes, Horváth Tamás Kutatók : Dobolyi Zsófia, Bereczki Kristóf, Horváth Ákos Gyógyszerrezisztencia

Részletesebben

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo szövetanalízis Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo képalkotó rendszerek Célja Noninvazív módon Biológiai folyamatokat képes rögzíteni Élő egyedekben

Részletesebben

Genomika. Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel. DNS szekvenálási eljárások. DNS ujjlenyomat (VNTR)

Genomika. Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel. DNS szekvenálási eljárások. DNS ujjlenyomat (VNTR) Genomika (A genom, génállomány vizsgálata) Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel DNS szekvenálási eljárások DNS ujjlenyomat (VNTR) DNS chipek statikus és dinamikus információk vizsgálata

Részletesebben

REKOMBINÁNS FEHÉRJÉK IPARI MÉRETŰ ELŐÁLLÍTÁSA I.

REKOMBINÁNS FEHÉRJÉK IPARI MÉRETŰ ELŐÁLLÍTÁSA I. Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 REKOMBINÁNS FEHÉRJÉK

Részletesebben

A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI

A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI Műszaki menedzser MSc hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: március 06?, április 10?, május 02?. dr. Pécs Miklós egyetemi docens

Részletesebben

BIOGÉN ELEMEK Azok a kémiai elemek, amelyek az élőlények számára létfontosságúak

BIOGÉN ELEMEK Azok a kémiai elemek, amelyek az élőlények számára létfontosságúak BIOGÉN ELEMEK Azok a kémiai elemek, amelyek az élőlények számára létfontosságúak A több mint száz ismert kémiai elem nagyobbik hányada megtalálható az élőlények testében is, de sokuknak nincsen kimutatható

Részletesebben

KOAGULÁCIÓS FAKTOROK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA

KOAGULÁCIÓS FAKTOROK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 KOAGULÁCIÓS FAKTOROK

Részletesebben

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk. Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak

Részletesebben

Génexpresszió prokariótákban 1

Génexpresszió prokariótákban 1 β-galaktozidáz-szint laktóz elfogy a laktóz Génexpresszió prokariótákban 1 14. A GÉNEXPRESSZIÓ SZABÁ- LYOZÁSA PROKARIÓTÁKBAN Enzimindukció, indukálható operon. Policisztronos. Katabolit represszió, represszálható

Részletesebben

Transzgénikus. nikus állatok. Transzgénikus nikus minden olyan állat, melynek genomja emberi közremk bejuttatott DNS-t t tartalmaz.

Transzgénikus. nikus állatok. Transzgénikus nikus minden olyan állat, melynek genomja emberi közremk bejuttatott DNS-t t tartalmaz. Transzgénikus nikus állatok Transzgénikus nikus minden olyan állat, melynek genomja emberi közremk zremüködéssel bejuttatott DNS-t t tartalmaz. I. A KONKRÉT T GÉNSEBG NSEBÉSZETI SZETI TECHNIKA A beavatkozást

Részletesebben

Molekuláris terápiák

Molekuláris terápiák Molekuláris terápiák Aradi, János Balajthy, Zoltán Csősz, Éva Scholtz, Beáta Szatmári, István Tőzsér, József Varga, Tamás Szerkesztette Balajthy, Zoltán és Tőzsér, József, Debreceni Egyetem Molekuláris

Részletesebben

A vírusok kutatásának gyakorlati és elméleti jelentősége

A vírusok kutatásának gyakorlati és elméleti jelentősége Vírustan - virológia Jenner himlő elleni vakcina (1798) Pasteur veszettség elleni vakcina (1885) Ivanovszkij az első növénykórokozó vírus felfedezése (dohánymozaik vírus) (1892) Loeffler és Frosch száj-

Részletesebben

AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő

AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő Az NIH, az Egyesült Államok Nemzeti Egészségügyi Hivatala (az orvosi- és biológiai kutatásokat koordináló egyik intézmény) 2007 végén

Részletesebben

GENETIKAILAG MÓDOSÍTOTT SZERVEZETEK ALKALMAZÁSÁNAK VÉLT, ÉS/VAGY VALÓS ELŐNYEI ÉS HÁTRÁNYAI

GENETIKAILAG MÓDOSÍTOTT SZERVEZETEK ALKALMAZÁSÁNAK VÉLT, ÉS/VAGY VALÓS ELŐNYEI ÉS HÁTRÁNYAI GENETIKAILAG MÓDOSÍTOTT SZERVEZETEK ALKALMAZÁSÁNAK VÉLT, ÉS/VAGY VALÓS ELŐNYEI ÉS HÁTRÁNYAI TAMÁS LÁSZLÓ EGYETEMI DOCENS,,,ORSZÁGOS KOORDINÁCIÓVAL A PEDAGÓGUSKÉPZÉS MEGÚJÍTÁSÁÉRT" BEVEZETÉS 1 FOGALOM FEJLŐDÉS

Részletesebben

A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése. Kiss Erzsébet Kovács László

A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése. Kiss Erzsébet Kovács László A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése Kiss Erzsébet Kovács László Bevezetés Nagy gazdasági gi jelentıségük k miatt a gyümölcs lcsök, termések fejlıdésének mechanizmusát

Részletesebben

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest Iparilag alkalmazható szekvenciák, avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest Neutrokin α - jelentős kereskedelmi érdekek

Részletesebben