Diagnosztika, statisztikai döntések, hipotézisvizsgálat, osztályozás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Diagnosztika, statisztikai döntések, hipotézisvizsgálat, osztályozás"

Átírás

1 Diagnosztika, statisztikai döntések, hipotézisvizsgálat, osztályozás

2 Orvosi képdiagnosztika Diagnosztika = egy rendszer állapotának meghatározása a rendszerről rendelkezésre álló mérések, megfigyelések és a priori információk alapján Állapotok száma: véges, sok esetben 2: hibás (beteg), normális működésű (egészséges). x N y{0,1}; x N y[0,1] Diagnosztika = döntés meghozatala Diagnosztikai rendszer = Input-output leképezés y=f(x) Orvosi diagnosztika Input: tünetek, vizsgálatok, leletek, képek, háttértudás Output: diagnózis. 2 (vagy több) osztályú osztályozási feladat

3 Orvosi képdiagnosztika Orvosi diagnosztika = tapasztalati tudomány Sok minősített eset: {x i,d i } i=1,p y=f(x) Megtanulja a döntéshozó a kapcsolatot Számítógépes diagnosztikai rendszer Próbálja szimulálni az orvosi döntéshozást Más megközelítést (is) alkalmaz, mint az orvosok (az orvosi háttértudás felhasználása nehéz) Egy diagnosztikai rendszer fő elemei Megfigyelési tér definiálása Döntési szabály konstruálása Döntés meghozatala

4 Döntési folyamat leképezései {,......, } 1 i c p(xω i ) P( x) i Megfigyelt rendszer (beteg) Megfigyelési tér tér Döntési tér y{1,2,...c} P(ω i )

5 Orvosi képdiagnosztikasztika (kép)diagnosztika Iteratív folyamat ünetek, leletek = jellemzők Döntési tér módosítása igen Lehet dönteni? nem Diagnózis osztályozás ovábbi vizsgálatok Megfigyelés, mérés Mérési eredmények értelmezése, Jellemző kiválasztás (feature selection), dimenzió növelés, fontossági sorrend megállapítása, dimenzió csökkentés Döntés: döntési szabály, jellemzők alapján (valójában osztályozás)

6 Orvosi képdiagnosztika Statisztikai alapon döntünk Milyen ismeretünk lehet: osztályvalószínűségek, megfigyelések Kétosztályos osztályozás ω = ω 1 egészséges ω = ω 2 beteg naív döntés: a priori valószínűségek alapján ω 1 ha P(ω 1 ) > P(ω 2 ); egyébként ω 2. ω 1 P( ) P( ) 1 2 ω 2 Mindig az lesz a döntés, hogy a paciens egészséges

7 Orvosi képdiagnosztika Döntési szabály mérések alapján: A mérési adatok feltételes sűrűségfüggvénye (likelihood függvény) alapján A megfigyelési tér: a mérési eredmények tere Döntési szabály: a megfigyelési tér dekomponálása, szeparálása Egydimenziós triviális esetben küszöbértékhez hasonlítunk Az egyes osztályok a priori valószínűségeit nem vettük figyelembe px ( 1) px ( 2) ω 2 p( x ) p( x ) 1 2 ω 1 p(xω 1 ) p(xω 2 ) R 1 R 2 Döntési küszöb

8 Statisztikai döntés Milyen alapon döntünk Egy paraméter alapján (egydimenziós a döntési tér): küszöbbel való összevetés, több küszöb Likelihood px ( 1) px ( 2) Az a priori valószínűségeket nem veszi figyelembe

9 Bayes döntés (a posteriori valószínűségek alapján) P( 1 x) P( 2 x) = Bayes szabály 1 2 Statisztikai döntés p( x 1) P( 1) px (, ( 1) p x 1) P( 1) P( 1 x) p( x) p( x) p( x i) P( i) i1,2 1 p( x 1) P( 1) p( x 2) P( 2) = p( x) p( x) 2 P(ω 1, x) P(ω 2, x) p( x 2) P( 2)

10 A döntés minősítése A döntés hibája, a hibás döntések valószínűségei Ha =

11 Statisztikai döntés Döntés minősítése a hibás döntések valószínűség Költségfüggvény, veszteségfüggvény (loss function), Bayes kockázat (risk) a költség várható értéke Optimális döntés: az átlagos döntési hiba minimumát biztosító döntés R 1 R 2 1 =P F (false alarm) a téves riasztás valószínűsége elsőfajú hiba 2 =P M (missed detection) a tévesztés valószínűsége másodfajú hiba

12 Statisztikai döntés A döntéshez költség is rendelhető: C ij annak a költsége, ha i a döntés de j a valódi osztály Ezzel a Bayes átlagos költség: A Bayes költség minimumát biztosító döntés Mivel és

13 Statisztikai döntés Bayes döntés Redukálható hiba

14 Statisztikai döntés A Bayes költség felírható R C P p( x ) dx C P p( x ) dx Felhasználva... R R R 1 1 C P p( x ) dx C P p( x ) dx a b R R 2 2 A döntési tartomány minimalizálja az átlagos költséget 2 2 C P C P ( C C ) P p( x ) dx ( C C ) P p( x ) dx R R R arg min ( C C ) P p( x ) ( C C ) P p( x ) dx R

15 Likelihood arány teszt Statisztikai döntés ( x) P( 1) P( ) 2 ω 1 = ω 2 Naiv döntés = 1 ( x) px ( ) 1 px ( ) 2 ω 1 = Likelihood függvény alapján = 1 ω 2 ω 1 px ( 1) P( 2) ( x) = Bayes döntésnél = P(ω 2 p( x ) P( ) P(ω ω 2 ω 1 px ( 1) ( C12 C22) P( 2) ( x) = p( x ) ( C C ) P( ) ω 2 A Bayes költség minimumát biztosító döntésnél ( C12 C22) P( 2) ( C C ) P( )

16 Statisztikai döntés A Bayes hiba az a priori valószínűségek függvénye: a döntési küszöb (felület) módosul

17 ovábbi döntési szabályok Statisztikai döntés Minimax döntés A Bayes hiba az a priori valószínűségek függvénye.

18 ovábbi döntési szabályok Neyman-Pearson döntés Statisztikai döntés Az a priori valószínűségek meghatározása lehet nehéz A cél a hibavalószínűségek minél kisebb értéken tartása Az egyik hibavalószínűség (P F ) rögzítése mellett (P F =) a másik (P M )minimumát biztosító döntést keressük: Lagrange multiplikátoros feltételes szélsőérték-kereső probléma C P ( P ) NP M F C (1 ) p( x ) p( x ) dx NP R Itt is megadható a likelihood arány teszt ( x) px ( ) 1 px ( ) 2 ω 1 = ω 2

19 Statisztikai döntés Neyman-Pearson döntés triviális esetben nemtriviális esetben

20 A döntés minősítése A döntés eredménye döntés egészséges beteg Valóság egészséges Valódi negatív (N) (Helyes döntés) éves pozitív (FP) (False alarm P F, elsőfajú hiba, 1 ) beteg éves negatív (FP) (Missed detection P M, másodfajú hiba, 2 ) Valódi pozitív (P) (Helyes döntés) R 1 R 2 Érzékenység (sensitivity) = P P+FN Fajlagosság (specificity) = N N+FP

21 Értékelés Minősítés ROC görbe, (érzékenység 1-specificitás; 1-P M P F ) FROC (mivel túl sok a téves pozitív) AUC

22 öbbdimenziós megfigyelési tér etszőleges Gauss sűrűségfüggvények mellett: általános kvadratikus elválasztó (hiper)felület

23 Osztályozás Döntési szabály: az eredő kockázat minimumát biztosító választ kell adni. A kockázat általában nem meghatározható. A megfigyelések terét kell két tartományra bontani. öbb paraméter alapján (többdimenziós döntési tér) A tér szeparálása: lineáris, nemlineáris, összefüggő tartományok, nem összefüggő tartományok Felhasználható információ megfigyelések {x i,d i } i=1,...,l a priori valószínűségek: P( i ) a megfigyelések feltételes sűrűségfüggvényei: Bayes döntés Költségértékek: C ij px} ( i ) megfigyelések {x i,d i } } i=1,...,l maximum likelihood megfigyelések feltételes sűrűségfüggvényei px ( i ) döntés megfigyelések megfigyelések {x i,d i } i=1,...,l LS döntés Egyre kevesebb a felhasznált ismeret

24 Osztályozás, szeparáló felület öbb paraméter alapján (többdimenziós döntési tér) lineáris kvadratikus? Általános nemlineáris

25 Osztályozók Lineáris osztályozók Megfelelő feltételek mellett Bayes, ML, LS LDA Perceptron Logisztikus regresszió (megfelelő feltételek mellett) SVM (kernel gépek, lineáris kernellel) Döntési fák... Nemlineáris osztályozók Megfelelő feltételek mellett Bayes Nemlineáris transzformáció + lineáris osztályozó Nemparametrikus módszerek (NN, knn) KDA Bázisfüggvényes megoldások Kernel gépek (nemlineáris kernellel) Neurális hálók

26 Osztályozás Perceptron Logisztikus regresszió LS megoldás ML megoldás Gauss eloszlások mellett Bayes megoldás regularizált LS megoldás Gauss eloszlások mellett

27 Lineáris osztályozás LDA többdimenziós tér (x) egydimenziós tér (y=w x) Kitüntetett vetítési irány (w) keresése m 1 m 1 m 2 m 2

28 LDA: Fisher linear discriminant Optimalizálási feladat: azt a vetítési irányt keressük, mely irányra vetítve az adatok a legjobban megkülönböztethetők 2 ( m1 m2 ) w ( m2 m1)( m2 m1) w w SBw Rayleigh hányados 1 W B J ( w) S S w w -1 w SWSBw ww S w ( m m )( m m ) w B S w iránya ( m m ) B 2 1

29 Lineáris osztályozás Perceptron s(k) = w x(k) y(k) = sgn(s(k)) (k)= d(k)-y(k) w k w k 1 d k y k x k w k 1 k x k Konvergens, ha: Az adatok lineárisan szeparálhatók Véges számú adat van Az adatok felülről korlátosak >0

30 Lineáris osztályozás LS megoldás y=w x vagy y=w x+w 0 Iteratív megoldás w k w k 1 2 d k y k x k w k 1 k x k analitikus megoldás: pszeudoinverz 1 ( w X X) X d

31 Lineáris osztályozás Logisztikus regresszió posterior alapján dönt p( x ) P( ) 1 1 P x a 1 p( x ) P( ) 1 1 ( 1 ) ( ) a p( x ( 1) P( 1) p( x 2) P( 2) p x 2) P( 2) 1e a p( x ) P( ) 1 1 ln p ( x 2 ) P ( 2 ) 1 1 Folytonos bemenet mellett, Gauss eloszlású mérési adatoknál P( x k ) P( 1 x) P( ) ln 1 P ( ) 2

32 Lineáris osztályozás Maximum likelihood megoldás pd ( 1 x, w) sgm( w x) ( w x) i i pd ( 0 x, w) 1 sgm( w x) 1 ( w x) i i p( d x, w) ( ( w x )) (1 ( w x ) y (1 y ) Egy mintára di (1 di ) di (1 di ) i i i i i i i xi w L di i L i1 i L p( d, ) y (1 y ) (1 d ) L( w) d ln y (1 d )ln(1 y ) i i i i i1 i1 i Az összes (L) mintára Likelihood függvény Iteratív megoldás

33 , Lineáris osztályozás Kernel gép (SVM) wxi wxi b a 0 ha d 1 b a 0 ha d 1 i i d ( wxb) 1 i 1, 2,, P i i 1 Lw, b, α w w ( ) 1 i di w xi b P 2 i1 x 2 x p x r optimális hipersík L L w, b, α 0 P w idixi w i1 i1 w, b, α 0 P idi 0 b i 0 xx p r w w r x 1 1 w Q( α) P idi i1 w 1 P P P i i jdid jxi x j i1 2 i1 j1 0 0 i1,..., P P s i1 d x i i i i ( ) sign P y x i dixi x b i1

34 Nemlineáris osztályozás Paramétereiben lineáris osztályozó: nemlineáris transzformáció + lineáris osztályozó y w i ix w φx LS megoldás Kernel gép i 1 ( w Φ Φ) Φ d d ( w φx ( ) b) 1 i 1, 2,, P i i 1 Q( α) φ ( x ) φ( x ) P P P i i jdid j i j i1 2 i1 j1 Τ K( x, x) ( x ) ( x) i i x Nemlineáris (x) Lineáris y transzformá osztályozó N ció M>N w P d ( ) i i xi i1 P y( x) sign i dik( xi, x) b i1

35 Nemlineáris osztályozás Paramétereiben is nemlineáris osztályozó LS megoldás x 0 = 1 w k 0( ) x k 1( ) w k 1( ) y sgm( wx ) + + x( k) x k N( ) w k N( ) + - () k + dk () w k 1 w k 2 k k sgm s k x k w k 2 k k x k

36 Nemlineáris osztályozás x (1) 1 x x (1) 2 (1) N (1) x = 0 PE (1 ) 1 s (1) 1 PE (1) 2 PE (1) 3 s (1) 2 s (1) 3 sgm sgm sgm x = (2) W (1) (2) y y y (1) 1 (1) 2 (1) 3 W PE (2) 1 PE (2) 2 s s (2) 1 (2 ) 2 sgm sgm y 1 y 2 d d x (1) x = y (1) ( L) ( L1) (1) y f W f W f W x... ( ) (2) (2) y y = y (2) (1) f W f W x Paramétermeghatározás: minimumkeresés (LS probléma), BP vagy annak valamelyik variánsa

37 Nemlineáris osztályozó Nemparametrikus nemlineáris osztályozó NN nearest neighbour, k-nn Posterior becslése n cimkézett minta x körül egy V térfogat (tartomány) k mintából k i darab i cimkéjű m-edik osztályba sorolunk, ha Nemmetrikus módszerek Döntési fák CAR Szabály alapú módszerek...

38 Jellemzők kiválasztása A jellemzők meghatározása, kiválasztása: az egyik legnehezebb feladat ROI kiválasztása: elváltozás kiemelő szűrők (IRIS filter, SBF, AFUM, illesztett szűrők, stb.) ROI jellemzői: Haralick features (textúra jellemzők), geometriai jellemzők (kerület, terület, ezek aránya,...), ROI-n belül képjellemzők (minimum, maximum, átlag, szórás, magasabb momentumok, medián, entrópia,...), gradiens jellemzők: Gauss deriváltak DoG, LoG,... Globális-lokális jellemzők dilemmája A jellemzőtér dimenziója: hány jellemző alapján osztályozzunk? Dimenzió növelés, több megfigyelés- többdimenziós vektor: a dimenzió átka Szekvenciális döntés (több mérés, ugyanarról az objektumról, multimodális vizsgálat) Occam borotvája Dimenzió redukció, a releváns változók kiválasztása (PCA, NPCA, KPCA, PLS,...) Dimenzió redukció regularizáció segítségével: regularizációs tag: l2 norma, l1 norma Relevant vector machine (Bayes módszer a változók szelektálására)...

39 PCA x y 2 2 Jellemző kiválasztás x φ1, φ2,..., φn N M yiφi xˆ yii M N yi φi x i1 i1 N N N E φi x x φi φi E xx φi φi Rxxφi im 1 im 1 im 1 N M 2 N 2 2 E x xˆ E y iφi yiφi E yi i1 i1 im 1 N N φ i φ j 1 ij φ φ φ C φ φ φ xx ˆ i i i i i i i i im 1 im 1 N ˆ 2 i 2 i i xx φ C φ φ 0 i im1 C φ xx φ i i i 2 I, vagyis N N N φ i R xx φ i φ i i φ i i im 1 im 1 im 1 2 E y f w w Rw w w w w Rayleigh hányados

40 Jellemző kiválasztás KPCA N : R F, ( ) j j 1 P P C Φ x Φ x V CV V iφx i P j 1 i1 P P P Φ xkv Φ xkcv 1 iφ xk Φxi iφ xk Φx j Φ x j Φxi i1 P i1 j1 Φ x X Φ x, Kij K xi xj Φ xi Φ x 2 j PKα K α Pα Kα Sajátvektorok normalizálása k V k V 1 1 P i, j1 k k Φ x Φ x i j i j i, j1 k k kα α A jellemzőtérbeli vektorok vetítése P k k k k K α Kα i j ij V k Φ x k k Φ x Φ x K x, x P i i i1 i1 P i i

41 KPCA K Jellemző kiválasztás Nulla várható érték biztosítása ij i j P k1φ xk 0 K Φ x Φ x K 1 P i i k P k 1 Φ x Φ x Φ x P i 1 α α V iφx i P 1 P 1 Φx Φx Φx Φx ij i p j k P p1 P k1 P P P K 1 K K 1 1 K 1 ij ip pj ik kj 2 ip pk kj P p1 P k 1 P p, k 1 K 1 K K1 1 K1 P P P P ij

42 PLS Jellemző kiválasztás A kritérium szekvenciálisan maximáljuk a kimenet és a bemeneti változók lineáris kombinációját X, d w a bemeneti változók x i és a kimenet d kapcsolatát (súlyait) adja meg) w k 2 arg max cov ( Xw, d) w w1 Ortogonalitási feltétellel t k Xw k tk t j wk X Xw j 0 minden 1 j k

43 Orvosi CAD rendszerek információ-feldolgozási folyamata Mellkas röntgenkép (PA) diagnosztika

44 Orvosi CAD rendszerek információ-feldolgozási folyamata Mellkas tomoszintézis

45 Orvosi CAD rendszerek információ- feldolgozási folyamata Mammográfia

46 Main types of suspicious areas malignant cases mikrokalcifikáció architekturális torzítás spikulált folt Jóindulatú elváltozás

47 A képek (esetek) változatossága zsíremlő zsír-grandular sűrű grandular IMC 2004, Como, Italy

48 Kép szegmentálás

49 Éldetektálás és textura alapú osztályozás Matching based on segment position + texture parameters

50 Egy lehetséges út a mikrokalcifikációk detektálásra Image reading Image egment selection exture analysis no Suspicious segment? yes Focusing on suspicious subsegment no Reinforcement yes Edge detection Curvilinear detection no yes Removing of curvilinear objects Verification no Fals positive result yes rue positive result

51

52 Kulcscsont és bordák árnyékának eltüntetése

53 Kulcscsont és bordák árnyékának eltüntetése

54 Kerekárnyék keresés

55 Kerekárnyék keresés

56 Kerekárnyék keresés

57 Kerekárnyék keresés

58 Kerekárnyék keresés

59 Kerekárnyék keresés

60 Összesített eredmények: FROC (Free-Response Receiver Operating Characteristic Curve)

61 example of the results of the steps of vessel feature extraction.

62

Osztályozás képdiagnosztikánál

Osztályozás képdiagnosztikánál Osztályozás képdiagnosztikánál Osztályozás Elválasztó felület keresése Input-output leképezés ismert osztályú (tanító) pontok alapján x, d P d 1,2,..., k i i i1 i Lineáris Paramétereiben lineáris, de nemlineáris

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz

Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =

Részletesebben

Gépi tanulás a gyakorlatban SVM

Gépi tanulás a gyakorlatban SVM Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 Diagnózistámogatás = döntéstámogatás A döntések jellemzése (ROC, AUC) 2018 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes) 6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

I S R G Gépi tanulás, neuronhálók

I S R G Gépi tanulás, neuronhálók I S R G Gépi tanulás, neuronhálók MI Horváth Gábor Egy intelligens rendszernek szükségszerűen rendelkeznie kell adaptációs, tanulási képességgel. Mi a (gépi) tanulás? A gépi tanulás során egy gép a tanuló

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Módszertani hozzájárulás a Szegénység

Módszertani hozzájárulás a Szegénység Módszertani hozzájárulás a Szegénység Többváltozós Statisztikai Méréséhez MTA doktori értekezés főbb eredményei Hajdu ottó BCE KTK Statisztika Tanszék BME GTK Pénzügyek Tanszék Hajdu Ottó 1 Egyváltozós

Részletesebben

Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével

Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Kernel gépek vizsgálata

Kernel gépek vizsgálata Kernel gépek vizsgálata Lágler Krisztián 2011. május 12. FYMGQ8 Konzulens : Dr. Horváth Gábor 1 Tartalomjegyzék 1. Feladat kiírás 3 1.1. A kernelfüggvény hiperparamétereinek megválasztása..... 3 2. Bevezetés

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület

Részletesebben

Diagnosztikus tesztek értékelése

Diagnosztikus tesztek értékelése n e c n b c szegregancia relevancia Diagnosztikus tesztek értékelése c Átlapoló eloszlások feltételezés: egy mérhető mennyiség (pl. koncentráció) megnövekszik a populációban (a megváltozás a lényeges és

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,

Részletesebben

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű

Részletesebben

Funkcionális konnektivitás vizsgálata fmri adatok alapján

Funkcionális konnektivitás vizsgálata fmri adatok alapján Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Kernel módszerek. 7. fejezet

Kernel módszerek. 7. fejezet 7. fejezet Kernel módszerek Ebben a fejezetben olyan tanuló rendszerekkel foglalkozunk, amelyek a válaszokat ún. kernel függvények (vagy magfüggvények) súlyozott összegeként állítják elő. A megközelítés

Részletesebben

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség 7. Előadás tartalma Lineáris szűrők: Klasszikus szűrők súly és átviteli üggvénye Gibbs jelenség Inverz probléma dekonvolúció: Inverz probléma ormális elírása Dekonvolúció nehézsége Közismert algoritmusok:

Részletesebben

Kosztyán Zsolt Tibor Katona Attila Imre

Kosztyán Zsolt Tibor Katona Attila Imre Kockázatalapú többváltozós szabályozó kártya kidolgozása a mérési bizonytalanság figyelembe vételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia

Részletesebben

Fodor Gábor március 17. Fodor Gábor Osztályozás március / 39

Fodor Gábor március 17. Fodor Gábor Osztályozás március / 39 Osztályozás Fodor Gábor 2010. március 17. Fodor Gábor (fodgabor@math.bme.hu) Osztályozás 2010. március 17. 1 / 39 Bevezetés 1 Bevezetés 2 Döntési szabályok 3 Döntési fák 4 Bayes-hálók 5 Lineáris szeparálás

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén

Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

Többváltozós lineáris regresszió 3.

Többváltozós lineáris regresszió 3. Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Bevezetés a neurális számításokba Analóg processzortömbök,

Bevezetés a neurális számításokba Analóg processzortömbök, Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

Gépi tanulás Gregorics Tibor Mesterséges intelligencia

Gépi tanulás Gregorics Tibor Mesterséges intelligencia Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat

Részletesebben

Support Vector Machines

Support Vector Machines Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel

Részletesebben

Diszkréten mintavételezett függvények

Diszkréten mintavételezett függvények Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Nem-lineáris programozási feladatok

Nem-lineáris programozási feladatok Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence) Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Bizonytalan tudás kezelése

Bizonytalan tudás kezelése Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Itô-formula. A sztochasztikus folyamatok egyik legfontosabb formulája. Medvegyev Péter Matematika tanszék

Itô-formula. A sztochasztikus folyamatok egyik legfontosabb formulája. Medvegyev Péter Matematika tanszék Itô-formula A sztochasztikus folyamatok egyik legfontosabb formulája Medvegyev Péter Matematika tanszék 2008 Medvegyev (Corvinus Egyetem) Itô-formula 2008 1 / 39 Az Itô-formula Theorem Ha F kétszer folytonosan

Részletesebben

Diagnosztikus tesztek értékelése

Diagnosztikus tesztek értékelése Δn e Δc Δn b Δc szegregancia relevancia Diagnosztikus tesztek értékelése c Átlapoló eloszlások feltételezés: egy mérhető mennyiség (pl. koncentráció) megnövekszik a populációban (a megváltozás a lényeges

Részletesebben

Intelligens adatelemzés

Intelligens adatelemzés Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

5. elıadás március 22. Portfólió-optimalizálás

5. elıadás március 22. Portfólió-optimalizálás 5. elıadás 203. március 22. Portfólió-optimalizálás Alapfeladat Cél: minél nagyobb várható hozam elérése De: közben a kockázat legyen minél kisebb Kompromisszum: elvárt hozamot érje el a várható érték

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

p-érték, hipotézistesztelés, és ellentmondásaik

p-érték, hipotézistesztelés, és ellentmondásaik p-érték, hipotézistesztelés, és ellentmondásaik Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Következtetéselmélet A megfigyelt világ és a tudásunk összekapcsolása Deduktív következtetés: kiindulunk

Részletesebben