A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény"

Átírás

1 A feladatlap 6. o. Országos döntı.. 8. Számkeresztrejtvény Azonosító: a b c Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı pontok száma összesen: = 7 p. Az üres és a betőket tartalmazó négyzetekbe kell írni a számokat. Vízszintes a. Egy személygépkocsi országúton km-en átlagosan 8 liter benzint fogyaszt, városban litert. A km-óra km-t mutat. Az út harmadát városban tette meg, a többit országúton. Hány liter benzint használhatott el eddig a gépkocsi? d f l n j h g o e m k i b. Viktor úgy helyezte el a kockáit, hogy az elsı sorba hármat rakott, s minden további sorba -vel többet. Hány kocka van az elsı öt sorban összesen? d. Egy lécet úgy főrészelnek két darabra, hogy az egyik -szor akkora, mint a másik. Hány cm hosszú a nagyobbik darab, ha az egész léc m 6 cm hosszú? f. Januártól júniusig minden nap feljegyeztem a napi középhımérsékletet. Január: - ºC, február: - ºC, március: 7 ºC, április: ºC, május: ºC, június: ºC. Hány ºC a hat hónap alatti átlagos napi kızéphımérséklet? g. Egy repülıgép 8 km-es útra indult. Az elsı leszállóhelyig megtette az út harmadrészét. Hány km van még hátra az útjából? cm cm h. A kıdarabot a mérıhengerbe tettük. Hány köbcentiméter a kıdarab térfogata?

2 j. Hány másodperc alatt halad át a híd lábához érkezı vonat a hídon, ha egy óra alatt 6 kilométert tesz meg? HÍD 7 8 km n. Egészítsd ki az alábbi cm -es, g tömegő kockákból álló építményt olyan téglatestté, amelynek alapterülete cm, s tömege g! Hány gramm a kiegészítéshez használt kockák tömege összesen? o. A strand medencéjét két tartályból töltik fel. Az egyikbıl és fél óra alatt 78 liter, a másikból 8 liter víz folyik a medencébe. Hány literrel több folyik a második tartályból a medencébe óra alatt? Függıleges a. Egy 6 literes medence óra alatt telik meg, ha egyenletesen folyik a csapból a víz. Hány liter víz folyik a medencébe 8 perc alatt? c. Egy m alapterülető lakás ára 8 millió Ft. Hány négyzetméternyi lakás ér 8 Ft-ot? e. Egy 8 m hosszú alumínium vezeték tömege 86 g. Hány gramm tömegő vezeték marad, ha felhasználunk belıle egy m-es darabot, majd egy 6 g tömegő részt?

3 g. Az edényben lévı olajnak 6 kg a tömege. Hány deciliter olajnak a tömege 7 g? (Az ábráról leolvasható az edényben lévı olaj mennyisége.) l h. Két autó egymással ellentétes irányba egyszerre indul el egy városból. Az egyik km-t tesz meg óránként, a másik km-t. Indulás után hány perc múlva lesz közöttük 6 km távolság? i. Egy km-es útnak megtettük a részét. Hány m-es utat kellett még megtennünk? k. Egy kismotor másfél perc alatt métert tett meg. Mennyi utat tett meg ilyen sebességgel perc mp alatt? l. Egy kerékpáros óra alatt ért A faluból a B faluba. Továbbra is ilyen sebességgel haladva 6 perc alatt ért a C faluba. Hány km-re van A-tól a C falu? A B km m. Egy m-es szalagnak levágták a részét. Hány cm maradt?

4 Országos döntı A feladatlap 6. o. A számkeresztrejtvény megoldása Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı pontok száma összesen: = 7 pont. Vízszintes a. Az út km Az út harmadrésze km : = 7 km km-enként litert fogyaszt. 7 km-en 7 liter = 87 liter a fogyasztás. Az út kétharmad része km : = km km-enként 8 litert fogyaszt. km-en 8 liter = 7 liter a fogyasztás. Az összes benzinfelhasználás: 87 l + 7 l = l b. Az elsı öt sorban összesen kocka van d. 6 cm : = 7 cm f. ( ) : 6 = g. 8 km : = 7 km h. cm 6 cm = cm x x j. osztásköz km = m osztásköz m : = m A vonat hossza m = 8 m A híd hossza m = 6 m óra alatt 6 m perc alatt 6 m mp alatt m (8 m + 6 m)-t : = mp alatt tesz meg. n. cm g 6 cm g m = V : t a = 6 cm : cm = cm A kiegészítéshez használt kockák térfogata 6 cm cm = cm, tömege g. o. és fél óra alatt 8 l 78 l = literrel folyik ki több víz a.-ból. óra alatt l = liter.

5 Függıleges a. perc alatt 6 liter perc alatt 6 l : = liter 8 perc alatt liter 8 = liter c. m 8 Ft m 8 : = Ft 8 : = m -es lakás ér 8 Ft-ot. e. 8 m 86 g m 86 g : 8 = 7 g m 7 g = g Marad 86 g g = g m Ezután marad g 6 g = 7 g. 6g g. 8 liter olaj tömege 6 kg liter olaj tömege 6 kg : 8 = 8 kg liter = liter = dl 7 kg h. óra alatt km + km = 8 km-rel távolodnak egymástól. 6 km távolság (6 : 8) 7 óra = perc múlva lesz közöttük. i. m : 7 = m k. mp alatt m mp alatt m : = m 6 mp alatt m 6 = 6 m. l. osztásköz m osztásköz m : = m AB távolság m = m = km 6 perc alatt m-t tett meg. perc alatt m : 6 = m-t tett meg. 6 perc alatt m 6 = m = km-t tett meg. Az AC távolság km + km = km. m. cm : = cm maradt meg.

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat

Részletesebben

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. szakiskolai évfolyam 1. félév ESZKÖZÖK Matematika A 9. szakiskolai évfolyam Betűkészlet csoportalakításhoz A D G B E H C F G H I J Matematika A 9. szakiskolai

Részletesebben

3 6. o. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2012

3 6. o. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2012 73. Debrecenben az UNIÓ áruház 4 m 5 m-es oldalfalának tömege 26 kg. Ez a fal olyan üvegből készült, amelyből 1 m 3 -nek a tömege 26 kg. Milyen vastag ez az üvegfal? 1 m 3 -nek a tömege 26 kg 26 kg térfogata

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

DÖNTŐ 2013. április 20. 7. évfolyam

DÖNTŐ 2013. április 20. 7. évfolyam Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

XY_TANULÓ FELADATSOR 10. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 10. ÉVFOLYAM MATEMATIKA XY_TNULÓ FELTSOR. ÉVFOLYM MTEMTIK MTEMTIK -. ÉVFOLYM. feladat: autószámlálás mc22 Rita egyik nap az erkélyen állva nézte az elhaladó autókat, és feljegyezte az egyes gépkocsimárkákat, valamint azt, hogy

Részletesebben

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8.

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8. Pálmay Lóránt Matematikai Tehetségkutató Verseny 2016. január 8. Fontos információk: Az alábbi feladatok megoldására 90 perced van. A feladatokat tetszőleges sorrendben oldhatod meg. A megoldásokat indokold,

Részletesebben

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA XY_TNULÓ FELTSOR 8. ÉVFOLYM MTEMTIK 1. feladat: akkumulátor mc006 Egy mobiltelefon akkumulátorának töltöttségi állapota a következőképpen változott két nap leforgása alatt. Habekapcsoljuk,denemhasználjuk,48óraalattmerülleteljesenatelefon.Folyamatoshasználatban

Részletesebben

Kompetencia Alapú Levelező Matematika Verseny

Kompetencia Alapú Levelező Matematika Verseny Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő

Részletesebben

Mozgással kapcsolatos feladatok

Mozgással kapcsolatos feladatok Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek

Részletesebben

A fordított út módszere és a gráfok

A fordított út módszere és a gráfok A fordított út módszere és a gráfok 1. feladat: Ilonka az els nap elköltötte pénzének felét, a második nap a meglév pénzének egyharmadát, a harmadik nap a meglév pénz felét, negyedik nap a meglév pénz

Részletesebben

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap ÖVEGES korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny. (országos) forduló 8. o. 0. A feladatlap. feladat Egy 0, kg tömegű kiskocsi két végét egy-egy azonos osszúságú és erősségű, nyújtatlan rugóoz

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából

Részletesebben

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2. Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése

Részletesebben

DÖNTİ április évfolyam

DÖNTİ április évfolyam Bor Pál Fizikaverseny 20010/2011-es tanév DÖNTİ 2011. április 9. 7. évfolyam Versenyzı neve:.. Figyelj arra, hogy ezen kívül még két helyen (a bels ı lapokon erre kijelölt téglalapokban) fel kell írnod

Részletesebben

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. Írd le számokkal! Hat, tizenhat,,hatvan, hatvanhat, ötven, száz, tizenhét, húsz nyolcvankettı, nyolcvanöt. 2. Tedd ki a vagy = jelet! 38 40 2 42 50+4

Részletesebben

EGYENLETEK. Mérleg-elv. = + x 1. = x + 12 2. 2 x + = 1 3x 10. = 1. 17. 13 3x. 5 x 11. ( ) Abszolutértékes egyenletek, egyenlőtlenségek. 28.

EGYENLETEK. Mérleg-elv. = + x 1. = x + 12 2. 2 x + = 1 3x 10. = 1. 17. 13 3x. 5 x 11. ( ) Abszolutértékes egyenletek, egyenlőtlenségek. 28. EGYENLETEK Mérleg-elv..... 6. + = 7 = + = 7+ 7+ 6 + = + = = ( ) 7. = + + 6 8 6 8. = 7 7 9.. 7 = + ( ) + + =. + Abszolutértékes egyenletek, egyenlőtlenségek. = 7. =. =. 8 = 6. 7 9 = 7. = 8. 8 = 9. =. 6.

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

Keresztnév: Vezetéknév:

Keresztnév: Vezetéknév: Keresztnév: Vezetéknév: ertifikáltmérésmatematikai feladatlapja ertifikač nýtestzmatematiky eloslovenskétestovanie ž iakov9.roč níkazš T9-200 Kedvestanulók, amatematikaifeladatlapotkaptátokézez.teszt20feladatotartalmaz.

Részletesebben

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge? Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es

Részletesebben

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan

Részletesebben

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2? Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat A tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a hajóba. Rögtön mőködésbe hoztak

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok

Részletesebben

KÖZÉPDÖNTİ 2010. március 20. 10.00. 7. évfolyam

KÖZÉPDÖNTİ 2010. március 20. 10.00. 7. évfolyam Bor Pál Fizikaverseny 2009/2010-es tanév KÖZÉPDÖNTİ 2010. március 20. 10.00 7. évfolyam Versenyzı neve:.. Iskola:.. Felkészítı tanár neve:. Elérhetı pontszám 10 pont 10 pont 10 pont 10 pont 40 pont Pontszámok:

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

5-6. osztályos kategória

5-6. osztályos kategória ISKOLA NEVE:. CSAPAT NEVE: TELEPÜLÉS:. 5-6. osztályos kategória 1. feladat lakásfelújítás Egy fiatal házaspár lakást vásárol Budapesten, a lakás árának csak a felét fizették ki az eladónak, ami 4 000 000

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

Figyeljük meg, hány dolgozata lett jobb, rosszabb, ugyanolyan értékű, mint az átlag!

Figyeljük meg, hány dolgozata lett jobb, rosszabb, ugyanolyan értékű, mint az átlag! Átlag Kidolgozott mintapélda Bence hét matematikadolgozatának érdemjegyei:,,,,,, Szeretné kiszámolni a dolgozatokra kapott érdemjegyeinek átlagát. Bence jegyei:,,,,,, Jegyek átlaga: ( + + + + + + ) : 7

Részletesebben

Egyenletek, egyenlőtlenségek VIII.

Egyenletek, egyenlőtlenségek VIII. Egyenletek, egyenlőtlenségek VIII. 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet:

Részletesebben

A Jedlik Ányos Országos Általános Iskolai Matematikaverseny FELADATAI MEGOLDÁSAI. 1. forduló. 3 4. o.: 1 50. feladat és 5 6. o.: 26 75.

A Jedlik Ányos Országos Általános Iskolai Matematikaverseny FELADATAI MEGOLDÁSAI. 1. forduló. 3 4. o.: 1 50. feladat és 5 6. o.: 26 75. MÉRÜNK ÉS SZÁMOLUNK 29 A Jedlik Ányos Országos Általános Iskolai Matematikaverseny FELADATAI és MEGOLDÁSAI 1. forduló 3. o.: 1 5. feladat és 5 6. o.: 26 75. feladat Szerkesztette: Jármezei Tamás szakértő

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

Mérések szabványos egységekkel

Mérések szabványos egységekkel MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos

Részletesebben

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E! Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,

Részletesebben

Kvíz1. Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre.

Kvíz1. Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre. Kvíz1 Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre. A táblázatban látható szabályszerségek alapján melyik képlettel

Részletesebben

EGYENLETEK, EGYENLŐTLENSÉGEK

EGYENLETEK, EGYENLŐTLENSÉGEK EGYENLETEK, EGYENLŐTLENSÉGEK Elsőfokú egyenletek megoldása mérleg elvvel Az egyenletek megoldása során a következő lépéseket hajtjuk végre: a kijelölt műveletek elvégzésével, az egynemű kifejezések összevonásával

Részletesebben

3 6. 3 4. o.: 1 50. feladat. 5 6. o.: 26 75. feladat. Mérünk és számolunk 2010 FELADATGYŐJTEMÉNY AZ ÁLTALÁNOS ISKOLA. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny

3 6. 3 4. o.: 1 50. feladat. 5 6. o.: 26 75. feladat. Mérünk és számolunk 2010 FELADATGYŐJTEMÉNY AZ ÁLTALÁNOS ISKOLA. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny Mérünk és számolunk 21 FELADATGYŐJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat Szerkesztette: Jármezei Tamás Lektorálta: Dr.

Részletesebben

= 4perc40sec időtartamig v 2. = 4perc55sec időtartamig v 3

= 4perc40sec időtartamig v 2. = 4perc55sec időtartamig v 3 Első feladat a) Ioana, Catalin és Raluca VI-os osztálytársak, villamossal mennek haza.útközben mérik az időt a mobil telefonukkal és leolvassák a sebesség értékét a villamos sebességmérőjéről. A villamos

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 1 matematikából

Részletesebben

Paraméterek listája mértékegység nélkül

Paraméterek listája mértékegység nélkül Paraméterek listája mértékegység nélkül Ajtó orientáció Alkatrészek típusa Állapot Állásfoglalás Anyag Anyaga szerkezete Anyaga szövet Aprító típusa Audio/video eszközok csatlakozási száma Autó márka Autó

Részletesebben

7 10. 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat

7 10. 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat -1- Fizikaiskola 2012 FELADATGYŰJTEMÉNY a 7 10. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat Szerkesztette: Jármezei Tamás (1 75. feladat)

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2008. NOVEMBER 22.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2008. NOVEMBER 22.) 3. osztály 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? Gyöngyi gyöngyszemeket fűz egy zsinegre. Először 1 pirosat, utána 2 sárgát, aztán 3 zöldet, majd újra 1 piros, 2 sárga és

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Generálna skúška. Test z matematiky

Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Generálna skúška. Test z matematiky Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ Generálna skúška Test z matematiky Kedves Tanulók! A matematika feladatlapot kaptátok kézhez. A feladatlap 30 feladatot

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

TestLine - Gergelyfi J. tesztje 6. évfolyam Minta feladatsor

TestLine - Gergelyfi J. tesztje 6. évfolyam Minta feladatsor 2017.01.11. 06:51:44 1. következő ábrán egy kirándulóterület szintvonalas 2:12 Normál térképe látható, amelyen 4 túraútvonal is szerepel. ( szintvonal az azonos tengerszint feletti magasságban lévő pontokat

Részletesebben

SZÁMKERESZTREJTVÉNYEK

SZÁMKERESZTREJTVÉNYEK Róka Sándor SZÁMKERESZTREJTVÉNYEK Bővített és átdolgozott kiadás TARTALOM Bevezetés 7 Keresztező feladatok (1 26 számkeresztrejtvény) 11 Egyszerűbb számkeresztrejtvények (27 33. számkeresztrejtvény) 83

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat1 JVÍTÁSI-ÉRTÉEÉSI ÚTMUTTÓ 201. január 18. javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 6. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

A kazánokról: Nagy víztér, stabil égés 2 KOCKA BÁLA 3 KOCKA BÁLA 1 KÖR BÁLA. ALTHERM KFT H-6800 Hódmezővásárhely Andrássy út 29

A kazánokról: Nagy víztér, stabil égés 2 KOCKA BÁLA 3 KOCKA BÁLA 1 KÖR BÁLA. ALTHERM KFT H-6800 Hódmezővásárhely Andrássy út 29 ALTHERM KFT H-6800 Hódmezővásárhely Andrássy út 29 T +36 62 533 227 T +36 30 9551317 F +36 62 533 228 E jozsef.sarusi-kiss@altherm.hu W www.altherm.hu W www.szalmatuzeles.hu 2 KOCKA 3 KOCKA 1 KÖR A kazánokról:

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára 8. témakör: FÜGGVÉNYEK A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Függvények: 6-30. oldal. Ábrázold a koordinátasíkon azokat a pontokat, amelyek koordinátái kielégítik a következő

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. A háromszög oldalainak nagysága:

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. A háromszög oldalainak nagysága: MATEMATIKA KISÉRETTSÉGI 2010. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. május 18. KÖZLEKEDÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

Név:. Dátum: 2013... 01a-1

Név:. Dátum: 2013... 01a-1 Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

matematikából 4. TESZT

matematikából 4. TESZT Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA

Részletesebben

Számtani alapok. - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag TÉMAKÖR TARTALMA

Számtani alapok. - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag TÉMAKÖR TARTALMA Számtani alapok TÉMAKÖR TARTALMA - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag ALAPMŐVELETEK A matematikai alapmőveletek az összeadás

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Gyakorló feladatok Egyenletes mozgások

Gyakorló feladatok Egyenletes mozgások Gyakorló feladatok Egyenletes mozgások 1. Egy hajó 18 km-t halad északra 36 km/h állandó sebességgel, majd 24 km-t nyugatra 54 km/h állandó sebességgel. Mekkora az elmozdulás, a megtett út, és az egész

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

ŠKODA FABIA KILOMÉTERREL. NEM ELADÓ!

ŠKODA FABIA KILOMÉTERREL. NEM ELADÓ! FABIA 1.250.000 KILOMÉTERREL. NEM ELADÓ! Azt gondolná, csak egy átlagos kis autó vagyok, pedig kevés a hozzám hasonló Évente több mint 100 ezer kilométert futottam. Rokonaim többsége egész életében tesz

Részletesebben

Madách Imre Gimnázium Somorja Šamorín, Slnečná 2, Szlovákia Telefon: Feladatok

Madách Imre Gimnázium Somorja Šamorín, Slnečná 2, Szlovákia Telefon: Feladatok G MADÁCH IMRE GIMNÁZIUM SOMORJA G M Madách Imre Gimnázium 931 01 Somorja Šamorín, Slnečná 2, Szlovákia Telefon: 00421-31-5622257 e-mail: mtg@gmadsam.edu.sk Feladatok gyakorlásra a 8 osztályos gimnáziumba

Részletesebben

Mentsd meg a királylányt! Készségfejlesztő társasjáték Mérés; kerület, terület, felszín, térfogat 6. feladatcsomag

Mentsd meg a királylányt! Készségfejlesztő társasjáték Mérés; kerület, terület, felszín, térfogat 6. feladatcsomag Mérés; kerület, terület, felszín, térfogat 5.6 Mentsd meg a királylányt! Készségfejlesztő társasjáték Mérés; kerület, terület, felszín, térfogat 6. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT II. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT II. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT II. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET TESZT MATEMATIKÁBÓL

Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET TESZT MATEMATIKÁBÓL Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET TESZT MATEMATIKÁBÓL a 2013/2014-es tanévben UTASÍTÁS A TESZT MEGÍRÁSÁHOZ

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 0056 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Iterköz//30/Rea//Ált Informatika közös szakképesítés-csoportban, a

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

Matematika javítókulcs

Matematika javítókulcs 2003 ORSZÁGOS KOMPETENCIAMÉRÉS Matematika javítókulcs 6. évfolyam Kiss Árpád Országos Közoktatási Szolgáltató Intézmény - Értékelési Központ ÁLTALÁNOS TUDNIVALÓK A 2003-as tavaszi felmérés célja a tanulók

Részletesebben

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2 Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18 Szöveges feladatok Életkori feladatok. Feladat. Egy anya 29 éves volt, amikor a a született. év múlva az életkora évvel lesz kevesebb, mint a a akkori életkorának kétszerese. Hány évesek most? Megoldás.

Részletesebben

TestLine - Bemeneti mérés 8. o. matematika Minta feladatsor

TestLine - Bemeneti mérés 8. o. matematika Minta feladatsor TestLine - emeneti mérés 8. o. matematika oldal 1/12 1. 4:05 Normál nyolcadikosok a pályaválasztás előtt orvosi vizsgálaton vesznek részt. vizsgálat után a kosaras lányok táblázatba foglalták a tömegmérés

Részletesebben

Műszaki paraméterek táblázata. AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100

Műszaki paraméterek táblázata. AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100 AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100 Hajlítási erő tonna 60 60 100 Hajlítási hossz ( A ) mm 1250 2050 2550 Oszlopok közötti távolság ( B ) mm 1050 1700 2200 Y tengely gyorsjárati

Részletesebben

GRAF Carat S válaszfal beépítés, szerelése és karbantartása

GRAF Carat S válaszfal beépítés, szerelése és karbantartása Forgalmazza a Summa-Trade Kft, a magyarországi Hunter disztribútor. 1039 Budapest, Heltai Jenő tér 17. Tel./fax: 240-0021, 439-0828, e-mail: summatrade@summatrade.hu, www.summatrade.hu GRAF Carat S válaszfal

Részletesebben

2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény:

2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény: 1. Számkeresztrejtvény: MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév 2. forduló Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe

Részletesebben

Közúti közlekedésüzemvitel-ellátó Közlekedésüzemvitel-ellátó

Közúti közlekedésüzemvitel-ellátó Közlekedésüzemvitel-ellátó Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1 CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...

Részletesebben