I. évfolyam 2009/1. Matematika-módszertani kiadvány KEDVES OLVASÓ! TARTALOM:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "I. évfolyam 2009/1. Matematika-módszertani kiadvány KEDVES OLVASÓ! TARTALOM:"

Átírás

1 I. évfolyam 2009/1. Matematika-módszertani kiadvány TARTALOM: MIKOR? MIT? HOGYAN? 2 Válogatás a matematikatanítás aktuális kérdéseiből Pénzügyi alapismeretek JÓ GYAKORLATOK 3 Óravázlatok pedagógusoktól, akik már bevezették a kompetencia alapú oktatást A tört fogalmának elmélyítése NEM SZAKRENDSZERŰ OKTATÁS 6 Projekttémák, leírások Matematikatörténet a tananyagban INTERAKTÍV MATEMATIKA 8 Ötletek az interaktív tananyagok tanórai felhasználásához A problémamegoldás tanulható AJÁNLÓ 11 Feladatok és kiadványok a kompetenciák fejlesztéséhez KÉRDEZZE MEG! 12 Ön kérdez, a szerző válaszol KEDVES OLVASÓ! Örömmel köszöntjük Önt matematika-módszertani lapunk első számával. A mai matematikaoktatás részeseként akár pedagógusként, tananyagfejlesztőként vagy szakértőként, de még gondos szülőként is mindnyájan érezzük, hogy milyen sok nehézséggel kell szembesülnünk még egy olyan egzakt tudomány tanításatanulása során is, mint a matematika. Ebben a helyzetben mi, pedagógusok is elbizonytalanodhatunk, hogy mit, mennyit és hogyan, milyen eszközök segítségével tanítsunk annak érdekében, hogy tanítványaink kellő motivációval és az alapkompetenciák megfelelő fejlettségével hagyják el az általános iskolát. Bizonyos tudáselemek kikerülnek, újak lépnek a helyükbe; komoly fejtörést okoz, mely ismeretek megtanítását hagyhatjuk el úgy, hogy ezzel a későbbi ismeretek beépülését ne akadályozzuk. Felmerül az a kérdés is, milyen mértékben és hogyan alkalmazzuk óráinkon az új, interaktív információhordozókat. Kétségeinket látván tanítványaink is bizonytalanokká válhatnak ha nem tudjuk kellőképpen motiválni őket, nem értik, hogy mit, miért és hogyan kell tanulniuk. Bizonytalanok a szülők, ha úgy látják, az oktatás, az iskolai tananyag, a tanári elvárások nincsenek összhangban a gyorsan változó társadalmi elvárásokkal. Felelősségteljes, átgondolt döntést kell a tananyagfejlesztőknek is hozniuk, amikor a tanulók életkori sajátosságaihoz, a társadalmi igényekhez, a lecsökkentett óraszámokhoz legjobban illeszkedő tananyagot szeretnék kiválasztani. Még számtalan ilyen és ehhez hasonló probléma merülhet fel a matematika oktatás kapcsán. Nem ígérhetjük, hogy lapunk hasábjain mindenre választ tudunk adni, de célunk, hogy segítsük az általános iskolában matematikát tanító kollégák munkáját módszertani ötletek, követendő tanítási gyakorlatok bemutatásával. Szándékunk a legégetőbb, a legtöbb gondot jelentő problémákkal foglalkozni, és interaktívvá tenni ezt a lapot: kérjük, a szerzőkhöz írt kérdésekkel, megvalósítható példák bemutatásával, óravázlatok közzétételével segítsük egymás munkáját. A megújuló weboldalon szintén olvashatnak a felvetett témákról, és ott is várjuk észre vételei ket, kérdéseiket, leveleiket. Tüskés Gabriella szerkesztő

2 Mikor? Mit? Hogyan? PÉNZÜGYI ALAPISMERETEK Pénzügyi alapismeretek kötelező oktatásának bevezetése a közoktatásban címmel országgyűlési határozati javaslatot nyúj tot tak be ez év februárjában. Az előterjesztést az Oktatási és Kulturális Minisztérium honlapján tették közzé, és itt várták a széles közvélemény javaslatait is a kormányzati állásfoglalás kialakításához. (http://www.okm.gov.hu) A pénzügyi alapismeretek kötelező oktatásának szükségességét a következőkkel indokolja az előterjesztés. A lakossági hitelállomány megnövekedése mögött olyan döntések állhatnak, melyek a nem megfelelő pénzügyi ismeretekből eredően, a hi tel felvétel kapcsán jelentkező kockázatokat ténylegesen nem figyelembe véve születtek Megfelelő oktatási alapok nélkül nem lehet felelős pénzügyi viselkedést kialakítani. A Nemzeti alaptanterv 2007 óta tartalmazza a kezdeményezőképesség és a vállalkozói kompetencia fejlesztését, valamint a gazdasági és pénzügyi is me reteket. Az azóta kiadott OKM kerettantervek ben számos évfolyamon és több tantárgy keretei között is megnövekedett a gazdálkodási és a fogyasztóvédelmi tartalom. A közoktatás rendszerében folytatott tanulmányok ideje alatt már évtizedek óta kötelező tananyag a matematika tantárgyon belül a százalékszámítás, a kamat, illetve a kamatoskamat-számítás, mint a pénzügyi ismeretek alapja. Mindezek ellenére, mint ahogy az előterjesztésből is kiderült, ez nem megfelelő hatékonysággal történik, továbbá az eddigieket más tartalmakkal is szükségszerű lesz kiegészíteni. Ahhoz, hogy a tantárgy akár önállóan, akár integrálva megjelenhessen a középiskolákban, a jelen előterjesztésben javasolt pénzügyi ismeretekkel való foglalkozás megalapozásához már az általános iskola alapozó és fejlesztő szakaszában (felső tagozat) hozzá kell kezdeni. A szociális és állampolgári kompetenciák fejlesztésének ilyen irányú megközelítését az osztályfőnöki, a technika és életvitel (azon belül is vagy azon túlmenően a háztartástan), valamint a mate matika tantárgyak óraszámának visszanövelésével szüksé ges biztosítani, a megfelelő tantervi elemek beemelésének lehe tőségével. Többek szerint az ilyen taneszközök és pedagógusórák kötelező módon finanszírozott költségének egy részét külső források ból kellene elő teremteni. Ezt a pénzintézetek, illetve tőzsdei cégek állhatnák a környezetvédelmi termékdíjhoz hasonló módon, egy-egy adott pénzügyi szolgáltatás, befekte tés, avagy hitel kockáza tos sá gá nak függvényében (talán a mostani helyzetben ez nem reális lehetőség). Az előbb említett célokhoz az általános iskolai matematikatananyag átstrukturálására is szükség van. Szerkesztő: Tüskés Gabriella ISSN: X Azonosító szám: MK Kiadja a Műszaki Könyvkiadó Kft. Felelős kiadó: Orgován Katalin igazgató Szerkesztőségvezető: Hedvig Olga Műszaki szerkesztő: Raja Gabriella Kiadványterv, tördelés: H-moll Grafika Nyomta és kötötte: Pátria Nyomda Zrt. Felelős vezető: Fodor István vezérigazgató Néhány példa közös végigondolásra: A törtek tizedestörtek deduktív felépítése helyett (ahol tizedestörteket elsősorban a törtekről tanultakból vezetjük le az 5. év végén), az tizedestört-fogalom induktív bevezetésére van szükség. Lehetőleg a bevezető szakaszban (amikor a számkör bővítéssel párhuzamosan vezetjük be a tizedes törteket), a 4. osztályos, de legkésőbb az 5. osztályban a közvetlen év eleji tananyagban. Erre már csak az euró előbb-utóbb megtörténő bevezetése miatt is szükség lesz. Mindez először az egyszerűbb, az euró cent váltással bevezethető korlátozott (két tizedesjegyű), véges tizedestörtek megismerésén és alkalmazásán alapuló számkör bővítés sel történhet, amely csupán a helyiérték rendszer részleges kiterjesz tésével jár, és alaposabban elmélyít hető vele az írásbeli műveletvégzés algoritmusainak értő használata is. Így a felső tagozatban már teljes joggal és végig kötelező lehetne a számológépek használata is. Mivel a 6. osztályból eltűnt a fizika, 7. osztálytól csökkent a fizika és kémia óraszáma, így a százalékszámítás súlyát, a ráfordítandó időkeretet csak a matematika (és technika) órákon növelhetjük, vagy ha korábban, már az 5. osztály második felében bevezetjük leg alább a százalékérték kiszá mítását. (Tanulóink többsége már most is képes 4. osztály végére a tanulmányi átlagát kerekített tizedestört ben kiszámítani, 5. osztályban már dolgozatainak értékelését százalé kosan kifejezni, pedig nem iskolai tananyag.) 6. osztályban már be kell vezetni az ismerkedés, fogalom alkotás szintjén a hatványozást, illetve visszahelyezni ide, hogy a későbbiekben a kamatos kamat leg egyszerűbb eseteitől tovább léphessünk. (Az elmúlt időszakban a statisztika és valószí nűség-számítás szerencsére nagyobb hangsúlyt kapott a NAT-ban, így a 12. osztály ra a kockázatok elemzése is szerepelhet.) A kamatszámítás témája miatt a sorozatok témaköré nek szintén na gyobb teret kell szentelni hetedikben; továbbá nyolcadikra számtani és mértani sorösszegek legegyszerűbb példáin át ismét vissza kell térni az ilyen képletek ismeretéhez és alkalmazásához. Egyet értünk azzal, hogy nem szabad a gyerekeket az életkoruknak nem megfelelő ismeretekkel terhelni, valamint a fölösleges lexikális tudást is mérsékelni kell, de ezek a tananyagtartalmak maguk után vonják a kooperatív munkaformákat, célszerűsítik a projekt alkalmazását, ezáltal és a tartalom motiváló ereje révén reálisan elsajátíttathatók. Ezekre az alapokra támaszkodva a középiskola cizelláltabban, s nemcsak elrettentés céljából oktathat pénzügyi alapismerete ket. A cél hatékony, döntésre képes leendő vállalkozói réteg kitermelése, s az érettségi megszerzésével olyan állampolgárok érlelése, akik a gazdaság egyéni és társadalmi céljait együttesen képesek szem előtt tartani. A felvetéssel kapcsolatban várjuk észrevételeiket a címen! 2

3 Jó gyakorlatok Nagy Antalné A TÖRT FOGALMÁNAK ELMÉLYÍTÉSE A törtszám fogalmának kialakítása már 3. osztályban elkezdődik. 4. osztályban elmélyítjük a tört fogalmát, megtanuljuk az egyszerű egységtörtek és többszöröseik megnevezését, megjelení tését, a törtek jelölését. Tapasztalati alapon végezzük a törtek összehasonlítását, az egyenlő törtek felismerését, az egyenlőség értelmezését, magyarázatát, mennyiségek mérését egységtörtekkel. Az alsó tagozatban a fogalmak előkészítésén, a szemléleti alapozáson van a hangsúly, nem a megtanítás, hanem a tapasztalatgyűjtés igényé vel. A törtek átalakításának (bővítésének, egyszerűsítésének) meg tanulása, a törtek kel végzett műveletek értelmezése és begyakor lása a felső tagozat feladata. 4. osztályban újra és újra el kell végezni azokat a tevékenységeket, amelyeket 3. osztályban végeztünk. Tantárgy: Témakör: Téma: Az óra típusa: Az óra célja: Fejlesztési célok: Kapcsolódás más műveltségterületekkel: Kapcsolódás más kompetenciaterületekkel: Eszközök: Tevékenységi formák: Matematika általános iskola 4. osztály Törtek (1. óra) Tört jelölése, elnevezések Gyakorló és új ismeretet feldolgozó óra A törtekről korábban tanultak felidézése, a tört értelmezésének tudatosítása. A tört jelölése és az elnevezések. Mennyiségek egyenlő részekre osztásával hozunk létre egységtörteket, majd azok többszöröseit. Darabolásokkal, kirakásokkal, színezésekkel állítunk elő törteket, az előállított törteket hasonlítjuk össze. Számolási készség, a számfogalom fejlesztése. Megfigyelő képesség fejlesztése, a szorzó- és bennfoglalótáblák gyakorlása, illetve elmélyítése játékos feladatokkal, relációk, összefüggések keresésével, a logikai gondolkodás fejlesztése. Megfigyelőképesség, problémafelismerés, ok-okozati összefüggés meglátása, rendszerező képesség, arányossági következtetés fejlesztése. NAT szerint: Anyanyelvi nevelés; Életvitel és gyakorlati ismeretek; Vizuális nevelés; Környezeti nevelés; Énkép, önismeret; Tanulás. Szövegértés, szövegalkotás; Szociális kompetencia; IKT kompetenciák. Matematika 4. Hajdu-tankönyvcsalád Matematika 4. e-tananyag MIMIO interaktív tábla Frontális, csoport, egyéni Az óra menete Tartalom Módszerek, tevékenységi formák, eszközök Mesehallgatás frontális 1. Motiváció Meserészlet felolvasása, ráhangolás. Kérdések Melyik meséből olvastam részletet? A mesék melyik fajtájához tartozik? Ugyanannyi sajtot kapott mindkét medvebocs? Feladat A mese eljátszása. Két tanuló a medvebocsokat, egy pedig a rókát alakítja. A róka egy kerek rajzlapot oszt szét társai között. A két medvebocs és a róka c. mese Csoportmunka (heterogén) Eszköz Csoportonként egy kerek rajzlap Ha akad olyan tanuló, aki félbehajtja előtte a körlapot és annak mentén tépi ketté, akkor lehetőség nyílik a különböző megoldások ütköztetésére. Ellenőrzés Frontális A kérdések alapján a csoportok beszámolnak, hogy igazságosan osztotta-e el a társuk, illetve a róka a sajtot. Kérdések Indokold meg, miért volt igazságos vagy igazságtalan a felosztás! Hogyan lehet igazságossá tenni a felosztást? 3

4 Jó gyakorlatok 2. Ismétlés Frontális Felidézzük és tudatosítjuk a törtekről korábban tanultakat. Melyik mesére gondoltam? A szereplők tulajdonságai alapján a mese címének kitalálása (Hófehérke és a hét törpe). Tk. 101/2. kidolgozott mintapélda alapján az egyenlő részekre osztás tudatosítása. Kérdés: Igaza volt-e Tudornak? Feladat Adott területű téglalap lefedése színes rudakkal. A megoldások táblázatba rendezése. Osszuk fel a színes rudak felhasználásával a tepsi süteményt. A lefedés eredményeit rendezzük táblázatba. Csoportmunka Eszköz: Csoportonként mindenből 1 db 10 x 7 cm oldalú téglalap alakú fehér lap színesrúd-készlet táblázat Kérdések Hogyan fedjük le a téglalapot, ha azt szeretnénk, hogy minden törpe ugyanakkora darab sütit kapjon? Mely rudakkal érdemes próbálkozni? Minden kirakás lehetővé tette a törpék közti igazságos szétosztást? Igaza volt-e Tudornak? A kérdés megválaszolásával a tört értelmezésének megadása. 3. Elnevezések tudatosítása új anyag feldolgozása Frontális Eszköz: Az előző feladathoz kapott táblázat Táblakép: A tankönyvi magyarázó szöveget egészítettem ki a lefedés eredményét rögzítő táblázattal. A csoportok a táblázat két oszlopát töltötték ki önállóan. A csoportok beszámolói alapján kitöltjük a táblán lévő táblázatot. Ennek alapján közösen alkotjuk meg a törteket, és egészítjük ki vele a táblázatot. Minden egyes tört esetén használjuk az újonnan tanult elnevezéseket. A feladat segít megérteni a számláló és a nevező fogalmainak jelentését. 4. Megadott törtrész jelölése Törtrész kiszámításának gyakoroltatása csoportosítással, rajzzal. A feladat ellenőrzése a tankönyvhöz kapcsolódó CD segítségével az interaktív táblánál gyorsan megvalósítható. Kiegészítettem plusz halmazokkal a tankönyvi ábrát. A megoldott feladat képét rögzítem, és újra elővesszük, amikor az egyenlő törtrészek több alakban való felírásával fogunk foglalkozni. Önálló munka Eszköz: Tankönyv 106. old. 14. feladat füzet Frontális munka Táblázatba rendezzük a megoldásokat: pl = 2 36 Ez további lehetőséget ad a számláló és a nevező fogalmának pontosítására, elmélyítésére. 4

5 Jó gyakorlatok 5. Differenciált gyakorlás játékosan az interaktív táblán Csapatjáték Mindkét feladatot csapatokban játsszuk az interaktív táblánál. Az I. játék esetében a különböző síkidomokon jelölt törtrészt és a mennyiséget kifejező törtalakú számot kell párosítani. Cél: minél kevesebb hibával megtalálni a párokat. A játék azonnal értékeli a megoldást. A csapatok választhatnak, hogy melyik játékba kívánnak benevezni, minden csapat csak egy megmérettetésre jogosult. A II. játék segítségével az egyenlő részekre osztás, az egység törtek előállítása gyakoroltatható tevékenykedtetés sel. A megoldásokat a gép ebben az esetben is azonnal értékeli. Cél: minél hamarabb az adott törtrész meg jelö lése kattintással. Matematika 4. (Hajdu-sorozat) e-tananyag 6. Értékelés a kialakított szokások szerint 7. Differenciált házi feladat a tankönyvből Lassabban haladóknak különböző sokszögek színezett törtészeinek meghatározása Tk old. 11. Átlagos ütemben haladóknak Tk. 104/13. feladat: itt kis kockákból a testeket kell megépíteni, és így megállapítani az egészből a törtrészt, illetve a törtrészből az egészet. Hasonló feladatok megoldatásával a tanulók térszemléletét is fejlesztjük, valamint előkészítjük a térfogat fogalmát. Kapcsolódó képességek fejlesztése: A beszámolók a szóbeli kifejezőkészséget, a szókincset, a beszédkészséget, a beszédbátorságot fejlesztik. A megoldások és eljárások bemutatásával az indoklást, érvelést gyakoroltathatjuk. 26 éve vagyok a pedagógusi pályán, sokféle módszert volt alkalmam kipróbálni az évek során. A mai gyerekek érdeklődését már nem lehet lekötni úgy, ahogy azt régen tettük. A világban sok minden változik, nekünk, pedagógusoknak is alkalmazkodnunk kell ezekhez a változásokhoz és a megváltozott követelményekhez, amelyeket az élet elénk állít óta gyakorlom a kompetencia alapú oktatást. Azonnal elkezdtem használni az interaktív táblát, ahogy az iskolánk megkapta a szükséges eszközöket. A gyerekek nagy örömmel vetették bele magukat a programok felfedezésébe, és szinte észre sem vették, hogy gyakoroltak vagy új ismereteket szereztek eközben. A manipulatív tapasztalatszerzést követő következtetések levonásával az induktív gondolkodás fejlesztése valósul meg. Helyes tanulási szokások kialakítására a feladat végrehajtásának megterveztetése hat. A csoportmunkával és játékkal a gyerekek kooperatív képessége, csapat szelleme erősödik. Nagyon gyorsan elsajátították a tábla kezelését, már egyáltalán nem okoz nekik problémát a toll használata, amely a MIMIO eszköz része. Folyamatosan újabb szoftvereket keresek nekik a neten is, vagy készítek saját magam gyakorló feladatsort. Játékosan, felszabadultan tudunk vele dolgozni, és a légkör is nyugodt, vidám. Ez nagyban hozzájárul ahhoz, hogy a gyerekek szívesen járjanak iskolába, és ne nyűg legyen a tanulás, hanem örömteli, sikeres tevékenységgé változzon. A motiváció maga a tábla és a programok. Remélem, hogy minél több iskolában és osztályban lehetőség nyílik majd arra, hogy a gyerekek megismerkedhessenek ezzel a nagyszerű eszközzel. Következő számunkban a már sokak által megszeretett és az oktatási folya matban is naponta használt MATANDA nevű, a számolási készség fejlesztését támogató eszközt mutatjuk be. Feltalálója, Csordásné Anda Éva számos elismerés mellett 2008-ban Arany díjat nyert a Női Feltalálók I. Világkiállításán Szöulban. Amennyiben már most szeretne többet tudni a piros-kék korongok és a hagyományos golyós abakusz egyesítésével megalkotott, a logikát és a kreativitást fejlesztő, tanulást segítő eszközről, látogasson a honlapra! 5

6 Nem szakrendszerű oktatás Tüskés Gabriella MATEMATIKATÖRTÉNET A TANANYAGBAN A nem szakrendszerű oktatás kerettantervi előirányzata 5. évfolyamon, a kommunikáció témakörében foglalkozik a jelek, jelrendszerek világával. Az ember jelképalkotó lény, ezért a művelődéstörténet is felfogható úgy, mint jelképek története. Csak az ember képes arra, hogy jelképalkotó mivoltát kamatoztassa. Ez a funkció jóval tágabb, mint a hétköznapi jelképek felismerése. A nyelv alkalmas arra, hogy a leghétköznapibb kommunikációban használatos legyen. Mindenféle írás hagyomány, amelyet csak a beavatottak érthetnek, közös kapcsolatok, megállapodások során alakult ki. A számírás az írás egy különleges fajtája, de célja megegyezik az íráséval: eszközül szolgálni az ember azon törekvésének megvalósításához, hogy gondolatait rögzítse és közölje. A számok leírására minden népnél és minden írásmódban különleges jelek, szimbólumok szolgáltak. A modul keretében jól feldolgozható projekt altémája a számok, számrendszerek kialakulásának matematikatörténeti áttekintése. A téma feldolgozása valamennyi műveltségterülettel összefüggésben tárgyalható. Lehetőséget ad a kompetenciák komplex fejlesztésére: nyelvi (anyanyelvi és idegen nyelvi) kommunikációs; történelmi (források használata; tájékozódás térben és időben stb.); matematikai; digitális; hatékony és önálló tanulás; szociális és állampolgári kompetenciák. Az egyes csoportok az informatikaórák keretében is végezhetnek kutatásokat az egyiptomi, babiloni, római, kínai, arab, magyar stb. számírásról. A csoportok számától függ a feldolgozandó témák köre. Miután az egyes csoportok kiválasztották, hogy melyik korban kívánnak elmélyülni, tervet készítenek először csak az információk megszerzésének, majd a feldolgozásának módjára. A csoportok számára megadhatunk könnyen elérhető honlapokat, ahonnan információkat gyűjthetnek, így megismerkedhetnek a modern információszerzés lehetőségével. Képezhetünk specialistákat, akik egy-egy kor kutatásával válnak szakértővé, tudásukat a közös munkában szakértőként hasznosíthatják. A számírás történetének áttekintése fejleszti a tanulók info kommunikációs képességét, történelmi ismereteit, történelmi méretűvé tágítja az idő fogalmát, segíti a számfogalom elmélyülését és a helyiértékes számrendszer megértését. tíz hatványainak megkülönböztetésére. A jelcsoportok által ábrázolt szám az egyes hieroglifák értékeinek összegeként állt elő, esetenként tehát akár kilencszer is le kellett rajzolni ugyanazt a jelet. Az összegyűjtött jeleket a csoportok listázzák, vagy játékos módszerekkel bemutatják. Feladat lehet: A másik csoport jeleinek kitalálása. Mikor, hol, milyen jelrendszert használtak? A használt jelek alapján a számábrázolási csoportok kialakítása: alfabetikus, hieroglif, rovás, arab, római stb. Összehasonlíthatjuk az egyes népeknél használt jeleket, például a fent látható magyar rovásírást és a római számírást. Megvizsgálhatjuk, hogy különböző idegen nyelvekben hogyan képezik a számok nevét. (Például francia nyelven a 71-et úgy mondják 60+11). Még inkább kiaknázhatjuk a lehetőséget, ha a tanulóink családjában a magyaron kívül más nyelv használata is jelen van. Felvethető kérdés: vajon az arab számok írása miért lett egyöntetű a világon, míg a beszélt nyelv és a betűk jelölése miért nem? Készíthetnek tablókat az adott kor számírására, számrendszerére vonatkozó legfontosabb információk összegzésére. A feldolgozás módja A tanulók csoportokban összegyűjtik az általunk megjelölt szempontok szerint (pl. számfogalom, számrendszer, számírás, számolás), hogy az adott korban milyen jeleket használtak a mennyiségek jelölésére, milyen számrendszerben számoltak a kor emberei, hogyan számoltak, miért volt szükség a számokra stb. Például: Egyiptom Az egyiptomiak hozzánk hasonlóan tízes számrendszert használtak, a helyiértékes számábrázolást és a nulla használatát azonban még nem ismerték. A hieroglif rendszerben hét jel szolgált egytől egymillióig a Az egyes csoportok munkáját, az adott korokról gyűjtött ismere teket időrendi táblázatba is rendezhetjük, így az időben való tájé ko zó dási képesség és a rendszerező képesség egyidejű fejleszté sét tudjuk megvalósítani. Matematikaórák kereté ben is jól tudjuk haszno sí tani a szám írás történeti áttekin té sét például a törtek, illetve a tizedestörtek tanításának előkészí té sére, bevezetésére, gyakoroltatására. 6

7 Nem szakrendszerű oktatás A törtekkel való számolás érdekes módja alakult ki i. e körül Egyiptomban. Az alaptörteknek, mint az 1/2, 1/3, 1/4... stb. külön jelük volt. A nevezőt egy oválissal és alatta levő kis vonalkákkal jelölték. Itt látható hieroglif és a hieratikus írásmódja: A függőleges ékek megszámlálása közvetlenül az 1, 2, 3 stb. kiolvasásához vezetett, egész a 9-ig. Ekkor következik egy <, melynek 10-et kell jeleznie. Hasonlóan olvashatjuk ki a következő jelekből a 11, 12 számokat. A <, <<, <<< nyilvánvalóan 10, 20, 30-nak olvasandó. A következő jeleket 1, 1.10, , 2.10-nek írjuk át. Minden törtet egységszámlálójú törtek összegére bontottak. A törtek előállításában az egész számok reciprok értékei (az 1 számlálójú törtek) fontos szerepet játszottak. Táblázataik voltak arra, hogy az egyéb törteket hogy lehet ilyen reciprokok összegeként előállítani (Rhind-papirusz). Kizárták a kettőzést, mint pl. 1/3+1/3, mégis minden törtet fel tudtak írni az elemi törtek segítségével.* Feladat lehet: A törtekkel való műveletvégzés, az egyszerűsítés, bővítés gyakorol tatására adhatunk feladatot tanítványainknak az egyiptomi számíráshoz kapcsolódóan. Képzeld magad a fáraó írnokának, akinek az a feladata, hogy segédkezzen elkészíteni azt a táblázatot, amelyet az adóbehajtók fognak használni. Kérdések lehetnek: az 1/3+1/15 felírással mely törteket tudták kifejezni? Fejezd ki egységtörtekkel a 3/5-öt! Stb. Adhatunk táblázatot az egységtörtekkel való kifejezéshez. Töltsd ki a táblázatot, ha x jelöli az összeadandó törteket! Ezek a jelek úgy értelmezhetők, ha az első 1 -et 60-nak olvas suk és 1.10-et = 70-nek, az 1.20-at pedig = 80-nak vesszük. A következő 2 jel értéke ily módon 120, míg az utolsó 2.10 jel eszerint = 130 A számírás és a számolás matematikatörténeti vonatkozásai jól köthetők a mértékegységekhez, a mértékegységek tanításához. A számfogalom kialakulását a kereskedelem gyorsította meg, tette szükségessé. A legfejlettebb kereskedelmi életet elérve történhetett, hogy a számokat a számolásnál kezdték csoportokba foglalni, például a kéz ujjainak mintájára ötös vagy tízes csoportokba. Így jöttek létre a számrendszerek, amelyekhez azután a számnevek kialakulása is igazodott. A sokféle számrendszer között a tízes terjedt el legjobban, de a mértékegységek között, főleg a régi vagy angolszász mértékegységnél még megtaláljuk maradványaikat. A számírás fejlődéséről bővebben olvashatunk az alábbi oldala kon: Filep László Bereznai Gyula: A számírás története (1985) Sain Márton: Nincs királyi út! Sain Márton: Matematikatörténet (Nemzeti Tankönyvkiadó) Csattári Ferenc: A számfogalom matematikatörténeti fejlődéséről A számírás fejlődése A számok varázslatos világa: avagy a szimbólumokban rejtőző szépség Számolás, számírás Egyiptomi számírás Sci-fi és matematika Ugyanabban az időben Mezopotámiában már a mi tizedestörtjeinkhez hasonló módon, a hatvanas helyiértékes számrendszerbe illő hatvanados törtekkel számoltak. A hatvanas számrendszert még ma is őrzi az óra perc másodperc mértékegységrendszerünk. * Végezetül álljon itt egy sejtés, mely bizonyításra vár, de kisebb vagy speciális számok esetén tanítványaink is boldogulnak vele: Minden 1-nél nagyobb egész n számhoz találhatók olyan x, y és z (nem feltétlen különböző) pozitív egészek, amikre teljesül, hogy 4/n = 1/x+1/y+1/z. 7

8 Interaktív matematika Bedő Andrea A PROBLÉMAMEGOLDÁS TANULHATÓ A problémamegoldó gondolkodás nagyon fontos eleme mindennapjainknak. Problémaszituációkkal szembesülünk, és nekünk kell kitalál nunk, hogy mi a megoldás, illetve hogyan juthatunk el a meg oldásig. Az is gyakran előfordul, hogy magát a problémát is saját magunknak kell felismernünk, beazonosítanunk. A folyamat komplexi tása miatt sokan gondolják, hogy a gyerekeknek ezt meg sem lehet tanítani, hogy a diákok tehetségüktől függően vagy rá jönnek maguktól a megtanult feladat sémák alkalmazására, vagy nem. Ez azonban nem így van, a problémamegoldó gondolkodás tanul ható és tanítható. A problémamegoldásnak (angolul: problem solving) komoly kutatási háttere van. A tudósok, kutatók olyan következtetésekre jutottak, amelyeket sikerrel lehet alkalmazni a pedagógiai gyakorlatban. Gondoljunk csak Pólya György A problémamegoldás iskolája (Tankönyvkiadó, 1968) című könyvére, amelyben már ben leírta a problémamegodás lépéseit, vagy Robert Fisher Hogyan tanítsuk gyermekeinket gondolkodni? (Műszaki Kiadó, 2000) című művére, amely a mindennapi pedagógiai folyamatban hasznosan, hatékonyan alkalmazható. A problémamegoldó gondolkodás oktatásának interaktív táblával való támogatására jó megoldás lehet az Infinitas Learning (mely csoportnak a Műszaki Kiadó is tagja) által interaktív táblára fejlesztett, s azóta Berlinben már díjat is nyert A problémamegoldás tanulható című, hat részből álló CD-ROMsorozat. Az elsősorban matematikai kompetenciákra építkező CD-ROMsorozatban jól megvalósul a tantárgyköziség, hiszen a problémaszituációk kontextusa nem matematikai, hanem olyan helyzetek, melyek a mindennapokban bármelyik diákkal előforduló szituációk lehetnek. Minden CD-ROM kilenc feladatot tartalmaz. A feladat kiválasztásá nál segít a képességszint, illetve a módszer szerinti váloga tási lehetőség. Megoldási módok lehetnek: szituáció eljátszása, szabályszerűség keresése, egyszerűbb esettel való próbálkozás, kép, diagram rajzolása, lista vagy táblázat készítése, kísérletezés és tökéletesítés. A harmadik CD-ROM-on található feladatok közül most Péter kaktuszait nézzük meg, mely jó példája az egyszerűbb esettel való próbálkozásnak mint problémamegoldási stratégiának az alkal mazására. A CD-ROM indítása után a feladat, illetve az óravázlat irányá ból is közelíthetünk. Óravázlat menüpont alatt elolvashatjuk a feladat tartalmát, információkat kapunk a képességfejlesztési szintekről, a feladat megoldásáról, a megoldási stratégiákról, illetve nyomtathatunk részletes óraleírást is. Természetesen nem szükségszerű ennek az óravázlatnak a követése, nyugodtan készíthetünk sajátot is a felkészülési idő, illetve a saját erőforrásaink figyelembevételével. Mindenesetre javasolt innen indulni, hiszen a fejlesztés, a feladat kialakítása ezen óravázlat mentén történt. Az első dián olvashatjuk a problémaszituációt. Az osztállyal való kontaktustartást segíti, hogy egy kattintás a táblán (hozzáérinteni a tollat vagy az ujjat), s a feladat szövege máris eltűnt. Ez minden feladatnál így van, a feladat szövege elrejthető. Mire is jó ez? Máris olyan szituációba hoztuk a diákjainkat, mely fejleszti a megfigyelést. A következő feladatnál a diákok már sokkal jobban fognak figyelni a feladat szövegére, mert tudják, hogy a tanár elrejtheti azt, s lehet, hogy megkérdezi akár személyesen tőle is, hogy mit értett meg a feladatból. A szövegértés gyakoroltatásával tudjuk erősíteni a nyelvi jellegű tapasztalatokat. A szöveg közös értelmezése után, mely része az önálló gondolkodás megtanulásának, a feladatot akár csoportmunkában, akár más óraszervezési módon megoldathatjuk. Javasolt a diákok közös gondol kodásának, interaktív készségének a kihasználása, hiszen ezáltal is fejlődnek tanulóink, megismernek más stratégiákat. (Érdemes az eredményeket felíratni, ki, illetve melyik csoport mire jutott.) Ekkor lépjünk csak át a 2. diára, ahol egy táblázat kitöltésével kell a feladatot modellezni. A törlés lehetősége adott, így bármikor visszaléphetünk egy korábbi szintre, ha valamelyik diákunk nem értene valamit. A diákok a tábla előtt közvetlen élményként élhetik meg a kaktuszok új hajtásainak növekedését. Nem csak elképzelni kell a kaktuszok növekedését. A számpad segítségével a táblánál is könnyen írhatunk számokat, 8

9 Interaktív matematika nem kell a billentyűzethez menni. Számpad szintén minden feladatnál szerepel, ahol szükséges számo kat használni. A táblázatba hibás eredményeket is beírhatunk, típushiba lehet például, ha a diákok a feladatot szeretnék megválaszolni, és nem veszik észre, hogy még csak az új hajtásokat kell összeszámolni évenként. Fontosnak tartom, hogy a tanár itt ne javítson, ha valamelyik diák észreveszi a téves megoldást, beszéljék meg termé szetesen, de inkább engedjük a diákoknak felfedezni saját tévedé sei ket. Ez fejleszti az oknyomozó készséget, ezáltal élénkíti a kreatív és a kritikai gondolkodást. Tudom, a pedagógusok többsége nem szeret hibás megoldást látni a táblán, de ha átlépünk a következő diára, akkor mindenki egyből rájöhet, hogy mit rontott el. Ez pedig nagyon fontos, hogy a közvetlen élményen keresztül ő jöjjön rá valamire, hiszen a valós problémaszituációban sem fog mellette állni senki, hogy megmondja azonnal, hogy itt rossz, mert nem az a táblázat fejléce. Ha hagyjuk a diákjainkat felfedezve, akár hibás gondolkodást felfedezve tanulni, az fejleszti az önbizalmat és a hozzáértést. A második és harmadik dia között bármikor válthatunk és javíthatunk. Illetve, ha az éveket léptetjük, az ábrás megjelenítésnél a szoftver elhalványítja azokat a hajtásokat, melyek abban az évben még nincsenek. Így akár a megszámolást is segítheti. A megoldás során lejátszhatjuk a 4 évet, hogyan nőtt Péter kaktusza, illetve láthatjuk a táblázat helyes kitöltését. A kiegészítés pedig további kihívásokra sarkall, ellenőrizhetjük vele a tényleges megértést, illetve kapcsolatba hozhatjuk a diákot tudásának és készségei nek alkalmazásával. Természetesen nem állítjuk, hogy ez a CD-ROM-sorozat az egyedüli üdvözítő megoldás. Számos ilyen szituáció létrehozható az interaktív tábla segítségével, sőt akár a diákokkal is készíthetünk feladatokat, azonban ez a tartalmilag jól felépített, széles spektrumot átölelő feladatsorozat mindenképpen hasznos kiegészítője lehet annak, hogy megtanulják a diákok problémamegoldásra használni a gondolkodásukat. Ma az élethosszig tartó tanulás és a probléma megoldó gondolkodás szinte alapfeltétele annak, hogy sikeresek legyenek az életben. Ez nem demagógia. Eddig is megoldattunk velük ilyen jellegű feladatokat, csak kevésbé hatékonyan. Azonban, ha e feladatok segítségével elsajátítják tanítványaink a magamtól is rá tudok jönni, a társaim segítenek, ha elakadok, vannak jól ismert stratégiák, melyeket tudok használni alapállást, akkor a sorozatos visszacsatolások segítségével megértik, hogy a hétköznapi problémák megoldásakor is fontos a kapcsolatteremtés a különálló tapasztalatok között. Más gondolkodásmódokat meg kell ismerni, megérteni, és kritikai, ugyanakkor kreatív gondolkodással megoldani azokat. Ez azért hasznos, mert a különböző csoportoknál az adott szituációnak megfelelően tudja a tanár a táblánál segíteni a diákok megérté sét, mindez pedig rugalmasságot és dinamizmust adhat az órájának. Ha úgy döntöttünk, készen vagyunk, meg kell nyomnunk a kész gombot, s ekkor aktívvá válik a megoldás és a kiegészítés fül. Eddig hiába próbálkoztunk volna. Ez azért hasznos, mert csoportokban dolgozva a Péter kaktuszával egy csoportnyi diákot otthagyhatunk a problémával, annyit mondva nekik, hogy oldjátok meg a feladatot. Ők pedig ekkor kihívásként és motivációként élik meg a feladatot, mely kapcsolódik a szükségleteikhez, ezáltal célt és értelmet ad a tanulásnak. Irodalomajánló: Kontra József: A probléma és a problémamegoldó gondolkodás MAGYAR PEDAGÓGIA 96. évf. 4. szám (1996) Revákné Markóczi Ibolya: A problémamegoldó gondolkodást befolyásoló tényezők MAGYAR PEDAGÓGIA 101. évf. 3. szám (2001) Csapó Benő: A komplex problémamegoldás a PISA 2003 vizsgálatban Új Pedagógiai Szemle, 3. sz (2005) Molnár Gyöngyvér: Az ismeretek alkalmazhatóságának korlátai: komplex problémamegoldó gondolkodás fejlettsége 7. és 11. évfolya mon MAGYAR PEDAGÓGIA 106. évf. 4. szám (2006) Pólya György: A problémamegoldás iskolája (Tankönyvkiadó, 1968) Robert Fisher: Hogyan tanítsuk gyermekeinket gondolkodni? (Műszaki Könyvkiadó, 2000) Molnár Gyöngyvér: Tudástranszfer és komplex probléma megoldás (Műszaki Könyvkiadó, 2006) 9

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN Készítette: Adorjánné Tihanyi Rita Innováció fő célja: A magyar irodalom és nyelvtan tantárgyak oktatása

Részletesebben

TANULÁSMÓDSZERTAN 5 6. évfolyam

TANULÁSMÓDSZERTAN 5 6. évfolyam TANULÁSMÓDSZERTAN 5 6. évfolyam A tanulás tanításának elsődleges célja, hogy az egyéni képességek, készségek figyelembe vételével és fejlesztésével képessé tegyük tanítványainkat a 21. században elvárható

Részletesebben

Társadalomismeret. Hogyan tanítsunk az új NAT szerint? Nemzeti Közszolgálati és Tankönyv Kiadó Zrt. Králik Tibor fejlesztő

Társadalomismeret. Hogyan tanítsunk az új NAT szerint? Nemzeti Közszolgálati és Tankönyv Kiadó Zrt. Králik Tibor fejlesztő Nem az számít, hány könyved van, hanem az, hogy milyen jók a könyvek. SENECA Hogyan tanítsunk az új NAT szerint? Társadalomismeret Nemzeti Közszolgálati és Tankönyv Kiadó Zrt. Králik Tibor fejlesztő 1

Részletesebben

Tananyagfejlesztés. Ki? Miért? Minek? Kinek?

Tananyagfejlesztés. Ki? Miért? Minek? Kinek? Tananyagfejlesztés Ki? Miért? Minek? Kinek? Témák Mi a tananyag? Különböző megközelítések A tananyagfejlesztés tartalmának, szerepének változása Tananyag a kompetencia alapú szakképzésben Feladatalapú

Részletesebben

Tematikus terv. Az iskola neve: Dátum: 2014. A tanulási-tanítási egység témája: tizedes törtek

Tematikus terv. Az iskola neve: Dátum: 2014. A tanulási-tanítási egység témája: tizedes törtek Tematikus terv A pedagógus neve: Az iskola neve: Dátum: 2014. Műveltségi terület: matematika A tanulási-tanítási egység témája: tizedes tör A pedagógus szakja: matematika Tantárgy: matematika Osztály:

Részletesebben

Beszámoló IKT fejlesztésről

Beszámoló IKT fejlesztésről Kompetencia alapú oktatás, egyenlő hozzáférés Innovatív intézményekben TÁMOP-3.1.4/08/2-2008-0010 Beszámoló IKT fejlesztésről Piarista Általános Iskola, Gimnázium és Diákotthon Kecskemét Tartalomjegyzék

Részletesebben

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á Kompetencia alapú oktatás (tanári kompetenciák) A kompetencia - Szakértelem - Képesség - Rátermettség - Tenni akarás - Alkalmasság - Ügyesség stb. A kompetenciát (Nagy József nyomán) olyan ismereteket,

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott

Részletesebben

Helyi tanterv a Tanulásmódszertan oktatásához

Helyi tanterv a Tanulásmódszertan oktatásához Helyi tanterv a Tanulásmódszertan oktatásához A Tanulásmódszertan az iskolai tantárgyak között sajátos helyet foglal el, hiszen nem hagyományos értelemben vett iskolai tantárgy. Inkább a képességeket felmérő

Részletesebben

Polgár Judit Sakk Alapítvány SAKKPALOTA Program: Tehetségfejlesztő Sakk kerettanterv - NAT

Polgár Judit Sakk Alapítvány SAKKPALOTA Program: Tehetségfejlesztő Sakk kerettanterv - NAT Pedagógiai program módosítása Helyi tanterv 63. oldal 1. 2. 64.oldal 3. Az alábbiakkal egészül ki ( kiegészítés aláhúzással különül el ) 1. Iskolánk helyi tanterve az emberi erőforrások minisztere által

Részletesebben

DIAGNOSZTIKUS MÉRÉS. 33. modul

DIAGNOSZTIKUS MÉRÉS. 33. modul Matematika A 3. évfolyam DIAGNOSZTIKUS MÉRÉS 33. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 33. modul DIAGNOSZTIKUS MÉRÉS MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

1. óra : Az európai népviseletek bemutatása

1. óra : Az európai népviseletek bemutatása RAJZ TANTÁRGY 1. óra : Az európai népviseletek bemutatása A MODUL CÉLJA Az óra célja : Az egyes népviseletek jellegzetességeinek kiemelése, vizsgálatuk különböző szempontokból. Ruhadarabok funkciója az

Részletesebben

Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás

Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás Dr. Czeglédy István fôiskolai tanár Dr. Czeglédy Istvánné vezetôtanár Dr. Hajdu Sándor fôiskolai docens Novák Lászlóné tanár Dr. Sümegi Lászlóné szaktanácsadó Zankó Istvánné tanár Matematika 8. PROGRAM

Részletesebben

TANMENETJAVASLAT. Matematika. 2. osztály

TANMENETJAVASLAT. Matematika. 2. osztály TANMENETJAVASLAT Matematika 2. osztály 2 1. Ismerkedés a 2. osztályos matematika tankönyvvel és gyakorlókönyvvel Tankönyv Gyakorlókönyv 2. Tárgyak, személyek a megadott szempont szerint (alak, szín, nagyság).

Részletesebben

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk.

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Óravázlat 2. osztályos matematika Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Oktatási cél: Pénzhasználat, pénzváltás. Játék a játékpénzzel párokban. Megismerési képességek

Részletesebben

IPR jó gyakorlatunk SOKORÓPÁTKA

IPR jó gyakorlatunk SOKORÓPÁTKA IPR jó gyakorlatunk SOKORÓPÁTKA IPR gyakorlatunk: A 2003/2004-es tanévtől foglalkozunk tudatosan a HH és a HHH gyerekek fejlesztésével. Az intézményi dokumentumaink tartalmazzák az IPR elemeit. A napi

Részletesebben

TANTÁRGYI FEJLESZTÉSEK

TANTÁRGYI FEJLESZTÉSEK TANTÁRGYI FEJLESZTÉSEK Tantárgyi fejlesztések Ha fölgyújtjuk a gyermekben a veleszületett szikrát, azzal mindig olyan magaslatok felé nyitunk utat, amilyenekről álmodni sem mertünk volna. Kristine Barnett

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze.

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze. INFORMATIKA Az informatika tantárgy ismeretkörei, fejlesztési területei hozzájárulnak ahhoz, hogy a tanuló az információs társadalom aktív tagjává válhasson. Az informatikai eszközök használata olyan eszköztudást

Részletesebben

A mérés tárgya, tartalma

A mérés tárgya, tartalma A mérés tárgya, tartalma 1 A TUDÁS Az oktatás elméletének egyik legősibb problémája az ismeretek és a képességek viszonyának értelmezése. A tudás részei, elemei tekintetében számos álláspont alakult ki,

Részletesebben

KÜLÖNÖS KÖZZÉTÉTELI LISTA ÁLTALÁNOS ISKOLA PERESZTEG

KÜLÖNÖS KÖZZÉTÉTELI LISTA ÁLTALÁNOS ISKOLA PERESZTEG KÜLÖNÖS KÖZZÉTÉTELI LISTA ÁLTALÁNOS ISKOLA PERESZTEG Az iskola neve: ÁLTALÁNOS ISKOLA PERESZTEG Az iskola címe:9484 PERESZTEG Fİ u.76 Az iskola OM azonosítószáma: 030679 Személyi feltételek Pedagógusok

Részletesebben

NAGYVÁZSONYI KINIZSI PÁL NÉMET NEMZETISÉGI NYELVOKTATÓ ÁLTALÁNOS ISKOLA 8291 Nagyvázsony, Iskola u. 1. 2014/2015-ös tanév KÜLÖNÖS KÖZZÉTÉTELI LISTA

NAGYVÁZSONYI KINIZSI PÁL NÉMET NEMZETISÉGI NYELVOKTATÓ ÁLTALÁNOS ISKOLA 8291 Nagyvázsony, Iskola u. 1. 2014/2015-ös tanév KÜLÖNÖS KÖZZÉTÉTELI LISTA NAGYVÁZSONYI KINIZSI PÁL NÉMET NEMZETISÉGI NYELVOKTATÓ ÁLTALÁNOS ISKOLA 8291 Nagyvázsony, Iskola u. 1. 2014/2015-ös tanév KÜLÖNÖS KÖZZÉTÉTELI LISTA 1. A pedagógusok iskolai végzettsége és szakképzettsége,

Részletesebben

A TESTNEVELÉS ÉS SPORT VALAMINT MÁS MŰVELTSÉGTERÜLETEK TANANYAGÁNAK KAPCSOLÓDÁSI PONTJAI DR. PUCSOK JÓZSEF MÁRTON NYÍREGYHÁZI FŐISKOLA TSI

A TESTNEVELÉS ÉS SPORT VALAMINT MÁS MŰVELTSÉGTERÜLETEK TANANYAGÁNAK KAPCSOLÓDÁSI PONTJAI DR. PUCSOK JÓZSEF MÁRTON NYÍREGYHÁZI FŐISKOLA TSI A TESTNEVELÉS ÉS SPORT VALAMINT MÁS MŰVELTSÉGTERÜLETEK TANANYAGÁNAK KAPCSOLÓDÁSI PONTJAI DR. PUCSOK JÓZSEF MÁRTON NYÍREGYHÁZI FŐISKOLA TSI TÁMOP-4.1.2.B.2-13/1-2013-0009 Szakmai szolgáltató és kutatást

Részletesebben

Különös közzétételi lista a nevelési oktatási intézmények részére

Különös közzétételi lista a nevelési oktatási intézmények részére Különös közzétételi lista a nevelési oktatási intézmények részére Szilvási Nevelési-Oktatási Központ Szilvási Általános Iskola A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Helyzetelemzés. Elengedhetetlené vált a pedagógusok szemléletváltása. gondolkodás és gyakorlat átalakítására és módosítására törekszik.

Helyzetelemzés. Elengedhetetlené vált a pedagógusok szemléletváltása. gondolkodás és gyakorlat átalakítására és módosítására törekszik. 2008/2009. tanév Helyzetelemzés A 2004/2005-ös tanévvel kezdődően működik iskolánkban az integrációs rendszer, s ennek részeként követelmény lett a módszertani ismeretek frissítése, újítása és bővítése.

Részletesebben

TANÍTÓKÉPZÉS NÉMET NEMZETISÉGI SZAKIRÁNY GYAKORLATI KÉPZÉS. Nappali tagozat

TANÍTÓKÉPZÉS NÉMET NEMZETISÉGI SZAKIRÁNY GYAKORLATI KÉPZÉS. Nappali tagozat TANÍTÓKÉPZÉS NÉMET NEMZETISÉGI SZAKIRÁNY GYAKORLATI KÉPZÉS I. Felépítés II. Táblázat III. Gyakorlati képzés feladatai IV. Gyakorlati képzés formái I. Felépítés Nappali tagozat A német nemzetiségi szakirány

Részletesebben

MAGYAR NYELV 9 11. ÉVFOLYAM

MAGYAR NYELV 9 11. ÉVFOLYAM XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 MAGYAR NYELV 9 11. ÉVFOLYAM A KÍSÉRLETI TANKÖNYVEK ÉS MUNKAFÜZETEK KONCEPCIÓJÁRÓL ÉS FELÉPÍTÉSÉRŐL A tankönyvsorozat

Részletesebben

Óravázlat Matematika. 1. osztály

Óravázlat Matematika. 1. osztály Óravázlat Matematika 1. osztály Készítette: Dr. Jandóné Bapka Katalin Az óra anyaga: Számok kapcsolatai, számpárok válogatása kapcsolataik szerint Osztály: 1. osztály Készség-és képességfejlesztés: - Megfigyelőképesség

Részletesebben

TANULÁSMÓDSZERTAN 5. évfolyam 36 óra

TANULÁSMÓDSZERTAN 5. évfolyam 36 óra TANULÁSMÓDSZERTAN 5. évfolyam 36 óra A tanulási folyamat születésünktől kezdve egész életünket végigkíséri, melynek környezete és körülményei életünk során gyakran változnak. A tanuláson a mindennapi életben

Részletesebben

MESÉL A SZÁMÍTÓGÉP. Interaktív mesekészítés óvodás és kisiskolás korban

MESÉL A SZÁMÍTÓGÉP. Interaktív mesekészítés óvodás és kisiskolás korban MESÉL A SZÁMÍTÓGÉP Interaktív mesekészítés óvodás és kisiskolás korban Pasaréti Otília, Infor Éra 2009 TARTALOM A kutatás célja Interaktív mese A Meseszerkesztő bemutatása A kutatás menete A program fejlődése

Részletesebben

A pedagógiai szakmai szolgáltató tanfolyamai 2012/2013 AKKREDITÁLT TANFOLYAMOK

A pedagógiai szakmai szolgáltató tanfolyamai 2012/2013 AKKREDITÁLT TANFOLYAMOK PRIZMA ÁLTALÁNOS ISKOLA ÉS ÓVODA EGYSÉGES GYÓGYPEDAGÓGIAI MÓDSZERTANI INTÉZMÉNY pedagógiai szakmai szolgáltatás OM-038423 1134 Budapest, Váci út 57. : 06-1-3408-980 Fax: 06-13408-980/37 E-mail: prizmaegymi@prizmaegymi.hu

Részletesebben

A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI

A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI NEVELÉSI-OKTATÁSI PROGRAMOK AZ EGÉSZ NAPOS ISKOLÁK SZÁMÁRA

Részletesebben

1. ÉVFOLYAM. Én és a világ. A modul szerzõje: Nahalka István. SZKA_101_06_B Mikor tanulsz hogyan tanulsz?

1. ÉVFOLYAM. Én és a világ. A modul szerzõje: Nahalka István. SZKA_101_06_B Mikor tanulsz hogyan tanulsz? SZKA_101_06_B Mikor tanulsz hogyan tanulsz? Én és a világ A modul szerzõje: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYAM 76 Szociális, életviteli és környezeti kompetenciák

Részletesebben

TANÍTÓKÉPZÉS NÉMET NEMZETISÉGI SZAKIRÁNY GYAKORLATI KÉPZÉS. Levelező tagozat

TANÍTÓKÉPZÉS NÉMET NEMZETISÉGI SZAKIRÁNY GYAKORLATI KÉPZÉS. Levelező tagozat I. Felépítés II. Táblázat III. Gyakorlati képzés feladatai IV. Gyakorlati képzés formái TANÍTÓKÉPZÉS NÉMET NEMZETISÉGI SZAKIRÁNY GYAKORLATI KÉPZÉS I. Felépítés Levelező tagozat I. félév: II. félév: III.

Részletesebben

Kétegyháza KOMP-ra száll

Kétegyháza KOMP-ra száll Kétegyháza KOMP-ra száll Fekete Gabriella projektmenedzser Kétegyháza nagyközség Tartalmi-módszertani változás szükségessége Nemzeti alaptanterv Alapdokumentumok OKM Közoktatás-fejlesztési Stratégiája

Részletesebben

AZ ORSZÁGOS KOMPETENCIA MÉRÉS EREDMÉNYEINEK ÉRTELMEZÉSE 2007 AZ ELEMI SZÁMOLÁSI KÉSZSÉG KIÉPÜLÉSE GYAKORLOTTSÁGÁNAK FEJLŐDÉSE

AZ ORSZÁGOS KOMPETENCIA MÉRÉS EREDMÉNYEINEK ÉRTELMEZÉSE 2007 AZ ELEMI SZÁMOLÁSI KÉSZSÉG KIÉPÜLÉSE GYAKORLOTTSÁGÁNAK FEJLŐDÉSE 1. oldal AZ ORSZÁGOS KOMPETENCIA MÉRÉS EREDMÉNYEINEK ÉRTELMEZÉSE 2007 Matematika: AZ ELEMI SZÁMOLÁSI KÉSZSÉG KIÉPÜLÉSE GYAKORLOTTSÁGÁNAK FEJLŐDÉSE Az alábbi táblázat a 4. évfolyam százalékos eredményeit

Részletesebben

Szülői elégedettségi kérdőív 2014/15 (11 kitöltés)

Szülői elégedettségi kérdőív 2014/15 (11 kitöltés) Szülői elégedettségi kérdőív 2014/15 (11 kitöltés) 1/12 Kitöltői adatok statisztikái: 1. Kérjük, gondolja végig és értékelje azt, hogy a felsorolt állítások közül melyik mennyire igaz. A legördülő menü

Részletesebben

Olyan tehetséges ez a gyerek mi legyen vele?

Olyan tehetséges ez a gyerek mi legyen vele? Olyan tehetséges ez a gyerek mi legyen vele? Kérdések elitista megközelítés egyenlőség elv? ritka, mint a fehér holló nekem minden tanítványom tehetséges valamiben mi legyen a fejlesztés iránya? vertikális

Részletesebben

I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE:

I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE: IKT.SZ.: 34 78 / 28 1 / 2015. O R S Z Á G O S K O M P E T E N C I A M É R É S I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE:

Részletesebben

Kedves Szülők! Tisztelettel köszöntjük Önöket és leendő első osztályos gyermeküket!

Kedves Szülők! Tisztelettel köszöntjük Önöket és leendő első osztályos gyermeküket! A mi iskolánk Kedves Szülők! Tisztelettel köszöntjük Önöket és leendő első osztályos gyermeküket! Minden család életében fontos esemény az iskolaválasztás és a beiratkozás. Döntésük megkönnyítéséhez szeretnénk

Részletesebben

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Ismeretek, tananyagtartalmak Négyzet, téglalap tulajdonságai A kerület

Részletesebben

A pedagógiai program, helyi tanterv függeléke A kompetencia alapú oktatás elterjesztése A tagiskolák összesítő táblái. Tanulóbarát környezet re épülő

A pedagógiai program, helyi tanterv függeléke A kompetencia alapú oktatás elterjesztése A tagiskolák összesítő táblái. Tanulóbarát környezet re épülő 1 A pedagógiai program, helyi tanterv függeléke A kompetencia alapú oktatás elterjesztése A tagiskolák összesítő táblái Célok Feltételek, szükségletek Mikor? Elvárt eredmény Tevékenységek Tevékenykedtetés-

Részletesebben

OKM ISKOLAI EREDMÉNYEK

OKM ISKOLAI EREDMÉNYEK OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak

Részletesebben

Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról /

Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról / Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról / A gyermek, a tanuló jogai és kötelességei II. fejezet 10 (3) A gyermeknek tanulónak joga, hogy a) képességeinek, érdeklődésének,

Részletesebben

Tanítói szak - Általános - Nappali tagozat - III. évfolyam - I. félév

Tanítói szak - Általános - Nappali tagozat - III. évfolyam - I. félév Tematika az Anyanyelvi tantárgy-pedagógia III. című tantárgyhoz (A nyelvtan és a helyesírás, valamint a fogalmazás tanítása) ELTE TÓFK 2014/2015. tanév Tanítói szak - Általános - Nappali tagozat - III.

Részletesebben

AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE

AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE A projekt célja Tanulásra és alkotásra ösztönző tanításitanulási környezet kialakítása A tanítás és tanulás hatékonyságát elősegítő módszertani újdonságok beépítése

Részletesebben

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája

Részletesebben

Hírek Újdonságok Mintaoldalak www.olvas.hu

Hírek Újdonságok Mintaoldalak www.olvas.hu Katalógus Bı ológı ológı a Fı zı zı ka Földra z Kémı a Hogy biztos legyen... Hírek Újdonságok Mintaoldalak www.olvas.hu 1 Bán Sándor, Barta Ágnes: 8 próbaérettségi biológiából (középszint) Csiszár Imre,

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

A Múzeum és a Duráczky József Pedagógiai Fejlesztő és Módszertani Központ partnerkapcsolatával megvalósuló foglalkozások

A Múzeum és a Duráczky József Pedagógiai Fejlesztő és Módszertani Központ partnerkapcsolatával megvalósuló foglalkozások A Múzeum és a Duráczky József Pedagógiai Fejlesztő és Módszertani Központ partnerkapcsolatával megvalósuló foglalkozások A múzeumi foglalkozások keretében intézményünk hallássérült iskolai tagozatának

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV. Általános kerettantervű képzés, emelt szintű nyelvoktatással (Tagozatkód: 13)

AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV. Általános kerettantervű képzés, emelt szintű nyelvoktatással (Tagozatkód: 13) AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV Cím: 3524 Miskolc, Klapka Gy. u. 2. OM kód: 029264 Telefon: 46/562-289; 46/366-620 E-mail: titkarsag@avasi.hu Honlap: www.avasi.hu I. A 2014/2015.

Részletesebben

TEMATIKUSTERV MATEMATIKA 2. évfolyam Készítette: Kőkúti Ágnes

TEMATIKUSTERV MATEMATIKA 2. évfolyam Készítette: Kőkúti Ágnes JEWISH COMMUNITY KINDERGARTEN, SCHOOL AND MUSIC SCHOOL ZSIDÓ KÖZÖSSÉGI ÓVODA, ÁLTALÁNOS ISKOLA, KÖZÉP- ISKOLA ÉS Tantárgy: Matematika Évfolyam: 2. A csoport megnevezése: Kulcs osztály Készítette: Kőkúti

Részletesebben

BESZÁMOLÓ A HEFOP 3.1.3/05/01 A KOMPETENCIA-ALAPÚ OKTATÁS ELTERJESZTÉSE CÍMŰ PÁLYÁZAT ESEMÉNYEIRŐL

BESZÁMOLÓ A HEFOP 3.1.3/05/01 A KOMPETENCIA-ALAPÚ OKTATÁS ELTERJESZTÉSE CÍMŰ PÁLYÁZAT ESEMÉNYEIRŐL BESZÁMOLÓ A HEFOP 3.1.3/05/01 A KOMPETENCIA-ALAPÚ OKTATÁS ELTERJESZTÉSE CÍMŰ PÁLYÁZAT ESEMÉNYEIRŐL A kompetencia-alapú oktatás megvalósítása a fényeslitkei és tiszakanyári iskolákban HEFOP-3.1.3-05/1.-2005-10-0312/1.0

Részletesebben

-3- -a zavartalan munka biztosítása. - felolvasással, egyéni javítással. 2. Házi feladat ellenőrzése: Tk. 100/12. FOM

-3- -a zavartalan munka biztosítása. - felolvasással, egyéni javítással. 2. Házi feladat ellenőrzése: Tk. 100/12. FOM ÓRATERVEZET Tantárgy: Magyar nyelv Osztály: 5.d Az óra címe: Hangalak és jelentés a szavakban A tematikus egység: A szavak alakja és szerkezete. Az óra célja: A tudatos és igényes szóbeli és írásbeli nyelvhasználat

Részletesebben

Közzétételi lista. 2014/15-ös tanév. 1. A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi tanterv tantárgyfelosztáshoz

Közzétételi lista. 2014/15-ös tanév. 1. A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi tanterv tantárgyfelosztáshoz Közzétételi lista 2014/15-ös tanév Az intézmények eredményességéről, felkészültségéről, személyi feltételeihez (személyes adatokat nem sértve) kapcsolódó információkról a szülőket tájékoztatni szükséges,

Részletesebben

A munka világával kapcsolatos tulajdonságok, a kulcskompetenciák

A munka világával kapcsolatos tulajdonságok, a kulcskompetenciák Zachár László A munka világával kapcsolatos tulajdonságok, a kulcskompetenciák HEFOP 3.5.1. Korszerű felnőttképzési módszerek kidolgozása és alkalmazása Tanár-továbbképzési alprogram Szemináriumok Budapest

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Évfolyam 5. 6. Óraszám 1 0,5

Évfolyam 5. 6. Óraszám 1 0,5 TANULÁSMÓDSZERTAN 5 6. évfolyam Évfolyam 5. 6. Óraszám 1 0,5 A tanulás tanításának elsődleges célja, hogy az egyéni képességek, készségek figyelembe vételével és fejlesztésével képessé tegyük tanítványainkat

Részletesebben

GEOMATECH @ Velünk játék a tanulás

GEOMATECH @ Velünk játék a tanulás GEOMATECH @ Velünk játék a tanulás A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez illeszkedő

Részletesebben

SZKB101_06 SZKB_101_06. Kippkopp és Tipptopp. Egyedül nem jó. A modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK

SZKB101_06 SZKB_101_06. Kippkopp és Tipptopp. Egyedül nem jó. A modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK Kippkopp és Tipptopp Egyedül nem jó SZKB101_06 SZKB_101_06 Kippkopp és Tipptopp Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 64 Szociális, életviteli

Részletesebben

Fakultációs lehetőségek 2013. szeptemberétől az Erkel Ferenc Gimnáziumban

Fakultációs lehetőségek 2013. szeptemberétől az Erkel Ferenc Gimnáziumban Érettségi felkészítés Fakultációs lehetőségek 2013. szeptemberétől az Erkel Ferenc Gimnáziumban Alapvető információk Az iskola az alaptantervi órákon a középszintű érettségi vizsgához nyújt képzést, a

Részletesebben

2700 Cegléd, Rákóczi út 46. tel: (53)-310-934, (53)-500-525 fax:(53)-500-625 E-mail: cklg@cklg.hu www.cklg.hu

2700 Cegléd, Rákóczi út 46. tel: (53)-310-934, (53)-500-525 fax:(53)-500-625 E-mail: cklg@cklg.hu www.cklg.hu Beiskolázási tájékoztató a 2016/2017-es tanévre Ceglédi Kossuth Lajos Gimnázium OM azonosító: 032549 Telephely kódja: 001 2700 Cegléd, Rákóczi út 46. tel: (53)-310-934, (53)-500-525 fax:(53)-500-625 E-mail:

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

www.dinasztia.hu Egyedülálló, játékos készségfejlesztő rendszer Képességfejlesztő játék csoportos foglalkozásokra, de akár egyéni fejlesztésre is!

www.dinasztia.hu Egyedülálló, játékos készségfejlesztő rendszer Képességfejlesztő játék csoportos foglalkozásokra, de akár egyéni fejlesztésre is! Egyedülálló, játékos készségfejlesztő rendszer átfogó, komplex sorozat, mely az iskolaérettség szempontjából lényeges, összes képességet fejleszti: megfigyelés, összpontosítás, kitartás, problémamegoldó

Részletesebben

Felvételi tájékoztató

Felvételi tájékoztató Felvételi tájékoztató Szent-Györgyi Albert Általános Iskola és Gimnázium (OM azonosító: 035282) Györgyi Albert) Az iskola dolga, hogy megtanítsa vélünk, hogyan kell tanulni, hogy felkeltse a tudás iránti

Részletesebben

K ü l ö n ö s k ö z z é t é t e l i l i s t a

K ü l ö n ö s k ö z z é t é t e l i l i s t a Szent Mihály Görögkatolikus Általános Iskola OM azonosító: 201584 4254 Nyíradony, Árpád tér 10. K ü l ö n ö s k ö z z é t é t e l i l i s t a 10. számú melléklet a 11/1994. (VI.8.) MKM rendelet és a 32/2008

Részletesebben

Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga

Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga Tartalom Bevezető Kompetencia Kérdőív Eredmény Bemutatkozás A dolgozat keletkezésének körülményei

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

Különös közzétételi lista. a 11/1994. (VI. 8.) MKM rendelet 10. számú melléklete alapján

Különös közzétételi lista. a 11/1994. (VI. 8.) MKM rendelet 10. számú melléklete alapján Különös közzétételi lista a 11/1994. (VI. 8.) MKM rendelet 10. számú melléklete alapján 1. A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi tanterv tantárgyfelosztásához 2. A

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

NAGYVÁZSONYI KINIZSI PÁL NÉMET NEMZETISÉGI NYELVOKTATÓ ÁLTALÁNOS ISKOLA 8291 Nagyvázsony, Iskola u. 1. 2013/2014-es tanév KÜLÖNÖS KÖZZÉTÉTELI LISTA

NAGYVÁZSONYI KINIZSI PÁL NÉMET NEMZETISÉGI NYELVOKTATÓ ÁLTALÁNOS ISKOLA 8291 Nagyvázsony, Iskola u. 1. 2013/2014-es tanév KÜLÖNÖS KÖZZÉTÉTELI LISTA NAGYVÁZSONYI KINIZSI PÁL NÉMET NEMZETISÉGI NYELVOKTATÓ ÁLTALÁNOS ISKOLA 8291 Nagyvázsony, Iskola u. 1. 2013/2014-es tanév KÜLÖNÖS KÖZZÉTÉTELI LISTA 1. A pedagógusok iskolai végzettsége és szakképzettsége,

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

Az EGRI SZILÁGYI ERZSÉBET GIMNÁZIUM 2014-2015. tanévre vonatkozó felvételi tájékoztatója

Az EGRI SZILÁGYI ERZSÉBET GIMNÁZIUM 2014-2015. tanévre vonatkozó felvételi tájékoztatója Az EGRI SZILÁGYI ERZSÉBET GIMNÁZIUM 2014-2015. tanévre vonatkozó felvételi tájékoztatója 1. Az intézmény neve: EGRI SZILÁGYI ERZSÉBET GIM- NÁZIUM ÉS KOLLÉGIUM 2. Címe, telefonszáma: 3300 EGER, IFJÚSÁG

Részletesebben

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

GEOMATECH @ Sikerélmény a tanulásban

GEOMATECH @ Sikerélmény a tanulásban GEOMATECH @ Sikerélmény a tanulásban A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez

Részletesebben

kompetencia-alap vel ZÁRÓKONFERENCIA HEFOP-3.1.3

kompetencia-alap vel ZÁRÓKONFERENCIA HEFOP-3.1.3 A munkaerő-piaci esélyek javítása a kompetencia-alap alapú oktatás bevezetésével vel ZÁRÓKONFERENCIA HEFOP-3.1.3 3.1.3-05/1. 05/1.-2005-10-0421/1.00421/1.0 A Szemere Bertalan Szakközépiskola, Szakiskola

Részletesebben

Alkossunk, játsszunk együtt!

Alkossunk, játsszunk együtt! SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák

Részletesebben

TANMENETJAVASLAT. Matematika. 1. osztály

TANMENETJAVASLAT. Matematika. 1. osztály TANMENETJAVASLAT Matematika 1. osztály 2 1. Tájékozódás a tanulók készségeirôl, képességeirôl Játék szabadon adott eszközökkel Tk. 5. oldal korongok, pálcikák építôkockák GONDOLKODÁSI MÛVELETEK ALAPOZÁSA

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

Különös közzétételi lista 2010/2011. tanév

Különös közzétételi lista 2010/2011. tanév Különös közzétételi lista 2010/2011. tanév Személyi feltételek Pedagógus-munkakörben Sorszám A pedagógus végzettsége, szakképzettsége 1. Magyar-orosz-német szakos tanár Szakvizsgázott pedagógus: közoktatási

Részletesebben

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 MATEMATIKA ÉS SZÖVEGÉRTÉS. Dr.

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 MATEMATIKA ÉS SZÖVEGÉRTÉS. Dr. XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 MATEMATIKA ÉS SZÖVEGÉRTÉS Dr. Wintsche Gergely Tartalom Szövegértés és matematika A kísérleti tankönyvek céljai

Részletesebben

Feladat Felelős Határidő Partner 1. A pedagógusok tájékoztatása a PISA mérés hátteréről, A PISA mérés

Feladat Felelős Határidő Partner 1. A pedagógusok tájékoztatása a PISA mérés hátteréről, A PISA mérés 4. MEGVALÓSÍTÁSI TERV 4.1. OKM matematika 6. és 8. évfolyam Feltárt probléma A 6. és 8. évfolyamos tanulók OKM matematika teljesítménye szignifikánsan az országos átlag alatt van. Elérendő cél Az Országos

Részletesebben

A kormány 229/2012. (VIII.28) Korm. r. 23. (1) és (3) bekezdése alapján

A kormány 229/2012. (VIII.28) Korm. r. 23. (1) és (3) bekezdése alapján KÖZZÉTÉTELI LISTA A kormány 229/2012. (VIII.28) Korm. r. 23. (1) és (3) bekezdése alapján 1. Felvételi lehetőségekről szóló tájékoztató 2. Beiratkozás ideje, a fenntartó által engedélyezett osztályok száma

Részletesebben

Állati Móka Egyhetes projekt

Állati Móka Egyhetes projekt Állati Móka Egyhetes projekt Megvalósítás helye: Sugovica Általános Iskola Projekt felelős: Pásztor Judit Ideje: 2014. október 14 október 18. Bevont tanulók köre: 4. osztály, alkalomszerűen az alsós napközis

Részletesebben

FELVÉTELI TÁJÉKOZTATÓ. a 2016/2017-es tanévre

FELVÉTELI TÁJÉKOZTATÓ. a 2016/2017-es tanévre FELVÉTELI TÁJÉKOZTATÓ a 2016/2017-es tanévre 2 Beköszöntő helyett Választani mindig nehéz, hiszen a döntéssel, miközben új utak nyílnak, mások lezárulnak. Különösen nehéz ismeretek hiányában felelősségteljesen

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

A TANTÁRGYTÖMBÖSÍTETT OKTATÁS BEVEZETÉSE

A TANTÁRGYTÖMBÖSÍTETT OKTATÁS BEVEZETÉSE Kompetencia alapú oktatás, egyenlő hozzáférés megteremtése a hodászi Kölcsey Ferenc Általános Iskolában és Óvodában PEDAGÓGUSOK FEJLESZTÉSI INNOVÁCIÓS TEVÉKENYSÉGÉNEK TÁMOGATÁSA A TANTÁRGYTÖMBÖSÍTETT OKTATÁS

Részletesebben

Matematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály

Matematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály Matematika 1 4. évfolyam Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

A Nat 2007. évi felülvizsgálata, a gazdasági és pénzügyi ismeretek beemelése a Nat-ba.

A Nat 2007. évi felülvizsgálata, a gazdasági és pénzügyi ismeretek beemelése a Nat-ba. A Nat 2007. évi felülvizsgálata, a gazdasági és pénzügyi ismeretek beemelése a Nat-ba. Brassói Sándor főosztályvezető-helyettes Közoktatási Főosztály Oktatási és Kulturális Minisztérium 1. Az iskolai nevelés-oktatás

Részletesebben

A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján

A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján A sikeres életvitelhez, a társadalmi folyamatokba való beilleszkedéshez is folyamatosan megújuló tudásra van szükség. Tudásunk egy

Részletesebben

Varga Attila. E-mail: varga.attila@ofi.hu

Varga Attila. E-mail: varga.attila@ofi.hu Az ökoiskolaság, a környezeti nevelés helye a megújult tartalmi szabályozásban - Nemzeti alaptanterv és kerettantervek Varga Attila Oktatáskutató és Fejlesztő Intézet E-mail: varga.attila@ofi.hu Nemzetközi

Részletesebben

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

Tudorka óravázlat Magyar irodalom 4. évfolyam Tudorka 28. oldal

Tudorka óravázlat Magyar irodalom 4. évfolyam Tudorka 28. oldal Tudorka óravázlat Magyar irodalom 4. évfolyam Tudorka 28. oldal Tantárgy: Magyar irodalom Témakör: Történelmi arcképcsarnok Tananyag: Mátyás király és a pásztor című olvasmány feldolgozása, dramatizálása

Részletesebben

szka105_22 É N É S A V I L Á G Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5.

szka105_22 É N É S A V I L Á G Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5. szka105_22 É N É S A V I L Á G Külföldi vendéggel Magyarországon Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5. ÉVFOLYAM tanári Külföldi vendéggel Magyarországon

Részletesebben