Reális kristályok, kristályhibák

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Reális kristályok, kristályhibák"

Átírás

1 Reális kristályok, kristályhibák Gyakorlati fémek szilárdsága kevesebb, mint 1 %-a az ideális modell alapján számítható szilárdságnak Tiszta Si villamos vezetőképességét 10-8 tömegszázalék bór adalékolása a kétszeresére növeli KRISTÁLYHIBÁK 1 Kristályhiba-típusok Ponthibák (0 dimenziós) Vonalszerű hibák, 1 dimenziós: diszlokációk Felületszerű hibák (2 dimenziós) Térfogati hibák (3 dimenziós) 2 1

2 Ponthibák Termikusan aktivált hibák: Vakancia (üres rácshely) Saját interszíciós atomok Idegen atomok (intersztíciós, szubsztitúciós helyeken) Ponthiba komplexek (di-, tri-vakancia, idegen atom-vakancia...) 3 Vakancia (üres rácshely) 4 2

3 Szubsztitúciós (helyettesítéses) atom 5 Intersztíciós (beékelődéses) atom 6 3

4 Ponthiba képződési mechanizmusok Frenkel-mechanizmus Frenkel hibapár: vakancia és intersztíciós atom együttese 7 Wagner-Schottky mechanizmus felületi üres hely vándorlása a szilárdtest belsejébe 8 4

5 Termikus ponthibák egyensúlyi koncentrációja n = N e k = R N A E akt kt = 1, J / K Rácstorzulás aktiválási energia E E Vakancia Saját int erstíciós T = 300K (1eV,5eV ) N N V SI 10 = 1 2eV 67 = 4 6eV 9 Ponthibák keletkezése képlékeny alakváltozás nem egyensúlyi hűtés részecske besugárzás (gyors neutron hibakaszkád) Termikus ponthibák eltűnése diffúziós mozgás szemcsehatár éldiszlokáció extrasík (kúszás) 10 5

6 Diszlokációk Frenkel elméleti folyáshatár számítása Számolt/mért folyáshatár: Fe: 440, Al: 423, Cu: innen folytatni 12 6

7 Tűkristály (whisker, 1950) kondenzátor Zn, d = 0,1-0,001 µm 1934: Fransis Taylor, Orován Emil, Polányi Mihály 1960: Átvilágító elektronmikroszkópia (TEM) Definíció: Diszlokáció: a kristályban az elcsúszott és az el nem csúszott tartományok határoló vonala Éldiszlokáció Csavardiszlokáció Vegyes diszlokáció Teljes (perfekt) diszlokáció Parciális diszlokáció 13 Burgers-kör 14 7

8 Éldiszlokáció Diszlokáció vonala: l Csúszósík adott nem mozgékony Extra sík Burgers vektor: b b l 15 Csavardiszlokáció Diszlokáció vonala: l Nincs egyértelmű csúszósík mozgékony Extrasík sincsen! Burgers vektor: b b II l 16 8

9 Diszlokációk alapvető tulajdonságai Diszlokáció: elcsúszott és nem elcsúszott részek határa Lineáris (lehet görbült is) Felületen kezdődik és végződik, kristályban záródó görbe Az elmozdulás mértéke a diszlokáció egésze mentén állandó Burgers vektor a legsűrűbb irányban fekszik és b = d 17 Diszlokációk energiája Feszültség (nyomó, húzó) Poisson szám (0,5-0,2): Energiatöbblet W W cs él = Gb 2 l 2 Gb l = 1 ν ε ν = ε σ = merőerőleges párhuzamos E ε τ = G γ E = 2G(1 + ν ) 18 9

10 Diszlokációk szerepe a képlékeny alakváltozásban Képlékeny alakváltozás diszlokációk mozgása. 19 Diszlokációsűrűség változása képlékeny alakváltozás során Definíciók Lágyított: m -2 Alakított: m

11 Diszlokációk mozgásának szabályai Diszlokáció csak abban a síkban tud csúszni amelyben a vonala és a Burgers vektora fekszik. Éldiszlokáció: 1 sík Csavardiszlokáció: sík (elméletileg) Diszlokáció mozgása mindig a legsűrűbb síkban és a legsűrűbb irányban történik. Csúszási rendszerek Csúszósík váltás Csavar keresztcsúszás Él mászás kúszás (tartós folyás, creep) üregek a szemcsehatáron 21 Csúszási rendszerek Tetszőleges csúszási rendszerhez azonos kritikus csúsztatófeszültség tartozik

12 Síkok Miller-indexei Síkok Miller-indexei x y z + + = 1 A B C hx + ky + lz = q ( hkl) { hkl} 23 Irányok Miller-indexei T = ua1 + va2 + wa3 [ uvw] uvw 24 12

13 Lehetséges elcsúszások, FKK (111) 25 Diszlokációk kölcsönhatása Ellentétes előjelű éldiszlokációk, ellentétes sodrású csavardiszlokációk kioltják egymást. Ellentétes előjelű diszlokációk kölcsönhatása: θ = 45 egyensúly θ < 45 taszítás θ > 45 vonzás Azonos előjelű diszlokációk kölcsönhatása: sorba rendeződnek kisszögű szemcsehatár Egyesülhetnek, felbomolhatnak. (Energetikai feltétel) b + b b b 1 2 eredő 2 = b 2 1 eredő + b b b 1 2 b 1 b 2 < 0 (tompaszög) egyesülnek b 1 b 2 > 0 (hegyesszög) felbomlik 26 13

14 Éldiszlokációk eltűnése 27 Diszlokációk keletkezése Frank-Read mechanizmus (diszlokáció forrás) Félkörív labilis zárt hurok 2Gb τ = cosα D 2Gb τ Max = D α =

15 Frank-Read forrás működése 29 Frank-Read forrás TEM képe 30 15

16 Egykristályok képlékeny alakváltozása Alakváltozás: csúszósíkok a csúszási irányok mentén elcsúsznak egymáson. F cos β τ = = σ cos β cosα = σ m A cosα m: Schmid-tényező 31 Egykristályok képlékeny alakváltozása Egyszerű csúszás: alakváltozás egy csúszási rendszerben Többszörös csúszás: elcsúszás egyszerre több csúszási rendszerben FKK 4 db {111} síkban 2-2 <110> irányban 32 16

17 Egykristályok képlékeny alakváltozása I. : egyszerű csúszás (lépcsős felület, sok diszlokáció mozgása Frank-Read) II.: bonyolult / többszörös csúszás (Lomer-gátak erős alakítási keményedés) III.: keresztcsúszás, ikerképződés 33 Zn egykristály alakváltozása az I. szakaszban Cu egykristály egymást metsző csúszási vonalai Csúszósík - felület metszésvonala 34 17

18 Ikerképződéssel járó képlékeny alakváltozás Diszlokációs csúszás: elmozdulás csak néhány csúszósíkon Ikresedés: az ikertartomány valamennyi síkja elmozdul 35 Sokkristályos anyagok képlékeny alakváltozása Minden szemcsében többszörös csúszás. Alakítási keményedés intenzívebb. I. szakasz hiányzik. Mindig nagyobb feszültségek mint az egykristály esetén

19 Polikristályos anyagok alakítási keményedése Hall-Petch egyenlet (alsó folyáshatár) σ 0 = σ i + k d A határon felhalmozódó diszlokációk feszültségtere indítja meg az alakváltozást a szomszédos krisztallitban. Szemcseméret szemcsehatáron felhalmozódó diszlokációk száma 37 Felületszerű hibák (2D) Makrofelület Szemcsehatár (nagyszögű, kisszögű) Fázishatár (inkoherens, szemikoherens, koherens) Ikersík Rétegződési hiba 38 19

20 Szemcsehatár Nagyszögű Kisszögű (θ = 1-5 ) Θ tg Θ = b D 39 Fázishatár Inkoherens Szemikoherens Koherens Inkoherens 40 20

21 Szemikoherens Koherens (Heteroepitaxia) 41 FKK (111) szoros síkok lehetséges elrendeződései ABCABC ABABAB FKK HCP 42 21

22 Ikerhatár FKK ABCABCBACBA Párhuzamos vonalak a mikroszkópi képen. 43 Rétegződési hiba ABCAB C ABCABC C sík egy felülete hiányzik! FKK - Hexagonális - FKK Zárt görbe 44 22

23 FKK - Szoros hexagonális 45 Térfogati hibák (3D) (üregek, repedések) Kúszási üregsor 46 23

Tematika. Az atomok elrendeződése Kristályok, rácshibák

Tematika. Az atomok elrendeződése Kristályok, rácshibák Anyagtudomány 2013/14 Kristályok, rácshibák Dr. Szabó Péter János szpj@eik.bme.hu Tematika 1. hét: Bevezetés. 2. hét: Kristályok, rácshibák. 3. hét: Ötvözetek. 4. hét: Mágneses és elektromos anyagok. 5.

Részletesebben

Kristályos szerkezetű anyagok

Kristályos szerkezetű anyagok Kristályos szerkezetű anyagok Rácspontok, ideális rend, periodikus szerkezet Rendezettség az atomok között tulajdonságok Szimmetria, síklapok, hasadás, anizotrópia Egyatomos gáz Nincs rend, pl.: Ar Kristályos

Részletesebben

KRISTÁLYHIBÁK. Rácsot összetartó erők

KRISTÁLYHIBÁK. Rácsot összetartó erők KRISTÁLYHIBÁK Azokat a helyeket, tartományokat a kristályban, amelyekben az anyagi részecskék rendje nem olyan tökéletes, mint a térrácsban a rácspontoké, kristályhibának nevezzük. A kristályok felülete

Részletesebben

Az atomok elrendeződése

Az atomok elrendeződése Anyagtudomány 2015/16 Kristályok, rácshibák, ötvözetek, termikus viselkedés (ismétlés) Dr. Szabó Péter János szpj@eik.bme.hu Az atomok elrendeződése Hosszú távú rend (kristályok) Az atomok elhelyezkedését

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

HŐKEZELÉS 2016/2017 ősz BMEGEMTAGM3

HŐKEZELÉS 2016/2017 ősz BMEGEMTAGM3 HŐKEZELÉS 2016/2017 ősz BMEGEMTAGM3 Dr. Fá Fábiá bián Enikő Enikő Réka fabianr@eik.bme.hu fabianr@eik.bme.hu Mechanikai tulajdonságok hőkezelés után- jegyzőkönyv Fénymikroszkópos labor jegyzőkönyv Felületi

Részletesebben

Szilárdság (folyáshatár) növelési eljárások

Szilárdság (folyáshatár) növelési eljárások Képlékeny alakítás Szilárdság (folyáshatár) növelési eljárások Szemcseméret csökkentés Hőkezelés Ötvözés allotróp átalakulással rendelkező ötvözetek kiválásos nemesítés diszperziós keményítés interstíciós

Részletesebben

Szilárdságnövelés. Az előadás során megismerjük. Szilárdságnövelési eljárások

Szilárdságnövelés. Az előadás során megismerjük. Szilárdságnövelési eljárások Anyagszerkezettan és anyagvizsgálat 2015/16 Szilárdságnövelés Dr. Szabó Péter János szpj@eik.bme.hu Az előadás során megismerjük A szilárságnövelő eljárásokat; Az eljárások anyagszerkezeti alapjait; Technológiai

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2016/17. Szilárdságnövelés. Dr. Mészáros István Az előadás során megismerjük

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2016/17. Szilárdságnövelés. Dr. Mészáros István Az előadás során megismerjük ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Anyagismeret 2016/17 Szilárdságnövelés Dr. Mészáros István meszaros@eik.bme.hu 1 Az előadás során megismerjük A szilárságnövelő eljárásokat; Az eljárások anyagszerkezeti

Részletesebben

Kondenzált anyagok csoportosítása

Kondenzált anyagok csoportosítása Szilárdtestfizika Kondenzált anyagok csoportosítása 1. Üvegek Nagy viszkozitású olvadék állapotú anyagok, amelyek nagyon lassan szilárd állapotba mennek át. Folyékony állapotból gyors hűtéssel állíthatók

Részletesebben

A szilárdságnövelés lehetőségei

A szilárdságnövelés lehetőségei BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Anyagtudomány(szig1) féléves házi feladat A szilárdságnövelés lehetőségei Thiele Ádám WTOSJ2 Budapest, 2011 T A R T A L O M 1. Az ideális,

Részletesebben

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -

Részletesebben

1. Sorolja fel az újrakristályosító hőkezelés néhány ipari alkalmazását! Dróthúzás, süllyesztékes kovácsolás.

1. Sorolja fel az újrakristályosító hőkezelés néhány ipari alkalmazását! Dróthúzás, süllyesztékes kovácsolás. 1. Sorolja fel az újrakristályosító hőkezelés néhány ipari alkalmazását! Dróthúzás, süllyesztékes kovácsolás. 2. Milyen hatással van az újrakristályosítás az alakított fémek mechanikai tulajdonságaira?

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Fémek szerkezete és tulajdonságai Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Bevezetés

Részletesebben

Kúszás, szuperképlékenység

Kúszás, szuperképlékenység Anyagszerkezettan és anyagvizsgálat 2015/16 Kúszás, szuperképlékenység Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük: Az időtől függő (kúszás) és időtől független alakváltozási mechanizmusokat;

Részletesebben

Kúszás, szuperképlékenység

Kúszás, szuperképlékenység Alakváltozás Anyagszerkezettan és anyagvizsgálat 205/6 Kúszás, szuperképlékenység Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük: Az időtől függő (kúszás) és időtől független alakváltozási

Részletesebben

Anyagszerkezet és vizsgálat. 2. Előadás

Anyagszerkezet és vizsgálat. 2. Előadás SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat NGB_AJ021_1 2. Előadás 2012. 09. 17. Dr. Hargitai Hajnalka (Csizmazia Ferencné dr. előadásanyagai alapján) 1

Részletesebben

VIII. előadás március 25.

VIII. előadás március 25. Bevezetés s az anyagtudományba nyba VIII. előadás 2010. március 25. A diszlokáci ciók k mozgása 1/21 Diszlokációk és képlékeny deformáció Köbös és hexagonális fémek képlékeny deformáció képlékeny nyírás

Részletesebben

Anyagszerkezet és vizsgálat. 2. Előadás

Anyagszerkezet és vizsgálat. 2. Előadás SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat NGB_AJ021_1 2. Előadás 2013. 09. 10. Dr. Hargitai Hajnalka (Csizmazia Ferencné dr. előadásanyagai alapján) 1

Részletesebben

Bevezetés s az anyagtudományba. nyba február 25. Interferencia. IV. előadás. Intenzitásmaximum (konstruktív interferencia): az útkülönbség nλ,

Bevezetés s az anyagtudományba. nyba február 25. Interferencia. IV. előadás. Intenzitásmaximum (konstruktív interferencia): az útkülönbség nλ, Bevezetés s az anyagtudományba nyba IV. előadás 2010. február 25. A rácsparamr csparaméterek mérésem Interferencia Intenzitásmaximum (konstruktív interferencia): az útkülönbség nλ, Intenzitásminimum (destruktív

Részletesebben

A fémek egyensúlyi viselkedése. A fémek kristályos szerkezete

A fémek egyensúlyi viselkedése. A fémek kristályos szerkezete A fémek egyensúlyi viselkedése A fémek kristályos szerkezete Kristályos szerkezet A kristályos szerkezetben az atomok szabályos geometriai rendben helyezkednek el. Azt a legkisebb - több atomból álló -

Részletesebben

Elektrokémiai fémleválasztás. Kristálytani alapok A kristályos állapot szerepe a fémleválásban

Elektrokémiai fémleválasztás. Kristálytani alapok A kristályos állapot szerepe a fémleválásban Elektrokémiai fémleválasztás Kristálytani alapok A kristályos állapot szerepe a fémleválásban Péter László Elektrokémiai fémleválasztás Kristálytani alapok - 1 Kristályok Kristály: olyan szilárd test,

Részletesebben

Szilárdságnövelés. Az előkészítő témakörei

Szilárdságnövelés. Az előkészítő témakörei ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Alapképzés Anyagszerkezettan és anyagvizsgálat 2007/08 Szilárdságnövelés Dr. Palotás Béla palotasb@eik.bme.hu Dr. Németh Árpád arpinem@eik.bme.hu Szilárdság növelés

Részletesebben

Kristályos szerkezetű anyagok. Kristálytan alapjai. Bravais- rácsok 1. Bravais- rácsok 2. Dr. Mészáros István Anyagtudomány tárgy előadásvázlat 2004.

Kristályos szerkezetű anyagok. Kristálytan alapjai. Bravais- rácsok 1. Bravais- rácsok 2. Dr. Mészáros István Anyagtudomány tárgy előadásvázlat 2004. Kristályos szerkezetű nygok BME, Anygtudomány és Technológi Tnszék Rácspontok, ideális rend, periodikus szerkezet Rendezettség z tomok között tuljdonságok Szimmetri, síklpok, hsdás, nizotrópi Dr. Mészáros

Részletesebben

A szilárd testek szerkezete

A szilárd testek szerkezete F F Kérdések A szilárd testek szerkezete Reális kristályok, kristályhib lyhibák Milyen rend szerint épülnek fel a kristályok? Milyen hatással van a kristályszerkezet az anyag makroszkópikus tulajdonságaira?

Részletesebben

A szilárd testek szerkezete

A szilárd testek szerkezete A szilárd testek szerkezete Reális kristályok, kristályhib lyhibák Kérdések Milyen rend szerint épülnek fel a kristályok? Milyen hatással van a kristályszerkezet az anyag makroszkopikus tulajdonságaira?

Részletesebben

Bevezetés az anyagtudományba III. előadás

Bevezetés az anyagtudományba III. előadás Bevezetés az anyagtudományba III. előadás 2010. február 18. Kristályos és s nem-krist kristályos anyagok A kristályos anyag atomjainak elrendeződése sok atomnyi távolságig, a tér mindhárom irányában periodikusan

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

Reaktortechnika. Anyagismeret

Reaktortechnika. Anyagismeret Reaktortechnika Anyagismeret Bevezetés Atomerımővek bonyolult mérnöki létesítmények a berendezések és azok anyagai igen nehéz, esetenként szélsıséges feltételek között (nagy nyomás és hımérséklet, erıs

Részletesebben

Diszlokáció szerkezet és vakancia koncentráció meghatározása in situ szinkrotronos röntgendiffrakció alapján. doktori értekezés.

Diszlokáció szerkezet és vakancia koncentráció meghatározása in situ szinkrotronos röntgendiffrakció alapján. doktori értekezés. Diszlokáció szerkezet és vakancia koncentráció meghatározása in situ szinkrotronos röntgendiffrakció alapján doktori értekezés Hanák Péter Témavezető: Dr. Ungár Tamás DSc egyetemi tanár ELTE TTK Fizika

Részletesebben

Elektromos vezetési tulajdonságok

Elektromos vezetési tulajdonságok Elektromos vezetési tulajdonságok Vezetési jelenségek (transzportfolyamatok) fenomenologikus leírása Termodinamikai hajtóerő: kémiai potenciál különbség: Egyensúlyban lévő rendszer esetén: = U TS δ = δx

Részletesebben

KRISTÁLYOK GEOMETRIAI LEÍRÁSA

KRISTÁLYOK GEOMETRIAI LEÍRÁSA KRISTÁLYOK GEOMETRIAI LEÍRÁSA Kristály Bázis Pontrács Ideális Kristály: hosszútávúan rendezett hibamentes, végtelen szilárd test Kristály Bázis: a kristály legkisebb, ismétlœdœ atomcsoportja Rácspont:

Részletesebben

r0 = 1,53 anizotrópia a heng.irányban

r0 = 1,53 anizotrópia a heng.irányban 2. A képlékenyalakítás anyagszerkezeti vonatkozásai Olvassa el a bekezdést! Ahhoz, hogy alapvetően megértsük a fémek különböző alakításának eljárásait és annak hatásait, nélkülözhetetlen az anyag viselkedésének

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2009/10. Rácshibák. Dr. Mészáros István Dr. Reé András. Az előadás fő pontjai

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2009/10. Rácshibák. Dr. Mészáros István Dr. Reé András. Az előadás fő pontjai ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Anyagismeret 2009/10 Rácshibák Dr. Mészáros István Dr. Reé András 1 Az előadás fő pontjai A rácshibák jelentősége Pontszerű (0 méretű) hibák Vonalszerű hibák (1 méretű),

Részletesebben

ANYAGISMERET. előadó: Dr. Bagyinszki Gyula főiskolai tanár

ANYAGISMERET. előadó: Dr. Bagyinszki Gyula főiskolai tanár Budapesti Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet Anyag- és AlakításTechnológiai Szakcsoport előadó: Dr. Bagyinszki Gyula főiskolai

Részletesebben

Nanoszemcsés anyagok mikroszerkezete és vizsgálata

Nanoszemcsés anyagok mikroszerkezete és vizsgálata Nanoszemcsés anyagok mikroszerkezete és vizsgálata Jenei Péter Eötvös Loránd Tudományegyetem Anyagfizikai Tanszék Budapest 2014 A felhasznált anyagok minősége és mennyisége meghatározza meg az adott kor

Részletesebben

Fémtan I I II. Előadó: Dr Dr. Gácsi Gácsi Zoltán

Fémtan I I II. Előadó: Dr Dr. Gácsi Gácsi Zoltán Fémtan II. Előadó: Dr. Gácsi Zoltán Tantárgy tematikája A mechanikai igénybevétel és az alakváltozás összefüggései. A fémek alakváltozásának mechanizmusa. A rácsszerkezet hibáinak jelentősége a mechanikai

Részletesebben

Vezetési jelenségek, vezetőanyagok

Vezetési jelenségek, vezetőanyagok Anyagszerkezettan és anyagvizsgálat 2015/16 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők

Részletesebben

Dajkó Ferenc Abszorpciós tényező: Acél: Akceptorok: Alkotó: Állapotábra: Allotróp átalakulás: Amorf: Alakváltozás: Alsó kritikus térerősség:

Dajkó Ferenc Abszorpciós tényező: Acél: Akceptorok: Alkotó: Állapotábra: Allotróp átalakulás: Amorf: Alakváltozás: Alsó kritikus térerősség: Abszorpciós tényező: Anyagi jellemző, mely megadja a sugárnyaláb intenzitásának csökkenését a behatolási mélység függvényében. Acél: Vasötvözet, maximálisan 2.1% széntartalommal. Rendszerint más alkotókat

Részletesebben

Miskolci Egyetem. Műszaki Anyagtudományi Kar. Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola VISELKEDÉSE ZÖMÍTÉS SORÁN.

Miskolci Egyetem. Műszaki Anyagtudományi Kar. Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola VISELKEDÉSE ZÖMÍTÉS SORÁN. Miskolci Egyetem Műszaki Anyagtudományi Kar Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola ALUMÍNIUM-MAGNÉZIUM ÖTVÖZETEK FOLYÁSI VISELKEDÉSE ZÖMÍTÉS SORÁN DOKTORI (PH.D.) ÉRTEKEZÉS Mikó Tamás

Részletesebben

MTA doktori értekezés

MTA doktori értekezés INTENZÍV ALAKÍTÁSI ÉS HŐKEZELÉSI FOLYAMATOK MIKROSZERKEZETRE GYAKOROLT HATÁSÁNAK ÉRTELMEZÉSE VISSZASZÓRTELEKTRON-DIFFRAKCIÓVAL MTA doktori értekezés Szabó Péter János Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Az anyagok atomos szerkezete, rendezettsége, kötései és a reális kristályok

Az anyagok atomos szerkezete, rendezettsége, kötései és a reális kristályok Az anyagok atomos szerkezete, rendezettsége, kötései és a reális kristályok Az anyagok atomos szerkezete Az anyagok atomokból épülnek fel, ezek az atomok pedig rendkívül kicsi részecskék. Az atom a legkisebb,

Részletesebben

Készítette: Sándor Gyula Kaposvár 2006

Készítette: Sándor Gyula Kaposvár 2006 Készítette: Sándor Gyula Kaposvár 2006 Tartalom Atom Molekula Szilárd testek Elemi cella Rácshibák Színfémek Fém ötvözetek Vas szén ötvözetek Izotermikus átalakulás Az atom a kémiai elemek legkisebb része,

Részletesebben

Kristálytan (Ideális rács)

Kristálytan (Ideális rács) Anyagismeet 06/7 Kistálytan (Ideális ács) D. Mészáos István meszaos@eik.bme.hu Atomos endezettség, halmazállapotok Tömegvonzás, elektomos kölcsönhatás kötési enegia (Plazma) Gáz (- kj/mol) Folyadék Szilád

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék:

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: nyagtudomány 2014/15 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők fémek ötvözetek elektrolitok

Részletesebben

Kristályszerkezetek és vizsgálatuk

Kristályszerkezetek és vizsgálatuk Kristályszerkezetek és vizsgálatuk Az anyagk tulajdnságait atmjaik fajtája, kémiai kötésük jellege és kristályszerkezete együttesen határzza meg. A fentiekre a szén egy tipikus példa. A tiszta szén gyémánt

Részletesebben

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György Anyagszerkezettan és anyagvizsgálat 2015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

Anyagismeret. 4. előadás

Anyagismeret. 4. előadás Anyagismeret 4. előadás Egyfázisú fémes anyagok mechanikai tulajdonságait befolyásoló tényezők Alakváltozás mechanizmus térkép Rugalmas alakvátozás Ha a terhelő erő viszonylag kicsi, az alakváltozás úgy

Részletesebben

Bevezetés s az anyagtudományba. nyba. ltozás. VII. előadás március 18. Kétféle viselkedés. atipusos (egyes acélok, nemfémek) fémeknél tipikus

Bevezetés s az anyagtudományba. nyba. ltozás. VII. előadás március 18. Kétféle viselkedés. atipusos (egyes acélok, nemfémek) fémeknél tipikus Bevezetés s az anyagtudományba nyba VII. előadás 2010. március 18. Kétféle viselkedés II. KéplK plékeny alakváltoz ltozás fémeknél tipikus atipusos (egyes acélok, nemfémek) VII/2 Mikroszkópikus magyarázat

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Anyagszerkezettan vizsgajegyzet

Anyagszerkezettan vizsgajegyzet - 1 - Anyagszerkezettan vizsgajegyzet Előadástémák: 1. Atomszerkezet 1.1. Atommag 1.2. Atomszám 1.3. Atomtömeg 1.4. Bohr-féle atommodell 1.5. Schrödinger-egyenlet 1.6. Kvantumszámok 1.7. Elektron orbitál

Részletesebben

Fizikai kémia Diffrakciós módszerek. Bevezetés. Történeti áttekintés

Fizikai kémia Diffrakciós módszerek. Bevezetés. Történeti áttekintés 06.08.. Fizikai kémia. 6. Diffrakciós módszerek Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Bevezetés A kémiai szerkezet vizsgálatához használatos módszerek közül eddig a különöző

Részletesebben

Törés. Az előadás során megismerjük. Bevezetés

Törés. Az előadás során megismerjük. Bevezetés Anyagszerkezettan és anyagvizsgálat 015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

Szilárdsági számítások. Kazánok és Tüzelőberendezések

Szilárdsági számítások. Kazánok és Tüzelőberendezések Szilárdsági számítások Kazánok és Tüzelőberendezések Tartalom Ellenőrző számítások: Hőtechnikai számítások, sugárzásos és konvektív hőátadó felületek számításai már ismertek Áramlástechnikai számítások

Részletesebben

Fémtan Dr. Gácsi, Zoltán Dr. Mertinger, Valéria

Fémtan Dr. Gácsi, Zoltán Dr. Mertinger, Valéria Fémtan Dr. Gácsi, Zoltán Dr. Mertinger, Valéria Fémtan Dr. Gácsi, Zoltán Dr. Mertinger, Valéria Készült a TÁMOP-4.2.5.B-11/1-2011-0001 számú projekt keretében, a korábban nyomtatásban is megjelent Fémtan

Részletesebben

Miskolci Egyetem Műszaki Anyagtudományi Kar Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola

Miskolci Egyetem Műszaki Anyagtudományi Kar Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola Miskolci Egyetem Műszaki Anyagtudományi Kar Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola ALUMÍNIUM-MAGNÉZIUM ÖTVÖZETEK FOLYÁSI VISELKEDÉSE ZÖMÍTÉS SORÁN DOKTORI (PHD) ÉRTEKEZÉS Mikó Tamás

Részletesebben

MUNKA- ÉS ENERGIATÉTELEK

MUNKA- ÉS ENERGIATÉTELEK MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Alapfogalmak Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Kötések Ionos, kovalens és

Részletesebben

tervezési szempontok (igénybevétel, feszültségeloszlás,

tervezési szempontok (igénybevétel, feszültségeloszlás, Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai

A szerkezeti anyagok mechanikai tulajdonságai A szerkezeti anyagok mechanikai tulajdonságai Szerkezeti anyagok igénybevételei Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához, A károsodási folyamatok megértéséhez, Ahhoz,

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2007/08. Károsodás. Témakörök

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2007/08. Károsodás. Témakörök ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Anyagismeret 2007/08 Károsodás Dr. Lovas Jenő jlovas@ eik.bme.hu Dr. Éva András mal.eva@mail.datanet.hu Témakörök Bevezetés Tönkremeneteli módok Fáradás, méretezés

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Roncsolásmentes. smentes anyagvizsgálatok előad. BME, Anyagtudomány

Roncsolásmentes. smentes anyagvizsgálatok előad. BME, Anyagtudomány Roncsolásmentes smentes anyagvizsgálatok 2015. 1. előad adás Dr. MészM száros István BME, Anyagtudomány és s Technológia Tanszék Roncsolásmentes anyagvizsgálatok BMEGEMT AGM5 Dr. Mészáros István (egyetemi

Részletesebben

Anyagtudomány2 (PhD szig) féléves házi feladat. Martenzites átalakulás és kiválásos keményítés

Anyagtudomány2 (PhD szig) féléves házi feladat. Martenzites átalakulás és kiválásos keményítés BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Anyagtudomány2 (PhD szig) féléves házi feladat Martenzites átalakulás és kiválásos keményítés Thiele Ádám WTOSJ2 Budapest, 2011 Tartalomjegyzék

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai

A szerkezeti anyagok mechanikai tulajdonságai Ez a kép most nem jeleníthető meg. 2012.11.19. Szerkezeti anyagok igénybevételei A szerkezeti anyagok mechanikai tulajdonságai Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához,

Részletesebben

A töréssel szembeni ellenállás vizsgálata

A töréssel szembeni ellenállás vizsgálata A töréssel szembeni ellenállás vizsgálata 1 Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. 2 Szívós vagy képlékeny anyag Az anyag törését a csúsztatófeszültségek

Részletesebben

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr.

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr. Anyagismeret I. A töréssel szembeni ellenállás vizsgálata Összeállította: Csizmazia Ferencné dr. Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. Szívós vagy

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK NYGTUDOMÁNY ÉS TECHNOLÓGI TNSZÉK nyagismeret 2008/09 célok hőkezelése dr. Németh Árpád arpinem@eik.bme.hu Törköly Tamás torkoly@gmail.com Ötvözetlen acélok 3 f.k.k. c3 1 t.k.k. hipoeutektoidosl EUTEKTOIDOS,

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

A nagymérték képlékeny deformáció hatása kiválásos ötvözetek mikroszerkezetére és mechanikai tulajdonságaira

A nagymérték képlékeny deformáció hatása kiválásos ötvözetek mikroszerkezetére és mechanikai tulajdonságaira Eötvös Loránd Tudományegyetem Fizika Doktori Iskola Anyagtudomány és szilárdtestfizika doktori program Schiller István A nagymérték képlékeny deformáció hatása kiválásos ötvözetek mikroszerkezetére és

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai. Kalmár Emília ÓE Kandó MTI

A szerkezeti anyagok mechanikai tulajdonságai. Kalmár Emília ÓE Kandó MTI A szerkezeti anyagok mechanikai tulajdonságai Kalmár Emília ÓE Kandó MTI Szerkezeti anyagok igénybevételei Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához, A károsodási folyamatok

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

Hibák kristályos anyagokban: hogyan keletkeznek és mire használjuk ket?

Hibák kristályos anyagokban: hogyan keletkeznek és mire használjuk ket? Hibák kristályos anyagokban: hogyan keletkeznek és mire használjuk ket? Gubicza Jen ELTE TTK Fizikai Intézet, Anyagfizikai Tanszék Atomoktól a csillagokig eladássorozat ELTE TTK, 2015. január 29. Kristályos

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

4. A FORGÁCSOLÁS ELMÉLETE. Az anyagleválasztás a munkadarab és szerszám viszonylagos elmozdulása révén valósul meg. A forgácsolási folyamat

4. A FORGÁCSOLÁS ELMÉLETE. Az anyagleválasztás a munkadarab és szerszám viszonylagos elmozdulása révén valósul meg. A forgácsolási folyamat 4. A FORGÁCSOLÁS ELMÉLETE Az anyagleválasztás a munkadarab és szerszám viszonylagos elmozdulása révén valósul meg. A forgácsolási folyamat M(W) - a munka tárgya, u. n. munkadarab, E - a munkaeszközök,

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. FERNEZELYI SÁNDOR EGYETEMI TANÁR Az acél szakító diagrammja Lineáris szakasz Arányossági határnak

Részletesebben

Porkohászati módszerekkel előállított ultrafinom szemcsés fémek mikroszerkezete és mechanikai tulajdonságai

Porkohászati módszerekkel előállított ultrafinom szemcsés fémek mikroszerkezete és mechanikai tulajdonságai Porkohászati módszerekkel előállított ultrafinom szemcsés fémek mikroszerkezete és mechanikai tulajdonságai Jenei Péter Témavezető: Dr. Gubicza Jenő egyetemi tanár ELTE TTK Fizika Doktori Iskola Iskolavezető:

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál

Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál Hármas integrál Szabó Krisztina menedzser hallgató A hármas és háromszoros integrál Definició A fizikai meggondolások előzményeként jutunk el a hármas integrál következő értelmezéséhez. Legyen értelmezve

Részletesebben

Deformáció hatására kialakuló kompozit típusú mikroszerkezet martenzites acélokban

Deformáció hatására kialakuló kompozit típusú mikroszerkezet martenzites acélokban Deformáció hatására kialakuló kompozit típusú mikroszerkezet martenzites acélokban Diplomamunka Ódor Éva Anyagtudomány MSc Témavezető: Dr. Ungár Tamás Társtémavezető: Jóni Bertalan Eötvös Loránd Tudományegyetem,

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek A feldolgozás hatása a szerkezetre és a tulajdonságokra Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I.

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

Porkohászati módszerekkel előállított ultrafinom szemcsés fémek mikroszerkezete és mechanikai tulajdonságai

Porkohászati módszerekkel előállított ultrafinom szemcsés fémek mikroszerkezete és mechanikai tulajdonságai Porkohászati módszerekkel előállított ultrafinom szemcsés fémek mikroszerkezete és mechanikai tulajdonságai Jenei Péter Témavezető: Dr. Gubicza Jenő egyetemi tanár ELTE TTK Fizika Doktori Iskola Iskolavezető:

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai)

Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai) Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai) Bevezetés. Az erőművek feladata a mindenkori fogyasztói igényeknek megfelelő

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Transzportfolyamatok. Alapfogalmak. Lokális mérlegegyenlet. Transzportfolyamatok 15/11/2015

Transzportfolyamatok. Alapfogalmak. Lokális mérlegegyenlet. Transzportfolyamatok 15/11/2015 Alapfogalmak Transzportfolyamatok Diffúzió, Hővezetés Viszkozitás Önként végbemenő folyamat: Egyensúlyi állapot irányába Intenzív paraméterek kiegyenlítődése (p, T, µ) Extenzív paraméterek áramlása (V,

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

BUDAPESTI MŰSZAKI FŐISKOLA

BUDAPESTI MŰSZAKI FŐISKOLA Fémtan Segédlet az Anyagszerkezettan I című tárgyhoz 1/35 Tartalomjegyzék 1. A fémek általános jellemzői... 3 1.1. Kristályos szerkezetek... 3 1.2. Halmazállapot változások fémeknél... 5 2. Az alakváltozás

Részletesebben

Acélok nem egyensúlyi átalakulásai

Acélok nem egyensúlyi átalakulásai Acélok nem egyensúlyi átalakulásai Acélok egyensúlyitól eltérő átalakulásai Az ausztenit átalakulásai lassú hűtés Perlit diffúziós átalakulás α+fe 3 C rétegek szilárdság közepes martensit bainit finom

Részletesebben

Diszlokáció szerkezet és vakancia koncentráció meghatározása in situ szinkrotronos röntgendiffrakció alapján. A doktori értekezés tézisei.

Diszlokáció szerkezet és vakancia koncentráció meghatározása in situ szinkrotronos röntgendiffrakció alapján. A doktori értekezés tézisei. Diszlokáció szerkezet és vakancia koncentráció meghatározása in situ szinkrotronos röntgendiffrakció alapján A doktori értekezés tézisei Hanák Péter Témavezető: Dr. Ungár Tamás DSc. egyetemi tanár ELTE

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben