XY_TANULÓ FELADATSOR 10. ÉVFOLYAM MATEMATIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "XY_TANULÓ FELADATSOR 10. ÉVFOLYAM MATEMATIKA"

Átírás

1 XY_TNULÓ FELTSOR. ÉVFOLYM MTEMTIK

2

3 MTEMTIK -. ÉVFOLYM. feladat: autószámlálás mc22 Rita egyik nap az erkélyen állva nézte az elhaladó autókat, és feljegyezte az egyes gépkocsimárkákat, valamint azt, hogy hány haladt el belőlük a házuk előtt. következő táblázat az eredményt mutatja. utó darab Suzuki 4 Honda 35 Opel 3 Volkswagen 2 Toyota 8 Lada Skoda 8 Renault Peugeot 2 aewoo a) mc222 Egy 5 lakosú kisközségben 8 autó van. Rita statisztikája alapján hány Peugeot lehet ezek között? b) mc223 Mi lehet a magyarázata annak, hogy az a) részben számoltak ellenére nincs a községben egyetlen Peugeot sem? Rita rosszul számolta össze az autókat. Kisszámú autót vizsgálva csak nagy bizonytalansággal lehet következtetni. rossz kerekítés. z eltérés a rossz számolás és a rossz kerekítés együttes eredménye.

4 MTEMTIK -. ÉVFOLYM 2. feladat: I. ávidnak 65 M kapacitású üres -i vannak. mc552 Legalább hány -re van szüksége ávidnak 6 G adat -re írásához? ( G=24 M) feladat: fenyőfavásár Karácsonyelőttazegyikárusfél méter és 3 méter közötti fenyőfákat árusított, melyek akciós ára Ft/mvolt. Ábrázold az árusított fenyőfákárátamagasságukfüggvényében! Jelöld az egységeket a tengelyeken! mc3 5 6 Ár feny fa magassága 2

5 MTEMTIK -. ÉVFOLYM 4. feladat: terület II. mc384 = egység I. II. III. IV. a) fentiek közül melyik sokszög területe 2 egység? mc384 z I. sokszögé. II. sokszögé. III. sokszögé. IV. sokszögé. 5. feladat: foci mc42 Egy labdarúgókupában 6 csapat indul. z első körben 4 csoportban, csoportonként 4 csapattal körmérkőzést játszanak, azaz mindenki mindenkivel egyszer játszik a csoportjában. Minden csoportból a két legjobb csapat továbbjut. Ezután ezeket a csapatokat összepárosítják, és egyenes kieséses rendszerben folytatódik a kupa, azaz a győztes csapat továbbjut, a vesztes csapat pedig kiesik. Először a csapatok középdöntőt játszanak, a továbbjutó csapatok játsszák az elődöntőt, végül a két győztes csapat játssza a döntőt. Hány mérkőzést játszanak a kupában összesen?

6 6. feladat: gyorshajtás MTEMTIK -. ÉVFOLYM mc3 Egy nyaralója felé tartó autóst gyorshajtásért megbüntetnek. z alábbi grafikon az autója sebességét mutatja a különböző úttípusokon, amint nyaralója felé haladt. Ssebesség (km/h) 5 5 Sebességhatárok Lakott területen kívül: autópályán: 3 km/h autóúton: km/h egyéb úton: km/h Lakott területen: 5 km/h Lakó-pihenõ övezetben: 2 km/h autópálya fõút (lakott területen kívül) falu lakó-pihenõ övezet a) Állapítsd meg a grafikon alapján, hogy hol követte el a szabálysértést a sofőr! mc3 z autópályán. főúton. faluban. lakó-pihenő övezetben. b) mc32 Hány százalékkal haladt gyorsabban a megengedett sebességnél az autós, amikor a legnagyobb mértékben lépte túl a megengedett értéket? kb. 3%-kal kb. 6%-kal kb. %-kal kb. 8%-kal 4

7 MTEMTIK -. ÉVFOLYM. feladat: csomagolás mc68 Egy gyárban bögréket készítenek, és ezeket egyenként 2 cm élhosszúságú, kocka alakú dobozokba csomagolják. dobozokat azután egy nagyobb, téglatest formájú kartondobozba helyezik, melynek kiterjedései 6 cm, 48 cm és 2 cm. Hány bögre fér el egy ilyen kartondobozban? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! 8. feladat: havi benzinköltség mc Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan 2 kilométert vezet hetente. Milyen adatokra van még szükség ahhoz, hogy megbecsülhesse a havi benzinköltséget? rra, hogy hány liter benzint fogyaszt az autó egy átlagos héten. rra, hogy hány liter benzin fér az autóba, és hogy mennyi az üzemanyag literenkénti ára. z üzemanyag literenkénti árára és arra, hogy hány liter benzint fogyaszt az autó kilométerenként. Gábor lakásának és munkahelyének a távolságára és az üzemanyag literenkénti árára. 5

8 MTEMTIK -. ÉVFOLYM. feladat: edwards mc832 Péter Londonból hazafelé jövet a repülőgépen a következőket olvasta a Times című újság sportrovatában: Jonathan Edwards angol atléta a Göteborgban zajló világbajnokságon kereken 6 lábra javította a hármasugrás világcsúcsát. korábbi világcsúcsot szintén Edwards tartotta 58 láb és inch-es eredménnyel. Péter tudta, hogy láb inch, és ennek alapján sikerült kiszámítania, hogy Edwards mennyivel javította meg saját korábbi rekordját. Melyik eredményt kapta a következők közül? láb láb 5 inch 4 inch 4 láb 4 inch láb 3 4 inch 4. feladat: féknyom mc82 z autóbalesetek helyszíni vizsgálatakor a szakértők a féknyomok hosszából becsülik meg azt a sebességet, amellyel a jármű a baleset előtt haladt. becsléshez az alábbi képletet alkalmazzák. v = 2 képletben v a sebességet jelöli kilométer/órában (km/h), m pedig a féknyom hosszúságát méterben. m Mekkora féknyomot hagy az a jármű, amely a balesetet megelőzően a megengedett 5 km/h sebességgel közlekedett? 6

9 MTEMTIK -. ÉVFOLYM. feladat: házőrző kutya mc48 Egyházőrzőkutyátegynyakánlógó2mhosszúláncrakötöttekkiúgy,hogyaláncmásikvégeszabadon csúszhategy3mhosszúrúdon. zalábbiábrákközülmelyikmutatjaaztaterületet,amelyenbelülakutyamozognitud? 2m 2m 3m 3m 2m 2m 3m 3m

10 MTEMTIK -. ÉVFOLYM 2. feladat: idegen nyelv mc6 Egy nyelvtagozatos iskola nyolcadik évfolyamán a diákok maguk választhatták ki, hogy melyik idegen nyelvet akarják tanulni a kilencedik évfolyamon. z alábbi ábra azt mutatja, hogy a diákok milyen százalékban választották az angol, a német és a francia nyelvet, illetve ezek kombinációit. százalékos értékeket egész számra kerekítették. ngol Német 5% 3% 25% 2% 8% 2% 8% Francia z ábra alapján válaszolj az alábbi kérdésekre! a) mc62 diákok hány százaléka választotta az angol és a német nyelvet egyaránt, de a franciát nem? b) mc63 Hányan választottak az angoltól, a némettől és a franciától különböző nyelvet, ha összesen 4 diák volt a nyolcadik évfolyamon? 6 8

11 MTEMTIK -. ÉVFOLYM 3. feladat: hullámhossz mc62 látható fény különböző színei különböző hullámhosszúak, amit nanométerben (nm) fejezünk ki. nm ibolya indigó kék zöld sárga narancs vörös kiemelt hét szín közül hány található a 45 6 nm-es tartományon belül? kettő három négy öt

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA XY_TNULÓ FELTSOR 8. ÉVFOLYM MTEMTIK 1. feladat: akkumulátor mc006 Egy mobiltelefon akkumulátorának töltöttségi állapota a következőképpen változott két nap leforgása alatt. Habekapcsoljuk,denemhasználjuk,48óraalattmerülleteljesenatelefon.Folyamatoshasználatban

Részletesebben

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan

Részletesebben

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M 10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. Példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. Példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 8. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 Példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 6. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. szakiskolai évfolyam 1. félév ESZKÖZÖK Matematika A 9. szakiskolai évfolyam Betűkészlet csoportalakításhoz A D G B E H C F G H I J Matematika A 9. szakiskolai

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

A) 0 B) 2 C) 8 D) 20 E) 32

A) 0 B) 2 C) 8 D) 20 E) 32 1. X és Y egyjegyű nemnegatív számok. Az X378Y ötjegyű szám osztható 72-vel. Mennyi X és Y szorzata? A) 0 B) 2 C) 8 D) 20 E) 32 2. Hány valós gyöke van a következő egyenletnek? (x 2 1) (x + 1) (x 2 1)

Részletesebben

A kooperatív tanulás előnyei

A kooperatív tanulás előnyei A kooperatív tanulás előnyei diákmelléklet ÉN ÉS A VILÁG 5. évfolyam 41 Együttműködési feladatok D1 Matematikai érdeklődésű gyerekek számára Oldjátok meg a következő feladatot! Egy asztalitenisz-versenyen

Részletesebben

PISA2000. Nyilvánosságra hozott feladatok matematikából

PISA2000. Nyilvánosságra hozott feladatok matematikából PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács

Részletesebben

A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény

A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény A feladatlap 6. o. Országos döntı.. 8. Számkeresztrejtvény Azonosító: a b c Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı

Részletesebben

A SEBESSÉG. I. kozmikus sebesség (Föld körüli körpályán való keringés sebessége): 7,91 km/s

A SEBESSÉG. I. kozmikus sebesség (Föld körüli körpályán való keringés sebessége): 7,91 km/s A SEBESSÉG A sebesség az, ami megmutatja, mi mozog gyorsabban. Minél nagyobb a sebessége valaminek, annál gyorsabban mozog Fontosabb sebességek: fénysebesség: 300.000 km/s (vákumban) hangsebesség: 340

Részletesebben

Tehát az A, C, D szabályosan közlekedik, a B nem szabályosan.

Tehát az A, C, D szabályosan közlekedik, a B nem szabályosan. Jedlik korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 7. o. 017. március 01. 1. A következő sebességkorlátozó táblával találkoztunk. Az alábbi járművek közül melyik közlekedik szabályosan?

Részletesebben

Kompetencia Alapú Levelező Matematika Verseny

Kompetencia Alapú Levelező Matematika Verseny Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az

HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az HALMAZOK 2 Feladat Év Kész Nem ment 1) Egy osztály tanulói valamennyien vettek színházjegyet. Kétféle előadásra rendeltek jegyeket: az elsőre 18-at, a másodikra 24-et. 16 tanuló csak a második előadásra

Részletesebben

7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold!

7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold! 7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold! 1. Az alábbi táblázatban az látható, hogy Gábor a legutóbbi hat kosárlabda-mérkőzésén hány büntetődobást

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.

Részletesebben

TestLine - Matematika teszt Minta feladatsor

TestLine - Matematika teszt Minta feladatsor Hello! Ez egy matematikával kapcsolatos teszt. 15 kérdésből áll. Sok sikert! Ebben az egyenletben mennyi az x értéke? 32x+1-3x+2 = 162. (1 helyes válasz) 1. 1:37 Normál x=2 x=4 x=3 Egy iskolai kosárlabdacsapat

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,

PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül

Részletesebben

Új patentek. Új patentek 13/1. oldal

Új patentek. Új patentek 13/1. oldal Univerzális kárpitrögzítő patent fekete 22 10 20,3 25 180 026 Fiat, Iveco, Lancia univerzális patent 3,9 mm-es csavarhoz szín fej csap teljes hossz kék 11x11 8x8 9 25 14215282 180 052 Univerzális kárpitrögzítő

Részletesebben

TestLine - Másoktól Minta feladatsor

TestLine - Másoktól Minta feladatsor 1. 2:17 Normál Magyarországon általában tízévente végeznek népszámlálást. következő diagram az utóbbi nyolc népszámlálás eredményét mutatja. Állapítsd meg a diagramon ábrázolt népszámlálási adatok alapján,

Részletesebben

Néhány hasznos információ egyéni utazók részére

Néhány hasznos információ egyéni utazók részére Néhány hasznos információ egyéni utazók részére Ausztria Országúton, lakott területen kívül 100 km/h Éjjel (22-05 óra között) az A10, az A13 és az A14 autópályán azonban csak max. 110 km/h Vannak továbbá

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

Összesítés dízel motor esetében Költség alapján. Összesítés benzines motor esetében

Összesítés dízel motor esetében Költség alapján. Összesítés benzines motor esetében Cégautó Magazin 200/10. szám (rövidített, saját kiegészítésekkel) Miniautók - kedvező ár, könnyű kezelhetőség Teljes körű hazai kínálat A kisautók után egy még kisebb kategória itthon szereplőivel ismertetjük

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz: 1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.

Részletesebben

b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.

b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is. Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat.

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

ISM S É M T É LŐ TL Ő KÉ K R É D R É D S É E S K

ISM S É M T É LŐ TL Ő KÉ K R É D R É D S É E S K ISMÉTLŐ KÉRDÉSEK Fényjelző készülékek 1 lencsés? 2 lencsés? 3 lencsés? Gyalogos fényjelző készülék? Mi a különbség a nyíl alakú zöld és a tele zöld fény között? Rendőri jelzések Fő jelzés? Kiegészítő karjelzés?

Részletesebben

I. Szakközépiskola

I. Szakközépiskola I. Szakközépiskola - 2018 Knáb László Megyei Matematika Verseny Kedves Versenyző! A feladatok megoldásához használhatsz számológépet! Sok sikert kívánunk! *Kötelező 1. Név: * 2. Középiskola * Bornemissza

Részletesebben

Forgatókönyv Leány KISMINI Felkészülési torna november 30.

Forgatókönyv Leány KISMINI Felkészülési torna november 30. Forgatókönyv Leány KISMINI Felkészülési torna 2014. november 30. Versenyszám: Leány kismini Torna ideje: November 30. Torna helye: BP., III. Folyondár u. 15. Rendező szervezet: Vasas SC Résztvevő csapatok:

Részletesebben

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig

Részletesebben

M A T EMATIKA 9. év fo ly am

M A T EMATIKA 9. év fo ly am Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Az iskola kódja: Az osztály kódja: A tanuló kódja: A tanuló neme: Kompetenciaalapú mérés 2008/2009. M A T EMATIKA

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Opel Astra, Zafira díszlécrögzítő patent szín méret magasság kiszerelés gyári szám AP szám (mm) (mm) db/csomag fehér 34x

Opel Astra, Zafira díszlécrögzítő patent szín méret magasság kiszerelés gyári szám AP szám (mm) (mm) db/csomag fehér 34x Mercedes W169, W204 küszöbborítás rögzítő patent fekete 30,8 7,1 14 10 A0009917498 185 054 Mercedes W169, W204 küszöbborítás rögzítő patent szín fej Ø csap Ø magasság kiszerelés gyári szám AP szám fekete

Részletesebben

Milyen messze van a faltól a létra? Milyen messze támasztotta le a mester a létra alját a faltól?

Milyen messze van a faltól a létra? Milyen messze támasztotta le a mester a létra alját a faltól? A kerámia szigetelő a padlótól számítva négy méter magasan van. A kihúzott létra hossza öt méter. Milyen messze van a faltól a létra? Milyen messze támasztotta le a mester a létra alját a faltól? Bármely

Részletesebben

márka típus térfogat lóerő nyomaték évjárat hosszúság szélesség súly h sz Kg/Le arány LE/Liter Audi 100CD 2.5 2461cm³ 165LE/4950 275Nm/2200 1983

márka típus térfogat lóerő nyomaték évjárat hosszúság szélesség súly h sz Kg/Le arány LE/Liter Audi 100CD 2.5 2461cm³ 165LE/4950 275Nm/2200 1983 márka típus térfogat lóerő nyomaték évjárat hosszúság szélesség súly h sz Kg/Le arány LE/Liter Audi 100CD 2.5 2461cm³ 165LE/4950 275Nm/2200 1983 4900mm 1850mm 1560kg 5 9,454545455 67,07317073 Audi 100CD

Részletesebben

a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...

a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?... Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I

Részletesebben

2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.

2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény. 1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán

Részletesebben

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok! Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

Kisérettségi feladatsorok matematikából

Kisérettségi feladatsorok matematikából Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)

Részletesebben

FÖLDPRÖGETŐK TERMÉSZETTUDOMÁNYOS HÁZIVERSENY II. FORDULÓ 7 8. évfolyam

FÖLDPRÖGETŐK TERMÉSZETTUDOMÁNYOS HÁZIVERSENY II. FORDULÓ 7 8. évfolyam 1. feladat A. Két különböző állatról 2 világhírű kerékpárversenyt neveztek el. Ha felismered a képek alapján, hogy mely állatokról van szó, meg tudod adni a verseny nevét, sőt az is ki tudod találni,hogy

Részletesebben

Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.

Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018. Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető

Részletesebben

Utak és környezetük tervezése

Utak és környezetük tervezése Dr. Fi István Utak és környezetük tervezése 2 A. előadás: Külterületi csomópontok forgalomtechnikai kialakításai Alapelvek Beépített területen kívül az alkalmazási formákra az alábbi alapelvek érvényesek:

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! 1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

az autó elemek rögzítője

az autó elemek rögzítője az autó elemek rögzítője Fiat Doblo kárpitrögzítő patent Szín Fej Ø Csap Ø Hosszúság db/cs Fiat OEM Szürke 15 7 18 10 46751454 208,48 180109 166,67 Fiat, Alfa Romeo lökhárító rögzítő patent, hűtődíszrács

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát.

Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát. A számok kerekítése (Keress példákat pontos és közelítő értékek megadására!) Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát Közelítően, becsléssel adtuk

Részletesebben

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge? Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76

Részletesebben

Matematika _ 2. Ha feldobunk három különböző pénzérmét, annak 8 különböző eredménye lehet. Az alábbi ábra ezt a 8 lehetséges esetet mutatja.

Matematika _ 2. Ha feldobunk három különböző pénzérmét, annak 8 különböző eredménye lehet. Az alábbi ábra ezt a 8 lehetséges esetet mutatja. Matematika _ 2. 1. feladat Ha feldobunk három különböző pénzérmét, annak 8 különböző eredménye lehet. z alábbi ábra ezt a 8 lehetséges esetet mutatja. ) Mekkora annak az esélye, hogy legalább két érme

Részletesebben

MÉRÉSEK, GEOMETRIAI SZÁMÍTÁSOK

MÉRÉSEK, GEOMETRIAI SZÁMÍTÁSOK 0593. MODUL MÉRÉSEK, GEOMETRIAI SZÁMÍTÁSOK Gyakorló feladatok KÉSZÍTETTE: TÓTH LÁSZLÓ, PUSZTAI JULIANNA 0593. Mérések, geometriai számítások Gyakorló feladatok Tanári útmutató 2 MODULLEÍRÁS A modul célja

Részletesebben

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető!

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! 1 Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! Szerkesztette: Huszka Jenő 2 A változat 1. Az ABCDEFGH

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat

Részletesebben

III. Földi János természettudományi verseny

III. Földi János természettudományi verseny III. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: 2015. október 20. Az I. kategória (3. és 4. évfolyam) feladatai: 1.1. feladat Mérd meg, hogy milyen magasra tud felrepülni egy

Részletesebben

Jó munkát! 8. OSZTÁLY 2 = C = A B =

Jó munkát! 8. OSZTÁLY 2 = C = A B = BEM JÓZSEF Jelszó:... MEGYEI MATEMATIKAVERSENY Terem: I. FORDULÓ 2019. január 1. Hely:.... Tiszta versenyidő: 4 perc. Minden feladatot indoklással együtt oldj meg! A részműveletek is pontot érnek. Számológép

Részletesebben

I. Internetes keresési feladatok (ajánlott idő: 20 perc)

I. Internetes keresési feladatok (ajánlott idő: 20 perc) I. Internetes keresési feladatok (ajánlott idő: 20 perc) A talált oldalak internet címét (URL) másold ki egy szöveges dokumentumba és mentsd Csapatnev_internet néven! A konkrét válaszokat ide a papírra

Részletesebben

PISA2006. Nyilvánosságra hozott feladatok matematikából

PISA2006. Nyilvánosságra hozott feladatok matematikából PISA2006 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Autózás 5 Füzetkészítés 7 Kerékpárok 10 Nézd a tornyot 12 Testmagasság Autózás M302 AUTÓZÁS Kati autózni ment. Útközben egy macska

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2008. NOVEMBER 22.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2008. NOVEMBER 22.) 3. osztály 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? Gyöngyi gyöngyszemeket fűz egy zsinegre. Először 1 pirosat, utána 2 sárgát, aztán 3 zöldet, majd újra 1 piros, 2 sárga és

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46)

Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46) Fényi Gyula Jezsuita Gimnázium és Kollégium 529 Miskolc, Fényi Gyula tér 2-12. Tel.: (+6-46) 560-458, 560-459, 560-58, Fax: (+6-46) 560-582 E-mail: fenyi@jezsuita.hu Honlap: www.jezsu.hu A JECSE Jesuit

Részletesebben

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete? 1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű

Részletesebben

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár

Részletesebben

A Magyar Posta Biztosító Zrt. PostaAutóŐr kötelező gépjármű-felelősségbiztosításának 2016. január 1-jétől alkalmazandó tarifája

A Magyar Posta Biztosító Zrt. PostaAutóŐr kötelező gépjármű-felelősségbiztosításának 2016. január 1-jétől alkalmazandó tarifája A Magyar Posta Biztosító Zrt. PostaAutóŐr kötelező gépjármű-felelősségbiztosításának 2016. január 1-jétől alkalmazandó tarifája Ügyfélszolgálat: 06 40 200 480 (H 8:00-20:00, K-P 8:00-18:00) Fax: 06 1 423

Részletesebben

Azononosító matrica FIGYELMESEN RÁRAGASZTANI MAT B MATEMATIKA. alapszint MATB.32.MA.R.K1.20 MAT B D-S032. MAT B D-S032 MAG.indd

Azononosító matrica FIGYELMESEN RÁRAGASZTANI MAT B MATEMATIKA. alapszint MATB.32.MA.R.K1.20 MAT B D-S032. MAT B D-S032 MAG.indd Azononosító matrica FIGYELMESEN RÁRAGASZTANI MAT B MATEMATIKA alapszint MAT3.MR.K. MAT B D-S3 MAT B D-S3 MAG.indd 3.6.6. 3:5: Üres oldal MAT B D-S3 99 MAT B D-S3 MAG.indd 3.6.6. 3:5:3 ÁLTALÁNOS UTASÍTÁSOK

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Kvíz1. Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre.

Kvíz1. Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre. Kvíz1 Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre. A táblázatban látható szabályszerségek alapján melyik képlettel

Részletesebben

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043 370 Statisztika, valószínûség-számítás 1480. a) Nagy országok: Finnország, Olaszország, Nagy-Britannia, Franciaország, Spanyolország, Svédország, Lengyelország, Görögország, Kis országok: Ciprus, Málta,

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

13. Oldja meg a valós számok halmazán az alábbi egyenleteket!

13. Oldja meg a valós számok halmazán az alábbi egyenleteket! A 13. Oldja meg a valós számok halmazán az alábbi egyenleteket! a) b) sin 2 x 1 2cos x a) 6 pont b) 6 pont 12 pont írásbeli vizsga, II. összetev 4 / 16 2011. október 18. 14. Egy felmérés során két korcsoportban

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

C C. Ábrázold gráffal, hogy melyik csapat melyikkel játszott! Hány mérkőzés van még hátra a bajnokságból?

C C. Ábrázold gráffal, hogy melyik csapat melyikkel játszott! Hány mérkőzés van még hátra a bajnokságból? Matematika A 10. évfolyam Témazáró dolgozat 3. negyedév 1 A CSOPORT 1. Egy háromszög oldalainak hossza 7 cm, 8 cm és 1 cm. Egy hozzá hasonló háromszög leghosszabb oldala 0 cm. Milyen hosszú a háromszög

Részletesebben

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA II. A rész II. B rész a feladat sorszáma maximális 13. 10 14. 14 15. 12 17 17 ÖSSZESEN 70 elért nem választott feladat maximális I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum javító tanár összesen

Részletesebben

Sorba rendezés és válogatás

Sorba rendezés és válogatás Sorba rendezés és válogatás Keress olyan betűket és számokat, amelyeknek vízszintes tükörtengelyük van! Írd le! Keress olyan szavakat, amelyeknek minden betűje tükrös (szimmetrikus), amilyen például a

Részletesebben

1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt?

1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt? 1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt? A) 35 B) 210 C) 343 D) 1320 E) 1728 2. Hány olyan háromjegyű természetes szám van,

Részletesebben

MATEMATIKA HETI 5 ÓRA

MATEMATIKA HETI 5 ÓRA EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép

Részletesebben

Rosenbauer ULF 4.000 / 1.500 / 1.500 HRET létesítményi tűzoltógépjármű. FER Tűzoltóság és Szolgáltató Kft.

Rosenbauer ULF 4.000 / 1.500 / 1.500 HRET létesítményi tűzoltógépjármű. FER Tűzoltóság és Szolgáltató Kft. Rosenbauer ULF 4.000 / 1.500 / 1.500 HRET létesítményi tűzoltógépjármű FER Tűzoltóság és Szolgáltató Kft. Alváz Mercedes Benz 2633LL/6x2*4 ECONIC alváz Alacsonyfülkés kialakítás 1+2 fő részére Kormányzott

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2015. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő

1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő 1. 1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő formátumokra is! Sorszám Betét napja Kamatláb Bet. össz. (Ft) Kamat (Ft) Kifiz (Ft) 1. 1997. 08. 14. 12% 100

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2013. április január 7. 19. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Pontszám 2013. január 19. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Részletesebben