Mérési útmutató a Mobil Hírközlés Laboratórium II (VIHI5129) méréseihez

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mérési útmutató a Mobil Hírközlés Laboratórium II (VIHI5129) méréseihez"

Átírás

1 Mérési útmutató a Mobil Hírközlés Laboratórium II (VIHI59) méréseihez IV. mérés GSM mobil tesztkészülék mérése. rész Mérés helye: Híradástechnikai Tanszék Mobil Kommunikációs Laboratórium I.B.3. Összeállította: Balázs Ferenc PhD hallgató Dr. Imre Sándor egyetemi adjunktus Utolsó módosítás:. november 5.

2 . Bevezetés Az előző mérésen a mobil készülék szabványos statisztikus állapotban mérhető paramétereivel ismerkedtünk meg. Ez azt jelenti, hogy a mobil készülék és a bázisállomást reprezentáló teszter egy kábelen keresztül van összekötve, melyen nincs semmiféle zavaró jel tehát tökéletes csatornát produkálunk. Erre azért van szükség, mert a szabványban definiált teljesítmény értékeket, teljesítmény osztályokat és egyéb az előző mérésen meghatározott, megfigyelt értékeket így lehet csak megmérni. Ezen a mérésen a mobil készülék dinamikus paramétereit vizsgáljuk meg. Ez a valós élet szimulálását jelenti a laboratórium keretein belül. Ennek célja, hogy a paramétereket kézben tudjuk tartani és így hitelesen, biztonságosan vizsgáljuk a szabványban definiált küszöbértékeket. Azzal tisztában kell lennünk, hogy a készülékek ilyen típusú vizsgálata nagyon fontos, mert a hálózat minősége függhet egy rossz készüléktől. Például, ha a mobil nem tudja betartani az idősémát, akkor azzal kellemetlenséget okoz az utána következő időrésben lévő előfizetőnek és a bázisállomásnak egyaránt, amiből az előfizető azt a következtetést vonja le, hogy a szolgáltatás minősége nem megfelelő.. Alapismeretek Dinamikus körülmények alatt a tényleges működési körülményeket értjük ami a valós életben is előfordul. Ezeket a vizsgálhatóság szempontjából külön-külön vizsgáljuk. Az alábbiak lépnek fel mint fontos tényezők. Az egyik nagy csoport az interferenciát okozó hatások. A szomszédcsatornás interferencia, amikor a szomszéd csatornán lévő jel spektrumban való átlógása zavarja a másik csatornát. Az azonos csatornás interferencia, ami az azonos csatornán lévő más adó jeléből adódó interferenciát jelenti. Az intermodulációs zavarok, melyek a vevő nemlinearitásából adódnak. Co-channel rejection Co-channel rejection measures the receiver s ability to receive the wanted signal in the presence of an unwanted signal at the same frequency (Fig..9.) Fig.9. Co-channel rejection

3 Fig... Adjacent channel rejection As shown by Fig.9. co-channel rejection specifies that two signals at the same frequency and timeslot be input to the receiver, bit error rate is measured then to ensure the receiver is rejecting the unwanted signal. The HP 89 H requires an external signal generator such as HP 8657 A/B option to generate the unwanted GMSK signal. The test limits for the co-channel rejection are presented in Table.5. type Channel / BER Propagation Error condition rate (%) FACCH/FER TU3/no SCH 4 TCH/FER TU3/no SFH 4 α TCH/FS/RBER Ib TU3/no SFH.9/ α TCH/FS/RBER II TU3/no SFH 4.3 TCH/FS/FER TU3/ SFH 3.37 α TCH/FS/RBER Ib TU3/SFH.5/ α TCH/FS/RBER II TU3/ SFH 8.33 Table.5.Test limits for co-channel rejection Adjacent channel rejection Adjacent channel rejection measures the receiver s ability to receive the wanted signal in the presence of an unwanted signal at an adjacent channel. The adjacent channel can be in the other time slot or in other frequency of the RF spectrum. The adjacent time slot rejection is measured with the active time slot transmitted from the tester at - dbm for handportable and -4 dbm for all other phones and the neighbouring time slots at a level of 9 db higher at -83 dbm / -85 dbm. The test is intended to be performed together with the sensitivity measurement.

4 For the adjacent frequency channel rejection case a stronger GMSK modulated interfering signal is transmitted on a neighbouring channel as shown by Fig... Fig.. shows that depending on the frequency offset from the active channel different power levels are applied. If the offset is only one channel (khz) the interferer has to be 9 db lower, and if the interferer is with an offset of two channels ( 4 khz) then it is transmitted at 4 db higher level. The active channel s power level is -85 dbm The HP 89 H uses an external signal generator such as HP 8657 A/B to generate the unwanted signal. The test limits for this measurement are presented in Table.6. BER type Error rate (%) FER 6.74 α RBER Ib 4. α RBER II 8.33 Table.6. Error rates for adjacent channel rejection Intermodulation rejection The intermodulation rejection measures the impact of interfering signals on the nonlinear parts of the receiver. Besides the active channel two additional signals are transmitted, one is a GMSK modulated signal and the other is a pure CW signal (Fig..). Fig.. Intermodulation rejection As shown by Fig... the frequency relationship of these two signals is of such a nature that they produce intermodulation products of the third order exactly on the receiver frequency of the active channel and their presence decrease the quality of the transmission.

5 The HP 89 H requiers one modulated and one unmodulated external signal generator such as HP 8657 A/B option and HP 8657 A/B to generate the two interfering signals simultaneously. Másik nagy csoport a csatorna tulajdonságaiból adódó zavarok. Fading A következõkben a fading amplitúdó eloszlás segítségével történõ leírásának egy egyenértékû alternatíváját mutatjuk be. A korábbiakból ismert, hogy az amplitúdó sûrûségfüggvénye az alábbi a fa ()= a e σ a σ Vezessük be a jel-zaj viszonyt jellemzõ A T E Γ= = N N s új valószínûségi változót, melynek egy adott értékét -val jelöljük = a T. N. A fenti képletekben N a fehér Gauss-zaj teljesítménysûrûségét jelöli, míg E s a szimbólumenergiát, T pedig a szimbólumidõt. Határozzuk meg Γ várható értékét, vagyis az átlagos jel-zaj viszonyt = [ ] = T [ ] = E s E Γ E A E. N N Figyelembe véve, hogy x és y azonos eloszlású, nulla várható értékû és egyforma szórású valószínûségi változók, ezért σ [ =Ex ] = E[ y ]. Mivel ezért A= x + y, [ ] [ ] [ ] [ ] σ A = E A = E x + y = E x + E y = σ Felhasználva a fenti eredményt a jel-zaj viszony várható értéke az alábbi módon is kifejezhetõ σ = T N. Alkalmazzuk valószínûségi változók transzformációs szabályát az amplitúdót leíró A és a jel-zaj viszonyt jellemzõ Γ valószínûségi változók között. A szabály a következõ f ( a ) A da = f ( ) Γ d,.

6 amibõl f Γ ( ) -t kifejezve f ( ) f ( a ) da Γ A f A a d ( ) = = at d = N da at = N Helyettesítsük a fenti képletbe a két változó közötti összefüggést a at N a f ( ) N e σ N Tσ Γ = = e = e σ at Tσ N s így a jel-zaj viszonyra egyszerû, paraméterû exponenciális eloszlást kaptunk végeredményül... Direkt terjedési úttal rendelkezõ csatorna (Rice-csatorna, Rice-fading) Ha a csatornában van egy idõtõl független direkt terjedési út, akkor a fading leírásában a z = x + x+ j y alakhoz jutunk, ahol x a direkt átviteli útra jellemzõ átviteli konstans. x és y pedig a Rayleigh-fadinghez hasonlóan független Gausseloszlású valószínûségi változók. Ilyenkor a jel amplitúdója az ( ) A= x + x + y kifejezés alapján számolható. Ekkor az amplitúdó valószínûségi sûrûségfüggvénye az a + x a ax fa ()= a e σ I σ σ ún. Rice-eloszlással írható le. Vezessük be Rice-fading esetén is a jel-zaj viszonyt jellemzõ Γ= A T N valószínûségi változó, melynek egy adott értékét -val jelöljük = a T. N Az átlagos jel-zaj viszony Rice-fading esetén az alábbi Vezessük most be a c ( x / + σ ) = E[ Γ] = T. N x σ, =.

7 változót, mely a direkt és a fadinges terjedésbõl származó jelek átlagos teljesítményeinek a hányadosaként arra ad választ, hogy a mobil vevõbe érkezõ jelhez milyen mértékben járulnak hozzá a direkt jelúton illetve a szórt utakon érkezõ jelek. Az jel-zaj viszonyt leíró valószínûségi sûrûségfüggvényt nyilvánvalóan érdemes c függvényeként felírni ahol f ( ) ( c c Γ c ) + ( + ) e I c ( ) = + + c, I ( x ) -t a következõ módon definiáljuk I 4 x x ha x << 4 64 n x ( x) = általában n n= ( n!) x e ha x >>. x 8x π A 4.6 ábrán a jel-zaj viszony sûrûségfüggvényét rajzoltuk fel c-ben paraméterezve. A c= esetén a csatornában nincs direkt jelút s így a vevõbe csak a Rayleigh-fadingnek megfelelõ szórt jelek érkeznek. Ahogy c tart a végtelenhez úgy egyre inkább a közvetlen út hatása dominál a szórt jelekkel szemben. c = -hez érve a sûrûségfüggvénybõl Dirac-függvény lesz a / = helyen. f Γ ( ) c = c = c =5 c = c = ábra Jel-zaj viszony sûrûségfüggvénye c-ben paraméterezve Rice-fadinges csatornában.. Lognormál fading Gyakorlati tapasztalatok azt mutatják, hogy Rayleigh-fadinges csatornában nemcsak a pillanatnyi, hanem az átlagos csillapítás is ingadozik például a terjedési út

8 hosszának véletlen változásai miatt. Ezt a jelenséget szemlélteti a 4.7 ábra. Térerõ [db] t[idõ]vagy x [út]. 4.7 ábra Az átlagos térerõ ingadozásának szemléltetése A jelszint lokális átlaga Gauss-eloszlás szerint ingadozik. Miután a Rayleighfadinges csatornában a várható érték a σ -val (z(t) egyes komponenseinek a szórása) arányos, így az eloszlást a σ szórás (mely definíciójánál fogva a várható értéktõl való eltérésre jellemzõ mennyiség) sztochasztikájával lehet leírni. Azaz esetünkben maga a szórás is valószínûségi változó lesz! Legyen S = log σ σ [db], ahol σ az átlagos szórás négyzete, S statisztikája pedig fs ()= s e πλ D ( s s ) λ ahol λ D az S szórását, s pedig a várható értékét jelöli. A lognormál fadinget az irodalomban Suzuki-fadingnek is szokás nevezni..3. Az eredõ fading eloszlás A fading eredõ eloszlásának meghatározásakor azt vizsgálják, hogy az átlagos jel-zaj viszonnyal normalizált jel-zaj viszony milyen valószínûséggel van egy adott a érték felett, azaz P > a = Rayleigh-fading esetén, mivel D, d f Γ = f X ( x) dx. a x fγ = e = fx () x = e, ezért egyszerû exponenciális eloszláshoz jutunk P > a = e a. A szakirodalomban bevett megoldással ezt az összefüggést az ún. Rayleighpapíron ábrázolják, melynek vízszintes tengelyén az a

9 x = b + log függõleges tengelyén pedig az mennyiségeket ábrázolják. 99,9 % a, y = c+ log ln P > a 99 % Rayleigh-fading 9 % 5 % % %, % 3 db db 4.8 ábra Rayleigh-papír Rayleigh-fadinggel Rayleigh-fading esetén a fenti kifejezés lényegesen egyszerûsödik mely az [ ] a y= c+ log lne = c+ loga,

10 y= ( c b) + x alakra átírva nyilvánvalóvá válik, hogy a fenti kifejezés egyenes, miként az a 4.8 ábrán is látható. Hasonló módon lehet megadni a Rayleigh-lognormál és a Riceeloszlásra is, ahogy az a 4.9 és 4. ábrákon látható. 99,9 % % % % % %, % 4 db 3 db db db db db 4.9 ábra Kumulatív Rayleigh-lognormál eloszlás λ D -vel paraméterezve

11 ,9 % 99 % 9 % 5 % % %, % 3 db db db 4. ábra Kumulatív Rice-eloszlás c-vel paraméterezve db db Az eredõ eloszlás szemléltetése a 4. ábrán látható, ahol a P > a valószínûség a fekete a nem fekete intervallumok átlagos arányával jellemezhetõ. Jelszint [db] a t 4. ábra Az eredõ fadingeloszlás szemléltetése

12 .4. A mobil csatornák típusai és paramétereik A korábbiakban bevezetett ϕ(',') ν τ idõ-frekvencia korrelációs függvénybõl két fontos adat függvényt származtattunk a Φ ( f ') fadingspektrumot és a qt (') késleltetés sûrûségfüggvényt, melyeket két paraméterrel lehet jellemezni A fadingspektrum esetén ez a két paraméter az átlagos Doppler-csúszás + f'( φ f') df' f ' = + φ(') f df' és a Doppler-szórás B F = + ( f) + ' φ( f') df' φ(') f df' ' ( f ) míg a késleltetés sûrûségfüggvény esetében az átlagos késleltetés + tq '(') t dt' t ' = + qt (') dt' és a késleltetés szórás T F = + ( t' ) + q(') t dt' qt (') dt' ( t ) '. A késleltetés szórás tipikus értékeit a 4. táblázatban foglaltuk össze. hely épület <, msec nyílt terep <, msec külváros <,5 msec város < 3 msec T F 4. táblázat A késleltetés szórás tipikus értékei

13 T F A fenti paraméterek alapján a rádiócsatornákat két nagy csoportba oszthatjuk. Idõben diszperzív csatorna ha Ts<< TF ; W >> ; de B F << T Frekvenciában diszperzív csatorna ha T F W << B F ; Ts >> de T F <<, B W ahol T s a szimbólumidõ, W pedig a jel sávszélessége. A korábbiaknak megfelelõen az ún. koherencia sávszélesség, amely elsõsorban szimbólumok közötti áthallás esélyérõl ad felvilágosítást. Többutas terjedés A mobil rádiórendszerekben központi kérdés a rádiócsatorna megfelelõ leírása. Az elõzõ fejezetben megvizsgáltuk miként képezhetjük le az ideális idõinvariáns szûrõnek tekinthetõ rádiócsatornát az alapsávba. Ugyanakkor a rádiócsatorna valós fizikai tulajdonságaiból adódó hatások figyelembe vétele is vizsgálódásunk tárgyát kell képezze. A rádiócsatornában nyilvánvalóan az adó és a vevõ között a jel a különféle tereptárgyakon és a talajon való reflexiók következményeképpen egyszerre több úton is terjed. Amennyiben akár a mobil, akár valamelyik tereptárgy mozog, úgy a vevõ számára a rádiócsatorna idõinvariánssá válik. Ezért ebben a fejezetben tovább közelítve vizsgálatainkat a valós élethez a többutas terjedés fizikai modelljére koncentrálunk. 3. Az alapmodell Minden modell elsõdleges célja a fizikai világ azon jelenségeinek egyszerûsített leírása, melyek érdemi hatással bírnak vizsgálatunkra. A mobil rádiócsatorna esetében az alapmodell a bázisállomás és a mobil vevõ között a rádiójelet ért hatásokat foglalja magában, ahogy azt a 4. ábra mutatja. F s m = Bázisállomás 3 n = N m n = m = M Mobil állomás 4. ábra A mobil rádiócsatorna alapmodellje

14 Az alapmodellben a bázisállomástól ún. fõ terjedési útvonalakon halad a jel addig, amíg valamilyen tereptárgynak ütközve szóródik. Ezután a szóródott, ún. mellék terjedési útvonalakon jut - természetesen egyszerre több irányból is - a mobil vevõbe. A jel valamennyi útvonalon az útvonaltól függõ csillapítást és késleltetést szenved. A modellben fontos szerepet kap a mobil mozgásából adódó Doppler-csúszásnak nevezett frekvenciaeltolódás, melynek számításához figyelembe kell vennünk a mobil sebességét, a mozgás és a hullámterjedés iránya által bezárt szöget, valamint a vivõfrekvenciát. Legyen az ekvivalens alapsávi jelünk a következõ s ekv E () t = at () e 3 T A= $ s jϕ () t ahol E s a szimbólumenergia, T a szimbólumidõ, a(t) a jel amplitúdója, ϕ () t a fázisa és a jel amplitúdóját önkényesen, de a kapott eredmények általánosságát semmiben sem korlátozva egynek választjuk. Ekkor a vivõfrekvenciás jel az alábbi módon írható fel { } st () = Re s+ () t = at ()cos( π f t+ ϕ()) t. Vezessük be a következõ jelöléseket m fõ terjedési útvonal sorszáma (m=,...,m) n mellékútvonal sorszáma (n=,...,n M ) r mn( t) α mn τ mn a csillapítási tényezõ a késleltetés f mn a Doppler-csúszás fv cos c v a mobil sebessége ψ mn c a fénysebesség, az mn útvonalon haladó jel a vevő helyén ψ mn a mozgás és a hullámterjedés iránya által bezárt szög f vivõfrekvencia Az alapmodell és a fenti jelölések alapján az mn útvonalon érkezõ jel komplex elõburkolója az alábbi módon írható fel ( ) mn r () t = α s ( t τ ) e e + mn m n ekv m n j π f t τ j π f mnt amibõl a mobil vevõ helyén a vett jel komplex elõburkolója a valamennyi lehetséges útvonalra való összegzés segítségével állítható elõ M N m rt () = α s ( t τ ) e + m = n= mn ekv mn jπ f ( t τ ) + jπ f t Ha az mn útvonalon haladó jel τ késleltetése független a mellékútvonaltól, mn mn, mn.

15 azaz a szóródás után az egyes mellékutakon közel azonos hosszúságú utat tesz meg a vevõig, vagy csak olyan kis mértékben tér el az egyes utakon, hogy a változás a szimbólumidõhöz képest kicsi, akkor az m-dik fõútvonalat tartalmazó valamennyi adóvevõ útvonal késleltetése jó közelítéssel amiből T m = N m M N n= τ, mn m jπ ft jπ fτmn + jπ fmn t r+ () t = sekv ( t Tm ) e α mn e m= n = z () t alakban írható fel. Bevezetve a mellékútvonal-független komplex z () m t szorzófaktort, valamint alkalmazva a komplex elõburkoló és az alapsávi ekvivalens közötti összefüggést, a komplex alapsávi ekvivalensre az alábbi kifejezés adódik 4. Mérési feladatok M r () t = s ( t T ) z () t. ekv ekv m m m=. Állítsa össze az azonoscsatornás interferencia méréséhez szükséges elrendezést és figyelje meg a vett jel minőségét az interferáló jel teljesítmény növelésének függvényében.. Állítsa össze a szomszédcsatornás interferencia méréséhez szükséges elrendezést és figyelje meg a vett jel minőségét az interferáló jel teljesítmény növelésének függvényében. 3. Állítsa össze az intermodulációs torzítás méréséhez szükséges elrendezést és figyelje meg a vett jel minőségét az interferáló jel teljesítmény növelésének függvényében. Az interferáló jel f +6 Hz frekvenciájú legyen. A teszter által kibocsájtott jel f. 4. Figyelje meg a fading szimulátor által előállított zavar hatásait a vett jelen, melynek paramétereit a szimulátorhoz kapcsolt számítógépen lehet változtatni. 5. Ellenőrző kérdések. Milyen interferencia típusok léphetnek fel a vezetnéknélküli távközlésben? Hogyan lehet ellenük védekezi?. Milyen fading jelenségeket ismer? Hogyan alakulhatnak ki? 3. Házi feladat benyújtása!! 6. Házi feladatok. Számítsa ki az intermodulációs torzításhoz szükséges lehetséges összes frekvenciát 6 Hz távolságig amivel elő lehet idézni intermodulációs zavart.. Állítsa össze rajzban az inerferencia és modulációs zavarok mérésére szolgáló N m

16 elrendezést. A maximálisan rendelkezésre álló berendezések: db GSM teszter (HP 89 H) db jelgenerátor (HP 8657 B), db jelgenerátor GMSK opcióval (HP 8657 op..) db csatornaszimulátor (HP 83E), Kábelek, teljesítményösszegzők. 7. Hivatkozások [] Dr. Pap László: Mobil hírközlés alapjai előadás jegyzet [] Szekeres Béla: Mobil hírközlő rendszerek előadás jegyzet

Mérési útmutató a Mobil infokommunikáció laboratórium 1. méréseihez

Mérési útmutató a Mobil infokommunikáció laboratórium 1. méréseihez Mérési útmutató a Mobil infokommunikáció laboratórium 1. méréseihez GSM II. Mérés helye: Hálózati rendszerek és Szolgáltatások Tanszék Mobil Kommunikáció és Kvantumtechnológiák Laboratórium I.B.113. Összeállította:

Részletesebben

BME Mobil Innovációs Központ

BME Mobil Innovációs Központ rádiós lefedettség elméleti jellemzői és gyakorlati megvalósulása, elméleti alapok rofesszionális Mobiltávközlési Nap 010 Dr. ap László egyetemi tanár, az MT rendes tagja BME Mobil 010.04.15. 1 rádiókommunikáció

Részletesebben

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, 2011. május 19., Budapest

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, 2011. május 19., Budapest JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. 2011. május 19., Budapest Alapfogalmak, fizikai réteg mindenki által l ismert fogalmak (hobbiból azért rákérdezhetek k vizsgán): jel,

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

A rádiócsatorna 1. Mozgó rádióösszeköttetés térerőssége Az E V térerősséget ábrázoljuk a d szakasztávolság függvényében.

A rádiócsatorna 1. Mozgó rádióösszeköttetés térerőssége Az E V térerősséget ábrázoljuk a d szakasztávolság függvényében. A rádiócsatorna. Mozgó rádióösszeköttetés térerőssége Az E V térerősséget ábrázoljuk a d szakasztávolság függvényében..5. ábra Kétutas rádióösszeköttetés térerôssége A rádiósszakasznak az állandóhelyû

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Digitális mérőműszerek

Digitális mérőműszerek KTE Szakmai nap, Tihany Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt KT-Electronic MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális TV jel esetében? Milyen paraméterekkel

Részletesebben

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok) Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)./ Egy televízió készülék meghibásodásainak átlagos száma óra alatt. A meghibásodások száma a vizsgált időtartam hosszától függ. Határozzuk

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

OFDM-jelek előállítása, tulajdonságai és méréstechnikája

OFDM-jelek előállítása, tulajdonságai és méréstechnikája OFDM-jelek előállítása, tulajdonságai és méréstechnikája Mérési útmutató Kidolgozta: Szombathy Csaba tudományos segédmunkatárs Budapest, 2016. A mérés célja, eszközei A jelen laborgyakorlat célja sokvivős

Részletesebben

STATISZTIKAI PROBLÉMÁK A

STATISZTIKAI PROBLÉMÁK A STATISZTIKAI PROBLÉMÁK A HULLÁMTÉR REPRODUKCIÓ TERÜLETÉN 2012. május 3., Budapest Firtha Gergely PhD hallgató, Akusztikai Laboratórium BME Híradástechnikai Tanszék firtha@hit.bme.hu Tartalom A hangtér

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Digitális modulációk vizsgálata WinIQSIM programmal

Digitális modulációk vizsgálata WinIQSIM programmal Digitális modulációk vizsgálata WinIQSIM programmal Lódi Péter(D1WBA1) Bartha András(UKZTWZ) 2016. október 24. 1. Mérés célja Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2016.10.24.

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Feladatok és megoldások a 13. hétre

Feladatok és megoldások a 13. hétre Feladatok és megoldások a. hétre Építőkari Matematika A. Az alábbi függvények melyike lehet eloszlásfüggvény? + e x, ha x >, (a F(x =, ha x, (b F(x = x + e x, ha x, (c F(x =, ha x, x (d F(x = (4 x, ha

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Modulációk vizsgálata

Modulációk vizsgálata Modulációk vizsgálata Mérés célja: Az ELVIS próbapanel használatának és az ELVIS műszerek, valamint függvénygenerátor használatának elsajátítása, tapasztalatszerzés, ismerkedés a frekvencia modulációs

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687) STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Mérési útmutató a Mobil Hírközlés Laboratórium II (VIHI5129) méréseihez

Mérési útmutató a Mobil Hírközlés Laboratórium II (VIHI5129) méréseihez Mérési útmutató a Mobil Hírközlés Laboratórium II (VIHI5129) méréseihez III. mérés GSM mobil tesztkészülék mérés Mérés helye: Híradástechnikai Tanszék Mobil Kommunikációs Laboratórium I.B.113. Összeállította:

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.

Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán

Részletesebben

A gyakorlat célja a fehér és a színes zaj bemutatása.

A gyakorlat célja a fehér és a színes zaj bemutatása. A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ] Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

Searching in an Unsorted Database

Searching in an Unsorted Database Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA Budpesti Műszki és Gzdságtudományi Egyetem Atomfizik Tnszék, dr. Erdei Gáor Ágzti felkészítés hzi ELI projekttel összefüggő képzési és K+F feldtokr Young-féle

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben SCI-Network Távközlési és Hálózatintegrációs Rt. T.: 467-70-30 F.: 467-70-49 info@scinetwork.hu www.scinetwork.hu Nem tudtuk, hogy lehetetlen, ezért megcsináltuk. OFDM technológia és néhány megvalósítás

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával.

Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A Szimulink programcsomag rendszerek analóg számítógépes modelljének szimulálására alkalmas grafikus programcsomag. Egy SIMULINK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

2011. május 19., Budapest UWB ÁTTEKINTÉS

2011. május 19., Budapest UWB ÁTTEKINTÉS 2011. május 19., Budapest UWB ÁTTEKINTÉS Mi az UWB? Hot new topic. Más elnevezések: impulzus rádió, alapsávi rádió, vivő- mentes rádió. Az USA védelmi minisztériuma használta először az UWB elnevezést

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

1: Idõ(tartam), frekvencia (gyakoriság) mérés

1: Idõ(tartam), frekvencia (gyakoriság) mérés MÉRÉSTECHNIKA tárgy Villamosmérnöki szak, nappali II. évf. 4. szem. (tavaszi félév) Fakultatív gyakorlat (2. rész) A pdf file-ok olvasásához Adobe Acrobat Reader szükséges. További feladatokat a jegyzet:

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Jelgenerálás virtuális eszközökkel. LabVIEW 7.1

Jelgenerálás virtuális eszközökkel. LabVIEW 7.1 Jelgenerálás virtuális eszközökkel (mágneses hiszterézis mérése) LabVIEW 7.1 3. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-3/1 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben