XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA
|
|
- Bertalan Szalai
- 8 évvel ezelőtt
- Látták:
Átírás
1 XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA
2
3 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan 200 kilométert vezet hetente. Milyen adatokra van még szükség ahhoz, hogy megbecsülhesse a havi benzinköltséget? A B C D Arra, hogy hány liter benzint fogyaszt az autó egy átlagos héten. Arra, hogy hány liter benzin fér az autóba, és hogy mennyi az üzemanyag literenkénti ára. Az üzemanyag literenkénti árára és arra, hogy hány liter benzint fogyaszt az autó kilométerenként. Gábor lakásának és munkahelyének a távolságára és az üzemanyag literenkénti árára. 1
4 3. 4. dobókocka ii. mc07201 Egy szabályos dobókockával egyszer dobunk. Melyik eseménynek legnagyobb a valószínűsége? A B C A dobott szám 6-os. A dobott szám páratlan. A dobott szám nem nagyobb 4-nél. D A dobott szám legalább 4. 2
5 5. dobókocka ii. mc07202 A dobókocka szemközti oldalain a pöttyök számának összege 7. Egymásra helyezünk két ilyen dobókockát, és egy asztalra állítjuk őket az ábrán látható módon. Legkevesebb hány pötty számolható össze a kilenc látható oldalon? A 42 B 32 C 29 D 26 3
6 6. feladat: kata és zsuzsa MATEMATIKA - 6. ÉVFOLYAM mc174 Két barátnő, Kata és Zsuzsa egyik délután együtt indul haza az iskolából. Egy ideig együtt mennek, majd elbúcsúznak egymástól, és kicsit gyorsabban, egyedül folytatják útjukat hazáig. Útjuk az alábbi diagramon látható. Megtett távolság (m) Kata Zsuzsa Időpont (óra, perc) a) Hány órakor búcsúztak el egymástól a lányok? mc b) Milyen messze lakik Kata az iskolától? mc
7 7. feladat: naprendszer I. mc261 Naprendszerünk 10 bolygóból áll, melyek többek között a Naptól való távolságukban, felszíni hőmérsékletükben, átmérőjükben különböznek egymástól. A Naptól mért távolságon a két, megközelítőleg gömb alakú égitest középpontjainak távolságát értjük. Bolygó Átlagos átmérő Naptól mért átlagos távolság Merkúr km 58 millió km Vénusz km 108 millió km Föld km 150 millió km Mars km 220 millió km Jupiter km 770 millió km Szaturnusz km 1427 millió km Uránusz km 2871 millió km Neptunusz km 4497 millió km Plútó km 5914 millió km Xena km millió km a) mc26101 A vízöntő jegyében a Jupiter és a Mars együtt állnak, ami az jelenti, hogy a Nap, a Mars és a Jupiter egy egyenes mentén helyezkedik el ebben a sorrendben. Ezek alapján rajzold be arányosan az alábbi ábrába a Jupiter középpontjának helyzetét és Naptól való távolságát az együttálláskor! (Az ábrán az égitestek átmérőinek aránya nem élethű.) b) mc26102 Melyik az a bolygó, amelynek átmérője leginkább megközelíti a Föld átmérőjének nagyságát? A B C D Merkúr Vénusz Szaturnusz Mars 5
8 8. feladat: testek Júliaazalábbijellemzéstadjaegytestről. mc38801 Atestnek6oldallapjavan. Atestnek8csúcsavan. Atestnek12élevan. AzalábbitestekközülmelyikreigazJúliamindhárommegállapítása? A B C D 6
9 9. feladat: kedvezmény mc17701 Ft A fenti pulóvert és nadrágot KÉT olyan kupon felhasználásával vásárolták, mint amilyen alább látható. Ft Ezért a kuponért 10% kedvezmény jár bármely, nálunk kapható ruhadarab árából! Egy kupon csak egy ruhadarab vásárlásakor használható fel! Mennyit fizettek a pulóverért és a nadrágért összesen? A B C D Ft-ot Ft-ot Ft-ot Ft-ot 10. 7
10 11. feladat: nézetek I. mc27401 Ildi kockákból összeragasztott egy alakzatot. Az alábbi ábrák az alakzat felül- és elölnézetét mutatják. felülnézet elölnézet A következők közül melyik lehet az az alakzat, amelyet Ildi készített? A B elölnézet elölnézet C D elölnézet elölnézet 8
11 12. feladat: sétálóutca mc32501 Egy városban sétálóutcát építenek. Az utca kövezete felülnézetben most a következőképpen néz ki. Hány sötét kőkockából áll majd a következő alakzat, ha az alakzatok az ábrán látható szabályszerűség szerint növekednek? A 25 B 36 C 41 D 50 9
12 MATEMATIKA - 6. ÉVFOLYAM
É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T
6. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
RészletesebbenXY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA
XY_TNULÓ FELTSOR 8. ÉVFOLYM MTEMTIK 1. feladat: akkumulátor mc006 Egy mobiltelefon akkumulátorának töltöttségi állapota a következőképpen változott két nap leforgása alatt. Habekapcsoljuk,denemhasználjuk,48óraalattmerülleteljesenatelefon.Folyamatoshasználatban
RészletesebbenÉ V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. Példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T
8. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 Példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
RészletesebbenOrszágos kompetenciamérés 2006
Országos kompetenciamérés 2006 -=matematika=- Szepesi Ildikó Értékelési Központ A matematikai eszköztudás A matematikai eszköztudás magában foglalja az egyénnek azt a képességét, amely által érti és elemzi
RészletesebbenA Föld helye a Világegyetemben. A Naprendszer
A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000
RészletesebbenHD ,06 M 5911 K
Bolygó Távolság(AU) Excentricitás Tömeg(Jup.) Tömeg(Nep.) Tömeg(Föld) Sugár(Jup.) Sugár(Nep.) Sugár(Föld) Inklináció( ) Merkúr 0,387 0,206 0,00017 0,0032 0,055 0,0341 0,099 0,382 3,38 Vénusz 0,723 0,007
RészletesebbenXY_TANULÓ FELADATSOR 10. ÉVFOLYAM MATEMATIKA
XY_TNULÓ FELTSOR. ÉVFOLYM MTEMTIK MTEMTIK -. ÉVFOLYM. feladat: autószámlálás mc22 Rita egyik nap az erkélyen állva nézte az elhaladó autókat, és feljegyezte az egyes gépkocsimárkákat, valamint azt, hogy
Részletesebben1. Munkalap. 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra!
1. Munkalap 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra! 2. Rajzoljon merőleges egyenest az e egyenes P pontjába! e P 3. Ossza fel az AB szakaszt 2:3 arányban!
Részletesebben10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
Részletesebben4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK
71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.
Részletesebbenb) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.
Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros
Részletesebben1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?
Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76
RészletesebbenA FÖLD KÖRNYEZETE ÉS A NAPRENDSZER
A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,
RészletesebbenFUSD LE A NAPRENDSZERT!
FUSD LE A NAPRENDSZERT! Kedves Naprendszerfutók! A Föld még egyszer sem kerülte meg a Napot azóta, hogy úgy döntöttünk, hogy az idei Kutatók Éjszakáján lefutjuk a Naprendszert legalábbis annak méretarányos
Részletesebben1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
Részletesebben1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt?
1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt? A) 35 B) 210 C) 343 D) 1320 E) 1728 2. Hány olyan háromjegyű természetes szám van,
RészletesebbenKompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
RészletesebbenCurie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető
RészletesebbenKOZMIKUS KÖRNYEZETÜNK
KOZMIKUS KÖRNYEZETÜNK 1. Hogyan épül fel a ma ismert világegyetem? Helyezze el a fogalmakat a megfelelő csoportokba! Nevezze meg a hiányzó csoportokat! 2.Egészítse ki, és lássa el magyarázattal (számok
RészletesebbenIV. Felkészítő feladatsor
IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a
RészletesebbenA FÖLD-HOLD RENDSZER MODELLJE
ELTE TTK KOZMIKUS ANYAGOKAT VIZSGÁLÓ ŰRKUTATÓ CSOPORT PLANETOLÓGIAI KÖRE OKTATÓI SEGÉDANYAG KÖZÉPISKOLA 8-12. OSZTÁLY A FÖLD-HOLD RENDSZER MODELLJE BOLYGÓTUDOMÁNY A jelen kiadvány elérhető elektronikus
RészletesebbenPróba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
RészletesebbenMelyik földrészen található hazánk?
Miskolc - Szirmai Református Általános Iskola, AMI és Óvoda OM 201802 e-mail: refiskola.szirma@gmail.com 3521 Miskolc, Miskolci u. 38/a. Telefon: 46/405-124; Fax: 46/525-232 Iskola: Csapatnév: 1. Nevezzétek
RészletesebbenCSILLAGÁSZATI TESZT. 1. Csillagászati totó
CSILLAGÁSZATI TESZT Név: Iskola: Osztály: 1. Csillagászati totó 1. Melyik bolygót nevezzük a vörös bolygónak? 1 Jupiter 2 Mars x Merkúr 2. Melyik bolygónak nincs holdja? 1 Vénusz 2 Merkúr x Szaturnusz
RészletesebbenNÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre
RészletesebbenSzövegértés 4. osztály. A Plútó
OM 03777 NÉV: VIII. Tollforgató 206.04.02. Monorierdei Fekete István Általános Iskola : 223 Monorierdő, Szabadság út 43. : 06 29 / 49-3 : titkarsag@fekete-merdo.sulinet.hu : http://www.fekete-merdo.sulinet.hu
RészletesebbenMATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
RészletesebbenIskolakód 2008/2009. S ZÖVEGÉRTÉS 8. év f olyam. Az iskola Név:... Osztály: bélyegzője:
Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Iskolakód 5 Évfolyam Osztálykód Naplósorszám Nem 2008/2009. S ZÖVEGÉRTÉS 8. év f olyam Az iskola Név:...
RészletesebbenJÖVŐKÉP az ELKÖVETKEZENDŐ SZÁZADOKRA
JÖVŐKÉP az ELKÖVETKEZENDŐ SZÁZADOKRA A XXI. században a világbéke megvalósul, 300 évig fog tartani. A Földön hatalmas földrajzi változások mennek végbe, a tudományos fejlődés lesz a legszembetűnőbb. Majdnem
RészletesebbenMATEMATIKA C 9. évfolyam 2. modul SZÁMOLGATUNK
MATEMATIKA C 9. évfolyam 2. modul SZÁMOLGATUNK Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 2. MODUL: SZÁMOLGATUNK TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc
a feladat sorszáma maximális elért összesen II./A rész 13. 12 14. 12 15. 12 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
RészletesebbenSŰRŰSÉG 1,27 g/cm 3 TÁVOLSÁG A NAPTÓL 2876 millió km KERINGÉS HOSSZA 84 év ÁTLAGHŐMÉRSÉKLET 76 K = 197 C
NEPtuNuSZ uránusz FÖLD Jeges gázóriás 49.528 km SŰRŰSÉG 1,64 g/cm 3 TÁVOLSÁG A NAPTÓL 4503 millió km KERINGÉS HOSSZA 60 év ÁTLAGHŐMÉRSÉKLET 72 K = 201 C Jeges gázóriás 51.118 km SŰRŰSÉG 1,27 g/cm 3 KERINGÉS
RészletesebbenFigyeljük meg, hány dolgozata lett jobb, rosszabb, ugyanolyan értékű, mint az átlag!
Átlag Kidolgozott mintapélda Bence hét matematikadolgozatának érdemjegyei:,,,,,, Szeretné kiszámolni a dolgozatokra kapott érdemjegyeinek átlagát. Bence jegyei:,,,,,, Jegyek átlaga: ( + + + + + + ) : 7
RészletesebbenNév:. Dátum: 2013... 01a-1
Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..
RészletesebbenKéplet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
RészletesebbenKvíz1. Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre.
Kvíz1 Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre. A táblázatban látható szabályszerségek alapján melyik képlettel
Részletesebben4. osztályos feladatsor II. forduló 2014/2015. tanév
Iskola: 1 Csapatnév: 4. osztályos feladatsor II. forduló 2014/2015. tanév 1. Milyen mozgásokat végez a Föld? Töltsétek ki a táblázatot! Mozgás Mi körül? Időtartama Következménye 2. A repülőtéren összegyűltek
RészletesebbenII. feladatsor. A helyes megoldást jelöld be X-szel! # Feladat Válaszok. 1. Térképkoordináták II A B C D. 2. Alakzatok A B C D
II. feladatsor helyes megoldást jelöld be X-szel! # Feladat Válaszok 1. Térképkoordináták II 2. lakzatok 3. una a), b) 4. Vitorláskölcsönzés 5. Időeltolódás I 6. Súly 7. Négyzetek 8. laprajz 9. Torna E
RészletesebbenPISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
Részletesebbentörtet, ha a 1. Az egyszerűsített alak: 2 pont
1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az
RészletesebbenFELADATOK ÉS MEGOLDÁSOK
3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó
RészletesebbenTömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
RészletesebbenKisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
RészletesebbenOktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám
71358932434 71457472261 71605522862 71650660111 71660992975 71665377048 71679875605 71768484518 71768486497 71769281879 71833697122 71872475320 71943429914 71959440135 71959443861 2015-01-17 10:00 9. évfolyam
RészletesebbenKompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat
Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő
RészletesebbenMinden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.
1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen
RészletesebbenMATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA
II. A rész II. B rész a feladat sorszáma maximális 13. 10 14. 14 15. 12 17 17 ÖSSZESEN 70 elért nem választott feladat maximális I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum javító tanár összesen
Részletesebben1. Néhány híres magyar tudós nevének betűit összekevertük;
1. Néhány híres magyar tudós nevének betűit összekevertük; Tudod-e, kik ők, es melyik találmány fűződik a nevükhöz az alább felsoroltak közül? MÁJUS NE ONNAN... találmánya:... SOK DELI NYÁJ... találmánya:...
RészletesebbenMinden feladat teljes megoldása 7 pont
Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,
RészletesebbenMATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.
RészletesebbenA Naprendszer középpontjában a Nap helyezkedik el.
A Naprendszer középpontjában a Nap helyezkedik el. A NAPRENDSZER ÉS BOLYGÓI A Nap: csillag (Csillag = nagyméretű, magas hőmérsékletű, saját fénnyel rendelkező izzó gázgömb.) 110 földátmérőjű összetétele
RészletesebbenA világegyetem szerkezete és fejlődése. Összeállította: Kiss László
A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.
Részletesebben1. Feladatsor. I. rész
. feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható
Részletesebben1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét?
1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét? A) 37 m B) 22 m C) 30 m D) 44 m E) 105 m 2. Ádám három barátjával közösen a kis kockákból
RészletesebbenSzínes érettségi feladatsorok matematikából középszint írásbeli
Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható
RészletesebbenPYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6
Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica
RészletesebbenKálmán Eszter SZINASZTRIA. Kapcsolatok az asztrológia tükrében
Kálmán Eszter SZINASZTRIA Kapcsolatok az asztrológia tükrében Előszó Önmagunkra a kapcsolataink tükrében látunk rá a legjobban: kik vagyunk valójában, mi a Sorsunk, mikor, kivel mi a feladatunk. Mind olyan
Részletesebbena) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...
Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I
RészletesebbenA feladatlap 5 6. o. Országos döntı Számkeresztrejtvény
A feladatlap 6. o. Országos döntı.. 8. Számkeresztrejtvény Azonosító: a b c Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
RészletesebbenXLVII. Rátz László Vándorgyűlés Gyula, július 3-6. Balázsi Ildikó és Szepesi Ildikó
Az Országos kompetenciamérés matematikatesztjének jellemzői és iskolai visszajelzése XLVII. Rátz László Vándorgyűlés Gyula, 2007. július 3-6. Balázsi Ildikó és Szepesi Ildikó Kompetencia-alapú oktatás
RészletesebbenSzerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2018/2019-es tanévben TESZT. matematikából
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
RészletesebbenX. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:
1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)
RészletesebbenCsillagászati földrajz I-II.
Tantárgy neve Csillagászati földrajz I-II. Tantárgy kódja FDB1305; FDB1306 Meghirdetés féléve 2 Kreditpont 2+1 Összóraszám (elm.+gyak.) 1+0, 0+1 Számonkérés módja kollokvium + gyakorlati jegy Előfeltétel
RészletesebbenFOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete
FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete csillag: csillagrendszer: Nap: Naprendszer: a Naprendszer égitestei: plazmaállapot: forgás: keringés: ellipszis alakú pálya: termonukleáris
RészletesebbenM A T EMATIKA 9. évfo lyam
Fıvárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet Az iskola Az osztály A tanuló A tanuló neme: Kompetenciaalapú mérés 2007/2008. M A T EMATIKA 9. évfo lyam A változat Az FPPTI nem járul hozzá a
RészletesebbenVI.7. RÁCSODÁLKOZÁS. A feladatsor jellemzői
VI.7. RÁSOÁLKOZÁS Tárgy, téma feladatsor jellemzői háromszögek, négyszögek területe rácssokszögek segítségével. Előzmények él terület fogalma. már ismert terület fogalom (főképp a háromszög és a négyszögek
Részletesebben1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5
WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1
RészletesebbenVI. Felkészítő feladatsor
VI. Felkészítő feladatsor I. 1. Egyszerűsítse az y 3 y 2 y 1 törtet, ha y 1. 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 450X szám 6-tal osztható? 3. Minden utca zajos. Válassza ki az alábbiak
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenPróbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
Részletesebben8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
RészletesebbenFeladatgyűjtemény matematikából
Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes
RészletesebbenOKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET TESZT matematikából a 2014/2015-es tanévben
RészletesebbenA Naprendszer meghódítása
A belső bolygók Merkúr: Messenger A Naprendszer meghódítása Összeállította: Juhász Tibor, 2002 Merkúr Mariner-10 1974. márc. 29. 704 km 1974. szept. 21. 47000 km 1975. márc. 16 327 km Start: 2004. augusztus
RészletesebbenCurie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
RészletesebbenJavítókulcs M a t e m a t i k a
6. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2011 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2011-es Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében.
RészletesebbenMicrosoft PowerPoint XP
Prezentáció Microsoft PowerPoint XP Feladatgyűjtemény 1. FELADAT AZ ELŐADÁS-TERVEZŐ VARÁZSLÓ HASZNÁLATA, MENTÉS, MENTÉS MÁSKÉNT Hozzon létre egy Marketingterv típusú bemutatót az Előadás-tervező varázsló
RészletesebbenPYTAGORIÁDA Az országos forduló feladatai 37. évfolyam, 2015/2016-os tanév
Kategória P 6 1. Zsombornak a szekrényben csak fekete, barna és kék pár zoknija van. Ingjei csak fehérek és lilák, nadrágjai csak kékek és barnák. Hányféleképpen felöltözve tud Zsombor iskolába menni,
RészletesebbenFizika példák a döntőben
Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén
RészletesebbenTrigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
RészletesebbenÉrettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenMATEMATIKA KISÉRETTSÉGI 2012. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29. Pontszám
MATEMATIKA KISÉRETTSÉGI 2012. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont
Részletesebben} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
RészletesebbenMATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat2 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.
RészletesebbenGeometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
RészletesebbenVIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?
VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.
Részletesebben1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány
RészletesebbenA felmérési egység kódja:
A felmérési egység lajstromszáma: 0193 A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Faipar//30/Ism/Ált/b Faipar szakképesítés-csoportban, a célzott, 30-as szintű szakképesítéssel
RészletesebbenIV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály
IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím SG-s csoport Pontszám 2016. január 16. II. Időtartam: 135 perc STUDIUM
RészletesebbenMATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. október 0. KÖZÉPSZINT I. 1) Számítsa ki 5 és 11 számtani és mértani közepét! A számtani közép értéke: 7. A mértani közép értéke: 55. Összesen: pont ) Legyen az A halmaz a 10-nél
RészletesebbenMATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 006. október 5. EMELT SZINT I. ) Oldja meg az alábbi egyenleteket a valós számok halmazán! lg x+ 7 + lg x+ = (5 pont) a) b) x x (6 pont) a) A logaritmus azonosságait és a 0-es alapú
RészletesebbenTestLine - Matematika teszt Minta feladatsor
Hello! Ez egy matematikával kapcsolatos teszt. 15 kérdésből áll. Sok sikert! Ebben az egyenletben mennyi az x értéke? 32x+1-3x+2 = 162. (1 helyes válasz) 1. 1:37 Normál x=2 x=4 x=3 Egy iskolai kosárlabdacsapat
RészletesebbenTartalom Fogalmak Törvények Képletek Lexikon
Fizikakönyv ifj. Zátonyi Sándor, 016. Tartalom Foalmak Törvények Képletek Lexikon A szabadesés Az elejtett kulcs, a fáról lehulló alma vay a leejtett kavics füőleesen esik le. Ősszel a falevelek azonban
RészletesebbenPRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenMATEMATIKA C 6. évfolyam 4. modul A KOCKA
MATEMATIKA C 6. évfolyam 4. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 4. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai
RészletesebbenNaprendszer mozgásai
Bevezetés a csillagászatba 2. Muraközy Judit Debreceni Egyetem, TTK 2017. 09. 28. Bevezetés a csillagászatba- Naprendszer mozgásai 2017. szeptember 28. 1 / 33 Kitekintés Miről lesz szó a mai órán? Naprendszer
Részletesebben