Ugrásszerűen változó törésmutató, optikai szálak

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ugrásszerűen változó törésmutató, optikai szálak"

Átírás

1 9. Előadás Ugrásszerűen változó törésmutató, optikai szálak Ugrásszerűen változó törésmutatójú közeget két, vagy több objektum szoros egymáshoz illesztésével és azokhoz különböző anyag vagy törésmutató rendelésével hozhatunk létre. Például két szorosan egymáshoz csiszolt, különböző törésmutatójú prizmák. TÁMOP C-12/1/KONV projekt 1

2 Ugrásszerűen változó törésmutató Ezt egyszerűen a két objektum, geometriailag egymáshoz tolásával tehetjük, az eddig már ismert módon. (Lásd: Move lehetőség az objektum kiválasztása és arra jobb egérgombbal való kattintásánál lenyíló menüből.) TÁMOP C-12/1/KONV projekt 2

3 Ugrásszerűen változó törésmutató Ezután, a már ismertek szerint a két objektumnak a Properties opcióból megadjuk az anyag típusokat. TÁMOP C-12/1/KONV projekt 3

4 Ugrásszerűen változó törésmutató Az ábrán látható két egymáshoz tökéletesen illesztett prizma. Az első az akril törésmutatójával rendelkező, a második a vízével megegyező törésmutatójú prizma. Sugárforrásunkból az alapértelmezett 546 nm hullámhosszú sugarakat bocsájtottunk rá melyek az origóban Y irányban 1 mm-el felfelé lettek tolva és a forrás sugara 5 mm. 1 2 TÁMOP C-12/1/KONV projekt 4

5 A mai, modern információtovábbításban és még számos helyen igen fontos optikai eszköz az optikai szál, melynek működése a teljes visszaverődés jelenségén alapul. Az optikai szál szerkezetileg legegyszerűbb típusa az ún. step-index (ugrásszerűen változó törésmutatójú) szál, ami egy µm átmérőjű magból és az azt körülvevő optikailag ritkább anyagból készült köpenyből áll. Ahhoz, hogy a magba sugár végig a szálban maradjon egy bizonyos kritikus szögnél nagyobb szögben kell, hogy belépjen a szál elején. Ez a szög a következő formulával adható meg: Θ n = arcsin n mag max 1 Ahol n 0 a környezet törésmutatója. 0 n n Amennyiben a fény levegőből lép a magba, a fenti formula a következő egyszerűbb alakot ölti: Θ = köpeny mag 2 2 ( nmag n ) max arcsin köpeny 2 TÁMOP C-12/1/KONV projekt 5

6 TÁMOP C-12/1/KONV projekt 6

7 P: Az optikai szálban történő fényterjedést szimulálandó illesszünk be egy 2 mm átmérőjű 30 mm hosszú hengert és rendeljünk hozzá a BK7- es anyagtípust. Ezután készítsük el a köpenyt, (Insert t / Tube), ) melyet definiáljuk iálj úgy, hogy az tökéletesen illeszkedjen a mag felületére, vastagsága legyen 1 cm és optikailag ritkább anyagú legyen, például BK10 (n köpeny = 1, ,1 nm-re). Definiáljuk a sugárforrásunkat úgy, hogy egy sugár az origóhoz képest -1 mm-re legyen Y és Z irányban. A kritikus beesési szöget határozzuk meg az anyagok törésmutatói alapján. A sugárforrásunk dőlésszögét változtatva és sugárkövetést végezve megfigyelhető, hogy a kritikus szögnél kisebb beesési szög esetén a sugár a mag köpeny határán teljes visszaverődést szenved, az optikai szál végén lép csak ki. TÁMOP C-12/1/KONV projekt 7

8 Ábra: Optikai szálak TÁMOP C-12/1/KONV projekt 8

9 A becsatolási szögnek a kritikus szögnél nagyobb értéket megadva megfigyelhetjük, hogy a sugár a mag-köpeny határon megtörik és a köpeny külső felületéről verődik csak vissza. TÁMOP C-12/1/KONV projekt 9

10 A beépített CAD eszközökkel már képesek vagyunk egy henger alakú testet beilleszteni, azt kedvünk szerint, illetve munkánkhoz megfelelően paraméterezni. Érintőlegesen már láthattuk, hogy atraceproképes az objektumokat kihúzni (Sweep) és elhajlítani (Revolve). Ezen eszközök segítségével lehetőségünk van célunknak megfelelő optikai szálat készíteni, annak felületi és közegbeli tulajdonságait ízlésünk szerint meghatározni. TÁMOP C-12/1/KONV projekt 10

11 Revolve lehetőségei Az első négy paraméter: Kijelölt felület és a hajlítás után keletkező új felület síkjai által be- zárt szög Kihúzás foka Hajlításj görbülete Hajlítás lépései Ha 0 értéket adunk, a hajlítás folytonos Ha nullánál nagyobb értéket, akkor az értéknek megfelelő szá- mú törés lesz benne forgástengely szög A felület eredeti pozíciója A felület síkja sugár TÁMOP C-12/1/KONV projekt 11

12 P: Illesszünk be egy 2 mm átmérőjű, 15 mm hosszúságú hengert. Húzzuk ki az utolsó felületétől még 15 mm hosszúra, majd hajlítsuk meg az X tengely körül 45 -al és 45 mm rádiusszal. (A Calculate a Position using selected surface gomb segíthet) TÁMOP C-12/1/KONV projekt 12

13 Az eredmény: TÁMOP C-12/1/KONV projekt 13

14 Adjunk meg valamilyen közeget, majd definiáljunk egy sugárforrást, és valamilyen szögben irányítsuk a sugarat az optikai szálunkra. Megfigyelhető, hogy, ha megfelelően választjuk ezt az értéket, akkor a sugár a közeghatárokon nem törik meg, hanem visszaverődést szenved, így végig az optikai szálban marad. TÁMOP C-12/1/KONV projekt 14

15 TÁMOP C-12/1/KONV projekt 15

16 P: Köpeny nélküli optikai szálban történő terjedés egyszerű modellezéséhez hajlítsunk meg negyed körben egy vastag üveglemezt az ábrán látható módon! Adjuk meg annak feltételét, hogy az egyik véglapra merőlegesen beeső fénysugár ne lépjen ki a közegből! megjegyzés: Ezen modell pusztán a terjedés jellegét kívánja szemléltetni egy hajlattal rendelkező szálban. A méretek, illetve a szerkezetet alapján nem tekinthető a gyakorlatban használatos optikai szálak modelljének. TÁMOP C-12/1/KONV projekt 16

17 Jelölje r, illetve R a hajlat kisebb, illetve nagyobb görbületi sugarát, d a lemez vastagságát! A bemenő sugár pozícióját jellemezzük x-szel! Az A pontba érkező sugár a lemezben marad, ha a β szög nagyobb a teljes visszaverődés határszögénél: sin ( β ) = x + r 1 R n A β szög akkor a legkisebb, amikor x = 0 (kritikus belépési hely), tehát a sugár bennmaradásának feltétele: r 1 R R n azaz = n azaz R d R n r R d n 1 TÁMOP C-12/1/KONV projekt 17

18 Vizsgáljuk meg mi történhet a fénysugárral a kanyarulat elhagyása után! i)haafelső falat éri el a fénysugár: A φ szög feltétlenül nagyobb β-nál, β mivel φ az ABC háromszög külső, ő β pedig belső szöge. Ezért a teljes visszaverődés feltétele mindenképp teljesül TÁMOP C-12/1/KONV projekt 18

19 ii) Ha az alsó falat éri el a fénysugár: A φ szög szintén feltétlenül nagyobb β-nál, mivel OE < OA = R. Ezért a teljes visszaverődés feltétele mindenképp teljesül. Tehát mind az i), mind az ii) esetben a fénysugár a bal oldali véglapon lép ki. TÁMOP C-12/1/KONV projekt 19

20 A két lehetőséget vizsgáljunk meg a TracePro-val! Első esetben a hajlítás sugara legyen kisebb a kritikus értéknél, így kicsi x esetén a sugár megtörik a hajlatban, majd egy része a lemezben marad, míg a másik része törés után a kilép a hajlatnál. Legyen a beillesztendő lemez 1 mm vastag, 10 mm hosszú Z irányban és 5 mm hosszú X irányban. Az utolsó felület kijelölésével hajlítsuk meg felfelé lé 90 -ban 2 mm-es rádiusszal. A meghajlított felület fölé helyettünk egy 1 mm sugarú forrást, mely merőlegesen 1 sugarat indítson a felületre. Pozíciója legyen a számítások alapján Y = 3, Z = 11,6 mm. Helyezünk el még egy ugyanilyen forrást (más színnel) Y = 3, Z = 12,3 mm-re. TÁMOP C-12/1/KONV projekt 20

21 Mint láthatjuk is, az elmélet szerint a kisebb x-re lévő sugár a hajlatnál megtört. TÁMOP C-12/1/KONV projekt 21

22 Ha a lemezt a kritikusnál nagyobb sugárban hajlítjuk, teljesülni fog a szálban maradás feltétele: TÁMOP C-12/1/KONV projekt 22

23 Mit ismertünk meg? - Szimuláltuk az optikai szálakban történő fényterjedést. Megismertük a TracePro hajlítási funkcióját. Következik: - Gradiens törésmutatójú közegek TÁMOP C-12/1/KONV projekt 23

Közegek és felületek megadása

Közegek és felületek megadása 3. Előadás Közegek és felületek megadása A gyakorlatban nem közömbös, hogy az adott közeg milyen anyagi tulajdonságokkal bír. (Törésmutató, felület típusa, érdessége ) Lehetőség van az anyagok közegének,

Részletesebben

24. Fénytörés. Alapfeladatok

24. Fénytörés. Alapfeladatok 24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza

Részletesebben

7. Előadás. A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok.

7. Előadás. A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok. 7. Előadás Lencsék, lencsehibák A vékony lencse A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok. A vékony lencse fókusztávolságára á á vonatkozó összefüggés:

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk. 37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban

Részletesebben

Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916

Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 OPTIKAI SZÁLAK Napjainkban a távközlés és a számítástechnika elképzelhetetlen

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

Objektum definiálása és szerkesztése

Objektum definiálása és szerkesztése 2. Előadás Objektum definiálása és szerkesztése A következőkben az egyes elemek definiálását, beillesztését és azok tulajdonságainak beállításait fogjuk megnézni. TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

d) A gömbtükör csak domború tükröző felület lehet.

d) A gömbtükör csak domború tükröző felület lehet. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye

Részletesebben

Lemezalkatrész modellezés. SolidEdge. alkatrészen

Lemezalkatrész modellezés. SolidEdge. alkatrészen A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A5 alap közepes - haladó SolidEdge CAD 3D

Részletesebben

Lemezalkatrész modellezés. SolidEdge. alkatrészen

Lemezalkatrész modellezés. SolidEdge. alkatrészen A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A4 alap közepes - haladó SolidEdge CAD 3D

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,

Részletesebben

Fénytörés vizsgálata. 1. feladat

Fénytörés vizsgálata. 1. feladat A kísérlet célkitűzései: A fény terjedési tulajdonságainak vizsgálata, törésének kísérleti megfigyelése. Plánparallel lemez és prizma törőtulajdonságainak vizsgálata. Eszközszükséglet: főzőpohár 2 db,

Részletesebben

Fénysebesség E Bevezetés

Fénysebesség E Bevezetés Figyelem! Minden mért és számolt értéket SI egységben kell megadnod, megfelelő számú értékes jegyre kerekítve. (Prefixumokat használhatsz.) Hibahatárokat csak akkor kell megadnod, ha ezt kifejezetten kérjük.

Részletesebben

- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)

- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató) OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata X. Fénypolarizáció X.1. A polarizáció jelenségének magyarázata A polarizáció a fény hullámtermészetét bizonyító jelenség, amely csak a transzverzális rezgések esetén észlelhető. Köztudott, hogy csak a

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

Lakóház tervezés ADT 3.3-al. Segédlet

Lakóház tervezés ADT 3.3-al. Segédlet Lakóház tervezés ADT 3.3-al Segédlet A lakóház tervezési gyakorlathoz főleg a Tervezés és a Dokumentáció menüket fogjuk használni az AutoDesk Architectural Desktop programból. A program centiméterben dolgozik!!!

Részletesebben

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Optikai csatlakozók vizsgálata

Optikai csatlakozók vizsgálata Optikai csatlakozók vizsgálata Összeállította: Mészáros István tanszéki mérnök 1 Az optikai szálak végződtetésére különböző típusú csatlakozókat használnak, melyeknek kialakítását és átviteli paramétereit

Részletesebben

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Demonstrációs optikai készlet lézer fényforrással Az optikai elemeken mágnesfólia található, így azok fémtáblára

Részletesebben

Bonded és No Separation

Bonded és No Separation Bonded és No Separation Kun Péter Z82ADC Bonded A bonded contact magyarul kötöttséget, kötött érintkezést jelent. Két olyan alkatrészről van szó, amelyek érintkezési felületeiken nem tudnak elválni egymástól,

Részletesebben

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2

Részletesebben

CodeCamp Döntő feladat

CodeCamp Döntő feladat CodeCamp Döntő feladat 2014 1 CodeCamp Döntő feladat A feladatban egy játékot kell készíteni, ami az elődöntő feladatán alapul. A feladat az elődöntő során elkészített szimulációs csomagra építve egy két

Részletesebben

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Tanulmányozza a.3.6. ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Az alakváltozás mértéke hajlításnál Hajlításnál az alakváltozást mérnöki alakváltozási

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Rajz 01 gyakorló feladat

Rajz 01 gyakorló feladat Rajz 01 gyakorló feladat Alkatrészrajz készítése Feladat: Készítse el az alábbi ábrán látható kézi működtetésű szelepház alkatrészrajzát! A feladat megoldásához szükséges fájlok: Rjz01k.ipt A feladat célja:

Részletesebben

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak 1. feladat CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak Vetületek képzése, alkatrészrajz készítése (formátum: A4) Készítse el a gyakorlatvezető által kiadott,

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

Geometriai optika. A fénytan (optika) a fényjelenségekkel és a fény terjedési törvényeivel foglalkozik.

Geometriai optika. A fénytan (optika) a fényjelenségekkel és a fény terjedési törvényeivel foglalkozik. Geometriai optika A fénytan (optika) a fényjelenségekkel és a fény terjedési törvényeivel foglalkozik. A geometriai optika egyszerű modell, amely a fény terjedését a fényforrásból minden irányba kilépő

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAD rendszer: Kapcsolódó TÁMOP tananyag: A feladat rövid leírása: Szíjtárcsa mőhelyrajzának elkészítése ÓE-A14 alap közepes haladó

Részletesebben

XVIII. A FÉNY INTERFERENCIÁJA

XVIII. A FÉNY INTERFERENCIÁJA XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,

Részletesebben

Lemez 05 gyakorló feladat

Lemez 05 gyakorló feladat Lemez 05 gyakorló feladat Kivágó (mélyhúzó) szerszám készítése, alkalmazása Feladat: Készítse el az ábrán látható doboz modelljét a mélyhúzással és kivágásokkal! A feladat megoldásához a mélyhúzó szerszámot

Részletesebben

Végeselem módszer 7. gyakorlat

Végeselem módszer 7. gyakorlat SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 7. gyakorlat (kidolgozta: Szüle Veronika egyetemi ts.) Feladat: harang sajátrezgéseinek meghatározása 500 100 500 1000 250 250 1.

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

Fényvezető szálak és optikai kábelek

Fényvezető szálak és optikai kábelek Fényvezető szálak és optikai kábelek Fizikai alapok A fénytávközlés alapvető passzív elemei. Ötlet: 1880-as években Alexander Graham Bell. Optikai szálak felhasználásának kezdete: 1960- as évek. Áttörés

Részletesebben

A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum:

A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum: I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE A NAPFÉNY ÉS A HŐ 1. A meleg éghajlatú tengerparti országokban való kirándulásaitok során bizonyára láttatok a házak udvarán fekete tartályokat kifolyónyílással

Részletesebben

Rajz 02 gyakorló feladat

Rajz 02 gyakorló feladat Rajz 02 gyakorló feladat Alkatrészrajz készítése A feladat megoldásához szükséges fájlok: Rjz02k.ipt Feladat: Készítse el az alábbi ábrán látható tengely alkatrészrajzát! A feladat célja: Az alkatrész

Részletesebben

Geometriai optika. Alapfogalmak. Alaptörvények

Geometriai optika. Alapfogalmak. Alaptörvények Alapfogalmak A geometriai optika a fénysugár fogalmára épül, mely homogén közegben egyenes vonalban terjed, két közeg határán visszaverődik és/vagy megtörik. Alapfogalmak: 1. Fényforrás: az a test, amely

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel

Részletesebben

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató

Részletesebben

Kromatikus diszperzió mérése

Kromatikus diszperzió mérése Kromatikus diszperzió mérése Összeállította: Mészáros István tanszéki mérnök 1 Diszperziós jelenségek Diszperzió fogalma alatt a jel szóródását értjük. A gyakorlatban ez azt jelenti, hogy a bemeneti keskeny

Részletesebben

Összeállítás 01 gyakorló feladat

Összeállítás 01 gyakorló feladat Összeállítás 01 gyakorló feladat Összeállítás-modellezés szerelési kényszerek Feladat: Készítse el az alábbi ábrán látható kézi működtetésű szelep összeállítás modelljét! A rajzkészítés nem része a feladatnak!

Részletesebben

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő 1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

A teljes elektromágneses színkép áttekintése

A teljes elektromágneses színkép áttekintése Az elektromágneses spektrum. Geometriai optika: visszaverődés, törés, diszperzió. Lencsék és tükrök képalkotása (nevezetes sugarak, leképezési törvény) A teljes elektromágneses színkép áttekintése Az elektromágneses

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Tengely jellegű alkatrész CAD modellezése ÓE-A06a alap közepes

Részletesebben

Fürdőszoba tutorial 01

Fürdőszoba tutorial 01 Fürdőszoba tutorial 01 Nyissunk egy új dokumentumot: Ctrl+N vagy File menü/new. Adjuk meg a dokumentum méretét: legyen most egy fektetett A/4-es lapunk. Kattintsunk a Tools Palettán a Rectangle Tool-ra,

Részletesebben

Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék

Részletesebben

Készítsünk fekete lyukat otthon!

Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! BH@HOME Barnaföldi Gergely Gábor, Bencédi Gyula MTA Wigner FK Részecske és Magfizikai Kutatóintézete AtomCsill 2012, ELTE TTK Budapest

Részletesebben

BoxMaker Kezelési útmutató. V-1.2-HUN, 2014-Szept.-10

BoxMaker Kezelési útmutató. V-1.2-HUN, 2014-Szept.-10 BoxMaker Kezelési útmutató V-1.2-HUN, 2014-Szept.-10 BoxMaker alkalmazása A BoxMaker-t arra terveztük, hogy hullámpapírból lehessen vele a Paraméterek bekezdésben leírt dobozokat készíteni. A Paraméterek

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

Lemezalkatrész-Punch Tool I. Lemezalkatrész-tervező modul használata Feladat: Készítse el az alábbi ábrán látható alkatrész alkatrészmodelljét!

Lemezalkatrész-Punch Tool I. Lemezalkatrész-tervező modul használata Feladat: Készítse el az alábbi ábrán látható alkatrész alkatrészmodelljét! Lemezalkatrész-Punch Tool I. Lemezalkatrész-tervező modul használata Feladat: Készítse el az alábbi ábrán látható alkatrész alkatrészmodelljét! 1. Indítson egy új feladatot! 1 New Default Sheet Metal.ipt

Részletesebben

Skeleton Adaptív modellezési technika használata

Skeleton Adaptív modellezési technika használata Adaptív modellezési technika használata Feladat: Készítse el az alábbi ábrán látható belsőégésű motor egyszerűsített összeállítási modelljét adaptív technikával! 1 modellezésnél első lépésként az egész

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg.

A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg. 894 11.4. Kör és körív 11.4. Kör és körív A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg. 11.4.1. Kör/Körív tulajdonságai A kör vagy körív létrehozása előtt állítsa

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A mérés során a fényképen látható eszközök és anyagok álltak a versenyzők rendelkezésére:

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

A fény terjedése és kölcsönhatásai I.

A fény terjedése és kölcsönhatásai I. A fény terjedése és kölcsönhatásai I. A fény terjedése és kölcsönhatásai I. Kellermayer Miklós Geometriai optika, hullámoptika Fényvisszaverődés, fénytörés, refraktometria Teljes belső visszaverődés, endoszkópia

Részletesebben

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő

Részletesebben

8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben. Előkészítő előadás 2015.02.09.

8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben. Előkészítő előadás 2015.02.09. 8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben Előkészítő előadás 2015.02.09. Elméleti áttekintés Gőznyomás: adott hőmérsékleten egy anyag folyadék fázisával egyensúlyt tartó gőzének

Részletesebben

CAD-ART Kft Budapest, Fehérvári út 35.

CAD-ART Kft Budapest, Fehérvári út 35. CAD-ART Kft. 1117 Budapest, Fehérvári út 35. Tel./fax: (36 1) 361-3540 email : cad-art@cad-art.hu http://www.cad-art.hu PEPS CNC Programozó Rendszer Oktatási Segédlet Marás PEPS 5 marási példa A feladatban

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése 6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az

Részletesebben

Kidolgozott minta feladatok optikából

Kidolgozott minta feladatok optikából Kidolgozott minta feladatok optikából 1. Egy asztalon elhelyezünk két síktükröt egymásra és az asztalra is merőleges helyzetben. Az egyik tükörre az asztal lapjával párhuzamosan lézerfényt bocsátunk úgy,

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

10. Differenciálszámítás

10. Differenciálszámítás 0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával rádióhullám infravörös látható ultraibolya röntgen gamma sugárzás

Részletesebben

Tornyai Sándor Fizikaverseny 2009. Megoldások 1

Tornyai Sándor Fizikaverseny 2009. Megoldások 1 Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t

Részletesebben

Atommagok mágneses momentumának mérése

Atommagok mágneses momentumának mérése Korszerű mérési módszerek laboratórium Atommagok mágneses momentumának mérése Mérési jegyzőkönyv Rudolf Ádám Fizika BSc., Fizikus szakirány Mérőtársak: Kozics György, Laschober Dóra, Májer Imre Mérésvezető:

Részletesebben

Gothik zsindely felhelyezési útmutató: A Gothik zsindely fogadószerkezete: A kítűzéses általános ismertetése (lásd az A ábrát és a következő képet)

Gothik zsindely felhelyezési útmutató: A Gothik zsindely fogadószerkezete: A kítűzéses általános ismertetése (lásd az A ábrát és a következő képet) Gothik zsindely felhelyezési útmutató: A Gothik zsindely felhelyezési útmutató csak a Tegola Canadese bitumenes zsindely Alkalmazástechnikai Előírásaival együtt érvényes A Gothik zsindely fogadószerkezete:

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 1 FIZ1 modul Optika feladatgyűjtemény SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása

Részletesebben

Méréstechnika 5. Galla Jánosné 2014

Méréstechnika 5. Galla Jánosné 2014 Méréstechnika 5. Galla Jánosné 014 A mérési hiba (error) a mérendő mennyiség értékének és a mérendő mennyiség referencia értékének különbsége: ahol: H i = x i x ref H i - a mérési hiba; x i - a mért érték;

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Egy kis ismétlés geometriai optikából. A Fermat - elvről

Egy kis ismétlés geometriai optikából. A Fermat - elvről 1 Egy kis ismétlés geometriai optikából Idevágó tanulmányaimat évtizedekkel ezelőtt folytattam, így ideje egy kicsit felfrissíteni az alapvető tudnivalókat. Meglehet, másoknak is hasznára válik ez. A Fermat

Részletesebben

A NAPSUGÁRZÁS MÉRÉSE

A NAPSUGÁRZÁS MÉRÉSE A NAPSUGÁRZÁS MÉRÉSE A Napból érkező elektromágneses sugárzás Ø Terjedéséhez nincs szükség közvetítő közegre. ØHőenergiává anyagi részecskék jelenlétében alakul pl. a légkörön keresztül haladva. Ø Időben

Részletesebben

Egy feladat megoldása Geogebra segítségével

Egy feladat megoldása Geogebra segítségével Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben