Segíti-e az interaktív tábla a műszaki ábrázoló geometria oktatását?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Segíti-e az interaktív tábla a műszaki ábrázoló geometria oktatását?"

Átírás

1 Segíti-e az interaktív tábla a műszaki ábrázoló geometria oktatását? Árvainé Molnár Adrien 1, Fazekas Sarolta 2 DE AMTC MK Műszaki Alaptárgyi Tanszék Absztrakt Mindketten ábrázoló geometriát tanítunk a DE AMTC Műszaki Karán. A tanítás hatékonyságának növelése érdekében tanítási kísérletet végzünk a Műszaki Kar első éves építészmérnök hallgatói körében. Olyan vizuális rendszert szeretnénk kidolgozni, amely helyettesítheti a kézzel fogható modelleket, alkalmazva folyamatosan fejlődő oktatási eszközöket. Mostani kísérletünkben egy dinamikus geometriai program - név szerint a Geogebra - segítségével feldolgozott tananyagot mutatunk be a hallgatóknak interaktív táblán. Módszertani előnyeit abban látjuk, hogy eközben átismételhető a tanult anyag, a tanulók számára új fogalmakat vezethetünk be és felismertethetjük az összefüggéseket. A kísérlet egyik célja felmérni ennek a módszernek a hatékonyságát, növelni a hallgatók motiváltságát és aktivitását, illetve elősegíteni az értő tanulást. Másrészről, kiemelten kezeljük a hallgatók térszemléletének fejlesztését, amelyet minél több szemléltető ábra felhasználásával szeretnénk elérni, hiszen az ábrázoló geometria alapozza meg a későbbi szaktárgyak elsajátításához szükséges kompetenciákat. Cikkünkben beszámolunk a hallgatók számára kidolgozott tananyaggal kapcsolatos tapasztalatainkról. Bevezetés A DE Műszaki Karán a hallgatók négy szakon tanulnak ábrázoló geometriát. A műszaki menedzser, az építőmérnöki, építészmérnöki és gépészmérnöki szakokon. Az első három szakon 1 féléves az oktatás, 1+2 vagy 2+2 órában, az építészmérnök szakon 2 féléves, 2+2 órában. A hallgatói létszámok folyamatos növekedése a hagyományos, frontális osztálymunkán kívül a frontális munka jelenleg az oktatás domináns része - nem sok teret hagy a differenciált tanulásszervezési módoknak. A módszer tanárközpontú, aki verbálisan közvetíti a tananyagot, illetve a táblán, krétával jegyzeteket, összefoglalót készít. Tempójában az átlagos képességű diákokhoz igazodik, és nem tudja figyelembe venni a tanulók egyéni képességeit. Hallgatói visszajelzés alig, vagy egyáltalán nincs. Eközben a világban rohamos technikai és képi forradalom zajlik, aminek során a mai fiatalok egy számunkra idegen képi világban nőttek fel. A meséket nem hallgatták, hanem nézték, a zenét legtöbbször kép kíséri, a TV, a DVD, a számítógép magától értetődően tartozik az életükhöz. Nagyon sok képi információt kell feldolgozniuk és értelmezniük. Nem ők fognak hozzánk alkalmazkodni, hanem nekünk kell olyan módszereket találnunk, kidolgoznunk, amivel úgy adhatjuk át nekik a tudásunkat, ami számukra is értelmes és eredményes. Az ábrázoló geometria szerepe Az ábrázoló geometriának a műszaki oktatásban alapvetően kettős szerepe van. A vizuális tanulás megalapozása, és képzetek formájában a vizuális gondolkodás megalapozása. Azon tanulók tudják a szakmai tárgyakat eredményesen feldolgozni, akik fejlett vizuális kognitív képességekkel rendelkeznek. Alapozó tantárgyról lévén szó, a mérnökképzésben, főleg az építészmérnök képzésben vitathatatlanul elengedhetetlen a későbbi szaktantárgyak megalapozásához. Az igényesen oktatott műszaki ábrázolás, építésszerkezettan és tervezés tárgyak megkövetelik a hallgatóktól a fejlett térszemléletet, az ábrázoló geometria alapos ismeretét, valamint személyes- és módszerkompetenciák kiépítését, mint például a térlátás, a figyelemmegosztás, áttekintőképesség, rendszerezőképesség, tervezési képesség és vizuális gondolkodás. Ezért igen lényeges, hogy megoldást találjunk a tantárgy minél magasabb szinten történő oktatására, amit a megváltozott oktatási körülmények, főleg a csökkenő óraszám és a növekvő hallgatói létszám szinte lehetetlenné tesznek. A térszemlélet

2 A térszemléletnek nincs egyértelmű definíciója ahány helyen olvasunk róla, annyiféle leírást találunk, a NAT-tól egészen a térszemlélet kialakulását, fejlesztését kutatók leírásáig [1]. A műszaki oktatásban leginkább Caroll faktoranalitikus modelljében szereplő vizuális kommunikációs képességrendszert azonosíthatjuk a térszemlélet legbővebb fogalmával, ez leírja a fejleszthető és fejlesztendő kompetenciákat. Ilyen a vizuális kifejező-, alkotó-, esztétikai- és megismerő képességek [2]. ábra 1: vizuális képességrendszer felépítése Szűkebb értelemben is beszélhetünk térszemléletről, térlátásról a vizuális megismerőképességen belül. Két komponensre bonthatjuk, a felismerés és a manipuláció képességére. A felismerés tulajdonképpen vizuális befogadás, melynek célja a látvány egészének értelmezése. A vizuális befogadás a vizuális rendszer felismeréséből, egy szemléleti kép konstruálásából és annak belső megjelenítéséből (belső kép, képzet) áll. A manipuláció olyan mentális tevékenység, amikor egy tárgy észlelt képe alapján keletkező képzeten valamilyen belső műveletet hajtunk végre ahhoz, hogy felidézhessük a tárgy egy másik nézetének képét. Ilyen manipulációs művelet a testek képzeleti transzformációja (forgatása, tükrözése, eltolása), mozgatása, analizálása, szintetizálása. Térszemlélet fejlesztés interaktív táblával Az interaktív tábla egy remek módszer lehet a tanár-diák kommunikációs szakadék áthidalására és 2006 között 17 tanulmány, melyet Nagy-Britanniában és más európai országban végeztek, azt igazolták, hogy az interaktív táblát használó diákok jobb eredményeket értek el az anyanyelvi, matematikai és természettudományi teszteken, mint azok a társaik, akiknek ilyen módszer nem állt rendelkezésükre. Az interaktív táblákon látható digitális tartalom leköti és motiválja a diákokat az óra alatt és a tábla használata aktívabb órai munkára serkenti a tanulókat [3]. A képességfejlesztésre két út áll előttünk: a tényszerű ismeretek elsajátíttatása, és a procedurális tanulás révén a hogyan kell valamit elvégezni megtanítása. Interaktív táblával mind az első, mind a második lehetőség hatékonyan támogatható. A tényszerű ismeretek elsajátításában most már nem csak a száraz tényközlésre van lehetőség, hanem a tábla segítségével lehetőség nyílik a hallgató önálló tapasztalatszerzésére empirikus és asszociatív tanulásra (tapasztalatokból kiindulva fogalmak, gondolati sémák elsajátítása), irányított és felfedeztető tanulásra (a sikertelen megoldások fokozatosan kiküszöbölődnek, megmaradnak, megerősödnek a célszerű mozgások, melyek a probléma megoldásához vezetnek), valamint az algoritmikus tanulásra (a hasonló feladatok megoldásának legcélszerűbb műveletsorainak szintetizálása). Jean Piaget ( ) szerint a konkrét műveletek belsővé vált cselekvések, amelyek beleillenek egy logikai rendszerbe, és képessé teszik a hallgatót, hogy manipulálható, észlelhető alakzatokat gondolatban összekapcsoljon, elkülönítsen, sorba rendezzen, átalakítson. Egy ábrázoló geometriai feladatban, ugyanazon térbeli alakzat minden, lényegében különböző felvételével, a hallgató új és

3 újabb feladattal szembesül, ha nem ismeri fel a típust, a megoldási sémákat. Az interaktív tábla segítségével egy feladat két felvétele között átjárhatunk, így a szerkesztések látványossága nő, érdekessé, figyelemfelkeltővé válnak, a hallgatók pedig szívesen próbálják ki a tábla nyújtotta lehetőségeket. Geogebra, a dinamikus geometria Az ábrázoló geometriában igen lényeges szerepet játszik a modellezés, mert így elősegítjük a térben létrejövő alakzatok könnyebb elképzelését. A konkrét fizikai modellezés egyrészt lehetetlen, másrészt megoldhatatlan a nagy évfolyamlétszám miatt. Ennek kiváltására, helyettesítésére szándékozunk kidolgozni egy olyan tananyagot, amely bemutatja a térbeli helyzeteket, illetve az ehhez kapcsolódó szerkesztéseket. A tantárgy feldolgozásához egy dinamikus geometriai programot, név szerint a Geogebrát [4] használtuk fel. A programot Markus Hohenwarter készítette 2001-ben, a Salzburgi Egyetemen. A program témájában a matematikához és geometriához kapcsolódik. Dinamikus geometriai programként rendelkezik azzal a jellegzetességgel, hogy egy alakzat kétféle leírási módja algebrai és geometriai között átjárás van, ezek ekvivalensek, és az alakzat mindkét módon egyszerre változtatható. A program dinamikussága nagymértékben elősegíti a térbeli helyzet elképzelését. A tanítási kísérlet alatt, az ábrák elkészítésekor, egyrészt bemutattuk a térbeli ábrát, és hozzá kapcsolódóan az ábrázoló geometriai szerkesztést is. A kezelői felületen a rajzterületen az arra kijelölt pontok szabadon megfoghatók, elmozdíthatók, ezt a mozgást követi mind a térbeli, mind a síkbeli ábra, és az ábrák úgy változnak, hogy az objektumok közötti logikai kapcsolat megmarad. Itt nyílik lehetőség a tapasztalati tanulásra, didaktikai szempontból jól megválasztott paraméterek változtatása megengedett, minden más a hallgatók számára elérhetetlen. Az ábrák mozgatásával különböző helyzetek adódnak elő, ami nem csak a konkrétan meghatározott feladatra, hanem annak majd minden lehetséges változatára rávilágít. A tanítási kísérlet Az általunk kidolgozott anyag az ábrázoló geometria egy témakörét, a perspektív ábrázolási módot mutatta be a hallgatóknak. A rendelkezésre álló 4x2 óra alatt csak az alapszerkesztések és néhány árnyékszerkesztési feladat feldolgozását tette lehetővé. Álljon itt néhány példa! A perspektíva bevezetésére a térbeli rendszer, illetve annak síkbeli képét mutató feladatlapot készítettünk. Az ábrán piros karikával látható a hallgató által megfogható és mozgatható pont.

4 ábra 2: Perspektíva bevezetése Segítségével a képsíkok összecsukhatók, így a térbeli rendszerből létrejön a síkbeli perspektivikus kép, és felismerhetővé válik a kapcsolat a leképezés és a térbeli viszonyok között. ábra 3: Perspektíva bevezetése A perspektíva tulajdonságainak, a való világgal való kapcsolatának felfedeztetésére több feladatlap készült. Gondoljunk a végtelenben összefutó sínpárra, közöttük talpfákkal, egy végtelen hosszú kerítés léceinek rövidülésére, és sűrűsödésére, vagy arra, hogy mely lapjai látszanak egy kockának, ha azt nagy amplitúdóval fel-le mozgatjuk. Az ábrán a kocka mozgásának három fázisa egyszerre látható.

5 ábra 4: Kocka képei perspektívában Az árnyékszerkesztésnél súlyponti probléma a képsíkra vetett árnyék, az önárnyék, és a más testekre vetett árnyék fogalmainak elkülönítése, a testkontúr és az árnyékkontúr kapcsolatának felismerése, valamint az árnyékterületek összekapcsolódása. A fénysugár irányának változtatása generálja az árnyék változását. Hallgatói kérdőív ábra 5: Az árnyék törésének vizsgálata A hallgatóknak ben kérdéseket tettünk fel, hogy visszajelzést kapjunk az oktatás hatékonyságáról, a diákok tapasztalatairól.

6 Élvezetesebbnek tartotta-e az órát mint a hagyományosat? Könnyebben megértette az adott anyagot, mint általában? Segítette a megértést a látvány? Fel tudná dolgozni egyedül is az adott anyagot az órán látott ábrák, feladatok segítségével? Írja le, az Ön számára negatív, zavaró részeit az órának! Amennyiben voltak zavaró részek, mit javasolna máshogy csinálni? Igényelné más tárgyak hasonló módon történő feldolgozását? Foglalja össze a benyomásait és véleményét néhány mondatban! Hallgatói válaszok A kapott válaszok alapján kiderül, hogy a módszer egyértelmű sikert aratott, az oktatási tevékenység újszerűsége fellelkesítette a hallgatókat, az adott témakört hatékonyabban értették meg, és adták vissza, mint korábbi tapasztalataink alapján az előző évfolyamok. Nekem nagyon tetszett, örülök, hogy ilyet is láthattam, nagyon hasznosnak találom az ábrázoló geometria efféle módon történő tanítását. A visszajelzések alapján az önálló tananyagfeldolgozás, és az ismeretek rendszerezése elképzelhetőnek, megvalósíthatónak tűnik a hallgatók számára. Igen, ha szöveges leírás is van az ábrák mellett. Összegzés Az kísérlet egyértelműen pozitív kicsengése az, hogy a hallgatók képesek és akarnak dolgozni, bár ennek pontos mérésére több hallgatót kell bevonni a kísérletbe, esetlegesen más, nehezebb anyagrészek feldolgozásával az interaktív tábla erős motiváló tényező. A tananyag megértésében sokat segített, hogy a tanári megjegyzések a feladatlapokra kerülhettek, és mentésükkel a rögzített táblaképek segítették az ismétlést, a rendszerezést. Negatív tapasztalat viszont, hogy az interaktív táblával rendelkező számítógépes tanterem túlterheltsége miatt a gépidő nagyon korlátozott, és ebben változás nem várható. Tapasztalatainkat összegezve megadható a címbeli kérdésre a válasz: igen. Referenciák [1] Kárpáti Andrea A kamaszok vizuális nyelve, Akadémiai Kiadó, 2005 [2] Tóth Péter: A vizuális gondolkodás műveletei, BME [3] [4] [5] Séra László, Kárpáti Andrea, Gulyás János: A térszemlélet, Comenius Bt., Pécs, 2002

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai

Részletesebben

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret

Részletesebben

15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK

15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK MATEMATIK A 9. évfolyam 15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK KÉSZÍTETTE: BIRLONI SZILVIA Matematika A 9. évfolyam. 15. modul: VEKTOROK, EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Tanári útmutató 2 A modul célja

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

A TÉRI KÉPESSÉG VIZSGÁLATA A ÉVES MŰVÉSZETI KÉPZÉSBEN RÉSZESÜLŐ TANULÓKNÁL

A TÉRI KÉPESSÉG VIZSGÁLATA A ÉVES MŰVÉSZETI KÉPZÉSBEN RÉSZESÜLŐ TANULÓKNÁL A TÉRI KÉPESSÉG VIZSGÁLATA A 14-16 ÉVES MŰVÉSZETI KÉPZÉSBEN RÉSZESÜLŐ TANULÓKNÁL A kutatást végezte és a posztert készítette dr. Bredács Alice, Ph.D. PTE, MK A festményt készítette: Friesz Bernadett, Pécsi

Részletesebben

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN Készítette: Adorjánné Tihanyi Rita Innováció fő célja: A magyar irodalom és nyelvtan tantárgyak oktatása

Részletesebben

Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA. Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA

Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA. Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA 1. Az óra tartalma A tanulási téma bemutatása; A téma és

Részletesebben

KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK

KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK 5. osztály KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK A SOKSZÍNŰ MATEMATIKA TANKÖNYVCSALÁD TANKÖNYVEIBEN ÉS MUNKAFÜZETEIBEN A matematikatanítás célja és feladata, hogy a tanulók az őket körülvevő világ mennyiségi

Részletesebben

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

Dinamikus geometriai programok

Dinamikus geometriai programok 2010. szeptember 18. Ebben a vázlatban arról írok, hogyan válhatnak a dinamikus geometriai programok a matematika tanítás hatékony segítőivé. Reform mozgalmak a formális matematika megalapozását az életkjori

Részletesebben

INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA. Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.

INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA. Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte. INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.hu Abstract/Absztrakt A GeoGebra egy olyan világszerte 190 országban ismert,

Részletesebben

Dinamikus geometriai programok

Dinamikus geometriai programok 2011. február 19. Eszköz és médium (fotó: http://sliderulemuseum.com) ugyanez egyben: Enter Reform mozgalmak a formális matematika megalapozását az életkjori sajátosságoknak megfelelő tárgyi tevékenységnek

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje.

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. 2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. Az oktatási folyamat tervezése a központi kerettanterv alapján a helyi tanterv elkészítésével kezdődik. A szakmai munkaközösség tagjai

Részletesebben

A dinamikus geometriai rendszerek használatának egy lehetséges területe

A dinamikus geometriai rendszerek használatának egy lehetséges területe Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december

Részletesebben

Foglalkoztatás I. tantárgy Idegen nyelv

Foglalkoztatás I. tantárgy Idegen nyelv Szakiskola 11. évfolyam Foglalkoztatás I. tantárgy Idegen nyelv 64 óra A Foglalkoztatás I. megnevezésű szakmai követelménymodulhoz tartozó tantárgyak és a témakörök oktatása során fejlesztendő kompetenciák

Részletesebben

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint Készítette:

Részletesebben

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

TÉRSZEMLÉLET: MŰVÉSZET, TUDOMÁNY, PEDAGÓGIA. Kárpáti Andrea. andreakarpati.elte@gmail.com

TÉRSZEMLÉLET: MŰVÉSZET, TUDOMÁNY, PEDAGÓGIA. Kárpáti Andrea. andreakarpati.elte@gmail.com TÉRSZEMLÉLET: MŰVÉSZET, TUDOMÁNY, PEDAGÓGIA Kárpáti Andrea andreakarpati.elte@gmail.com AZ ELŐADÁS TÉMÁI Térszemlélet és térábrázolás A téri képességek a vizuális képességek rendszerében Fejlesztő értékelés

Részletesebben

kodolosuli.hu: Interaktív, programozást tanító portál BALLA TAMÁS, DR. KIRÁLY SÁNDOR NETWORKSHOP 2017, SZEGED

kodolosuli.hu: Interaktív, programozást tanító portál BALLA TAMÁS, DR. KIRÁLY SÁNDOR NETWORKSHOP 2017, SZEGED kodolosuli.hu: Interaktív, programozást tanító portál BALLA TAMÁS, DR. KIRÁLY SÁNDOR NETWORKSHOP 2017, SZEGED A közoktatásban folyó informatika oktatásával kapcsolatos elvárások Állami szereplő: Az informatikaoktatás

Részletesebben

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal

Részletesebben

Jelige/Név:. Válaszadó: y, osztály:, születési év

Jelige/Név:. Válaszadó: y, osztály:, születési év Forrás: Bernáth László, N. Kollár Katalin, Németh Lilla: A tanulási stílus mérése ELTE Eötvös Kiadó, Bp. 2015. 1. melléklet A végsõ kérdõív Tanulási stílusok kérdőív Jelige/Név:. Válaszadó: y, osztály:,

Részletesebben

DIGITÁLIS KOMPETENCIA FEJLESZTÉSE TANÍTÁSI ÓRÁKON

DIGITÁLIS KOMPETENCIA FEJLESZTÉSE TANÍTÁSI ÓRÁKON DIGITÁLIS KOMPETENCIA FEJLESZTÉSE TANÍTÁSI ÓRÁKON Juhász Gabriella A digitális kompetencia fogalma A digitális kompetencia az elektronikus média magabiztos és kritikus alkalmazása munkában, szabadidőben

Részletesebben

A azonosító számú Foglalkoztatás I. megnevezésű szakmai követelménymodulhoz tartozó Foglalkoztatás I tantárgy

A azonosító számú Foglalkoztatás I. megnevezésű szakmai követelménymodulhoz tartozó Foglalkoztatás I tantárgy A 11497-12 azonosító számú Foglalkoztatás I. megnevezésű szakmai követelménymodulhoz tartozó Foglalkoztatás I tantárgy 1. 1. A 11497-12 azonosító számú, Foglalkoztatás I. megnevezésű szakmai követelménymodulhoz

Részletesebben

A FELFEDEZTETŐ TANULÁS ELEMEI EGY KONKRÉT MODUL AZ ÖVEGES PROFESSZOR KÍSÉRLETEI KERETÉBEN

A FELFEDEZTETŐ TANULÁS ELEMEI EGY KONKRÉT MODUL AZ ÖVEGES PROFESSZOR KÍSÉRLETEI KERETÉBEN XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A FELFEDEZTETŐ TANULÁS ELEMEI EGY KONKRÉT MODUL AZ ÖVEGES PROFESSZOR KÍSÉRLETEI KERETÉBEN Tóth Enikő Debreceni Gönczy

Részletesebben

A MŰSZAKI ÁBRÁZOLÁS E-ELARNING ALAPÚ OKTATÁSA A SZÉCHENYI ISTVÁN EGYETEMEN

A MŰSZAKI ÁBRÁZOLÁS E-ELARNING ALAPÚ OKTATÁSA A SZÉCHENYI ISTVÁN EGYETEMEN A MŰSZAKI ÁBRÁZOLÁS E-ELARNING ALAPÚ OKTATÁSA A SZÉCHENYI ISTVÁN EGYETEMEN E-LEARNING BASED INSTRUCTION OF TECHNICAL DRAWING AT SZECHENYI ISTVAN UNIVERSITY Kovács Miklós, kovacsm@sze.hu Széchenyi István

Részletesebben

Tankönyvkiadók konferenciája Fizika

Tankönyvkiadók konferenciája Fizika Tankönyvkiadók konferenciája Fizika Általános iskola, felső tagozat Dr. Koreczné Kazinczi Ilona vezető szerkesztő 2014. 08. 21. Szombathely Magyar nyelv FELSŐ TAGOZAT Matematika Magyar nyelv Kalandozások

Részletesebben

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul: Az abszolútérték-függvény és más nemlineáris függvények

Részletesebben

Beszámoló IKT fejlesztésről

Beszámoló IKT fejlesztésről Kompetencia alapú oktatás, egyenlő hozzáférés Innovatív intézményekben TÁMOP-3.1.4/08/2-2008-0010 Beszámoló IKT fejlesztésről Piarista Általános Iskola, Gimnázium és Diákotthon Kecskemét Tartalomjegyzék

Részletesebben

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A

Részletesebben

A ÉVESEK TÉRSZEMLÉLETÉNEK VIZSGÁLATA ONLINE TESZTKÖRNYEZETBEN

A ÉVESEK TÉRSZEMLÉLETÉNEK VIZSGÁLATA ONLINE TESZTKÖRNYEZETBEN A 10-13 ÉVESEK TÉRSZEMLÉLETÉNEK VIZSGÁLATA ONLINE TESZTKÖRNYEZETBEN BABÁLY BERNADETT SZIE YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR, ELTE PPK NDI Országos Neveléstudományi Konferencia Debrecen, 2014. november 6-8.

Részletesebben

OKM ISKOLAI EREDMÉNYEK

OKM ISKOLAI EREDMÉNYEK OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak

Részletesebben

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges

Részletesebben

A kőzetlemezek mozgásai és következményei

A kőzetlemezek mozgásai és következményei A kőzetlemezek mozgásai és következményei A pedagógus neve: Oláhné Nádasdi Zsuzsanna Intézmény: Közgazdasági Politechnikum Alternatív Gimnázium 1096 Bp. Vendel u.3. Műveltségi terület: Földünk-környezetünk

Részletesebben

GEOMATECH @ Élményszerű természettudomány

GEOMATECH @ Élményszerű természettudomány GEOMATECH @ Élményszerű természettudomány A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez

Részletesebben

Didaktika 1. Tanügyi és iskolai szabályozás. 3. Tantervi követelmények

Didaktika 1. Tanügyi és iskolai szabályozás. 3. Tantervi követelmények Didaktika 1. Tanügyi és iskolai szabályozás 3. Tantervi követelmények A tanítási-tanulási folyamat rendszeralkotó tényezői Képzési inputok (tanterv, kurzustartalmak) Transzformáció (oktatási folyamat)

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Aktív tábla nyelvtanári szemmel. Kétyi András BGF KKFK Német Nyelvi Tanszék Szegedi Neveléstudományi Doktori Iskola

Aktív tábla nyelvtanári szemmel. Kétyi András BGF KKFK Német Nyelvi Tanszék Szegedi Neveléstudományi Doktori Iskola Aktív tábla nyelvtanári szemmel Kétyi András BGF KKFK Német Nyelvi Tanszék Szegedi Neveléstudományi Doktori Iskola Aktív táblás kutatások, publikációk 1. Nemzetközi kutatások, publikációk Íráskészség,

Részletesebben

Óratípusok. Dr. Nyéki Lajos 2016

Óratípusok. Dr. Nyéki Lajos 2016 Óratípusok Dr. Nyéki Lajos 2016 Bevezetés Az oktatási folyamatban alkalmazott szervezeti formák legfontosabb komponense a tanítási óra. Az ismeret-elsajátítás alapegysége a témakör. A tanítási órák felosztása,

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Az értelmi nevelés. Dr. Nyéki Lajos 2015

Az értelmi nevelés. Dr. Nyéki Lajos 2015 Az értelmi nevelés Dr. Nyéki Lajos 2015 Bevezetés Az értelmi nevelés a művelődési anyagok elsajátítására, illetve azok rendszeres feldolgozásával az intellektuális képességek fejlesztésére irányul, és

Részletesebben

VI.3. TORPEDÓ. A feladatsor jellemzői

VI.3. TORPEDÓ. A feladatsor jellemzői VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont

Részletesebben

TÖRTÉNELEM 5-7. A felső tagozatos történelemtankönyv bemutatása

TÖRTÉNELEM 5-7. A felső tagozatos történelemtankönyv bemutatása A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 TÖRTÉNELEM 5-7. A felső tagozatos történelemtankönyv bemutatása 2015. február

Részletesebben

Pedagógusok felkészítése a tanulási képességek eredményes mozgósítására. Balassagyarmat, 2014.szeptember Lerchné Forgács Marianna

Pedagógusok felkészítése a tanulási képességek eredményes mozgósítására. Balassagyarmat, 2014.szeptember Lerchné Forgács Marianna Pedagógusok felkészítése a tanulási képességek eredményes mozgósítására Balassagyarmat, 2014.szeptember Lerchné Forgács Marianna Továbbképzés célja A pedagógusok ismerjék meg (elevenítsék fel) : Bővítsék

Részletesebben

Matematika az építészetben

Matematika az építészetben Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:

Részletesebben

ÓRAVÁZLAT. Az óra címe: Ismeretek a kis számokról. Osztály. nyújtott 1. évfolyam első év A tanóra célja

ÓRAVÁZLAT. Az óra címe: Ismeretek a kis számokról. Osztály. nyújtott 1. évfolyam első év A tanóra célja ÓRAVÁZLAT Az óra címe: Ismeretek a kis számokról Készítette: Nagy Istvánné Osztály nyújtott 1. évfolyam első év A tanóra célja Tudatos észlelés, megfigyelés és a figyelem fejlesztése, pontosítása. Tapasztalatszerzés

Részletesebben

SZOFTVERESZKÖZ. Melvin nyelvoktató szoftver ,- C angol nyelvtani játék ,- C599. Gridmagic rajzszoftver. Teachernet 78.

SZOFTVERESZKÖZ. Melvin nyelvoktató szoftver ,- C angol nyelvtani játék ,- C599. Gridmagic rajzszoftver. Teachernet 78. 21 Commitment Szolgáltató és Tanácsadó Kft. www.commitment.hu ugyfelszolgalat@commitment.hu telefon: 06 52 541 442 fax: 06 52 541 474 24 25 SZOFTVERESZKÖZ Melvin nyelvoktató szoftver A szoftver színesebbé

Részletesebben

Digitális tartalomfejlesztés természettudományos tantárgyak

Digitális tartalomfejlesztés természettudományos tantárgyak Digitális tartalomfejlesztés természettudományos tantárgyak Készítette: Neumann Viktor A digitális tartalomfejlesztés szervezeti keretei Az (OFI) által gondozott, 2013-ban indult TÁMOP 3.1.2-B kiemelt

Részletesebben

TÖRTÉNELEM 5-6. A felső tagozatos történelemtankönyv bemutatása

TÖRTÉNELEM 5-6. A felső tagozatos történelemtankönyv bemutatása A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 TÖRTÉNELEM 5-6. A felső tagozatos történelemtankönyv bemutatása Bartos Károly

Részletesebben

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 15. modul SÍKIDOMOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 15. modul: SÍKIDOMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Az új Tanulási stílus kérdőív. A kérdőív skálái, használati javaslatok, kutatási eredmények

Az új Tanulási stílus kérdőív. A kérdőív skálái, használati javaslatok, kutatási eredmények Az új Tanulási stílus kérdőív A kérdőív skálái, használati javaslatok, kutatási eredmények Miről lesz szó? Az új tanulási stílus kérdőív kialakítása A kérdőív és az alskálák bemutatása A kérdőív használata

Részletesebben

Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás

Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás NTP-KKI-B-15 A köznevelés és kulturális intézményekben működő tehetséggondozó programok támogatása Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás Tudomány és művészetek tehetséggondozó

Részletesebben

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai

Részletesebben

- a szakmai tantárgyak alapozó ismereteinek megszerzését; - az általános műszaki műveltség folyamatos fejlesztését;

- a szakmai tantárgyak alapozó ismereteinek megszerzését; - az általános műszaki műveltség folyamatos fejlesztését; MŰSZAKI ÁBRÁZOLÁS A műszaki ábrázolás tantárgy tanításának általános célja a gimnáziumi képzésben, mint szabadon választott tantárgyként a szakképzést választók azt az általános vizuális kultúrát és térszemléletet,

Részletesebben

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY MATEMATIK A 9. évfolyam 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN

MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 1. MODUL: IDŐBEN A TÉRBEN TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

TÖRTÉNELEM Borhegyi Péter

TÖRTÉNELEM Borhegyi Péter A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 TÖRTÉNELEM 9-10. Borhegyi Péter Tankönyvi szerzők: Dr. Németh György (az

Részletesebben

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr. Matematika A 9. szakiskolai évfolyam 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA Készítették: Vidra Gábor és Koller Lászlóné dr. MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 11. modul: EGYENLETEK, EGYENLŐTLENSÉGEK

Részletesebben

A tanulás fejlesztésének tanulása Tanulási program

A tanulás fejlesztésének tanulása Tanulási program A tanulás fejlesztésének tanulása Tanulási program Tematikus tananyag Tanulási program / Tanulói tevékenység Produktum/teljesítmény I. Bevezetés a tanulás fejlesztésének tanulásába 1. A T.F.T. célja, témakörei

Részletesebben

Az oktatási módszerek csoportosítása

Az oktatási módszerek csoportosítása 1 Az oktatási módszerek csoportosítása 1. A didaktikai feladatok szerint: Új ismeretek tanításának/tanulásának módszere A képességek tanításának/tanulásának módszere Az alkalmazás tanításának/tanulásának

Részletesebben

IV. AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI

IV. AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI IV. AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI IV/1. Az általános iskolai oktatásban és a sajátos nevelési igényű tanulók oktatásában a kerettanterv szerint oktatott

Részletesebben

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,

Részletesebben

Egy feladat megoldása Geogebra segítségével

Egy feladat megoldása Geogebra segítségével Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babes-Bolyai Tudományegyetem 1.2 Kar Pszichológia és Neveléstudományok Kar 1.3 Intézet Pedagógia és Alkalmazott Didaktika Intézet

Részletesebben

A HMJVÖ Liszt Ferenc Ének-Zenei Általános Iskola és Óvoda Jó gyakorlatai: SZÓ-TÁR idegen nyelvi nap

A HMJVÖ Liszt Ferenc Ének-Zenei Általános Iskola és Óvoda Jó gyakorlatai: SZÓ-TÁR idegen nyelvi nap A HMJVÖ Liszt Ferenc Ének-Zenei Általános Iskola és Óvoda Jó gyakorlatai: SZÓ-TÁR idegen nyelvi nap A jó gyakorlat célja Az idegen nyelvi nap során a tanulók különböző idegen nyelvi foglalkozásokon, workshopokon

Részletesebben

EGY TANTÁRGYI ÉS EGY MÓDSZERTANI PEDAGÓGUS- TOVÁBBKÉPZÉS BEMUTATÁSA

EGY TANTÁRGYI ÉS EGY MÓDSZERTANI PEDAGÓGUS- TOVÁBBKÉPZÉS BEMUTATÁSA Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 EGY TANTÁRGYI ÉS EGY MÓDSZERTANI PEDAGÓGUS- TOVÁBBKÉPZÉS BEMUTATÁSA SÁRI ÉVA Bemutatásra kerülő két képzés címe I. Szakmai megújító képzés középiskolában

Részletesebben

kompetencia-alap vel ZÁRÓKONFERENCIA HEFOP-3.1.3

kompetencia-alap vel ZÁRÓKONFERENCIA HEFOP-3.1.3 A munkaerő-piaci esélyek javítása a kompetencia-alap alapú oktatás bevezetésével vel ZÁRÓKONFERENCIA HEFOP-3.1.3 3.1.3-05/1. 05/1.-2005-10-0421/1.00421/1.0 A Szemere Bertalan Szakközépiskola, Szakiskola

Részletesebben

Kompetenciák fejlesztése a pedagógusképzésben. IKT kompetenciák. Farkas András f_andras@bdf.hu

Kompetenciák fejlesztése a pedagógusképzésben. IKT kompetenciák. Farkas András f_andras@bdf.hu Kompetenciák fejlesztése a pedagógusképzésben IKT kompetenciák Farkas András f_andras@bdf.hu A tanítás holisztikus folyamat, összekapcsolja a nézeteket, a tantárgyakat egymással és a tanulók személyes

Részletesebben

A TESTNEVELÉS ÉS SPORT VALAMINT MÁS MŰVELTSÉGTERÜLETEK TANANYAGÁNAK KAPCSOLÓDÁSI PONTJAI DR. PUCSOK JÓZSEF MÁRTON NYÍREGYHÁZI FŐISKOLA TSI

A TESTNEVELÉS ÉS SPORT VALAMINT MÁS MŰVELTSÉGTERÜLETEK TANANYAGÁNAK KAPCSOLÓDÁSI PONTJAI DR. PUCSOK JÓZSEF MÁRTON NYÍREGYHÁZI FŐISKOLA TSI A TESTNEVELÉS ÉS SPORT VALAMINT MÁS MŰVELTSÉGTERÜLETEK TANANYAGÁNAK KAPCSOLÓDÁSI PONTJAI DR. PUCSOK JÓZSEF MÁRTON NYÍREGYHÁZI FŐISKOLA TSI TÁMOP-4.1.2.B.2-13/1-2013-0009 Szakmai szolgáltató és kutatást

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Szakértelem a jövő záloga

Szakértelem a jövő záloga 1211 Budapest, Posztógyár út. LEKTORI VÉLEMÉNY Moduláris tananyagfejlesztés Modul száma, megnevezése: Szerző neve: Lektor neve: Imagine Logo programozás Babos Gábor Újváry Angelika, Szabó Imre Sorszám

Részletesebben

I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE:

I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE: IKT.SZ.: 34 78 / 28 1 / 2015. O R S Z Á G O S K O M P E T E N C I A M É R É S I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE:

Részletesebben

Gyarmati Dezső Sport Általános Iskola. Tanulásmódszertan HELYI TANTERV 5-6. OSZTÁLY

Gyarmati Dezső Sport Általános Iskola. Tanulásmódszertan HELYI TANTERV 5-6. OSZTÁLY Gyarmati Dezső Sport Általános Iskola Tanulásmódszertan HELYI TANTERV 5-6. OSZTÁLY KÉSZÍTETTE: Molnárné Kiss Éva MISKOLC 2015 Összesített óraterv A, Évfolyam 5. 6. 7. 8. Heti 1 0,5 óraszám Összóraszám

Részletesebben

Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz

Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz TARTALOMFEJLESZTŐK FELADATAI Koczor Margit Budapest, 2013. 09.

Részletesebben

AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK

AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK MATEMATIKA FIZIKA BIOLÓGIA FÖLDRAJZ KÉMIA Az OFI kínálata - természettudományok Matematika Matematika Ajánlatunk:

Részletesebben

"Mindennapi pénzügyeink" óravázlat

Mindennapi pénzügyeink óravázlat "Mindennapi pénzügyeink" óravázlat A pedagógus neve: Zsámba Lajos Műveltségi terület: Közgazdaságtan Tantárgy: Gazdálkodási ismeretek gyakorlat Osztály: 11. Az óra témája: Szereplők és kapcsolatok a piacgazdaságban

Részletesebben

A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI

A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI NEVELÉSI-OKTATÁSI PROGRAMOK AZ EGÉSZ NAPOS ISKOLÁK SZÁMÁRA

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

Munkaformák. Dr. Nyéki Lajos 2016

Munkaformák. Dr. Nyéki Lajos 2016 Munkaformák Dr. Nyéki Lajos 2016 Az oktatás munkaformái Az oktatási folyamat szervezésében a szervezeti formák mellett további differenciálás is lehetséges, attól függően, hogy a tanár a tanítási-tanulási

Részletesebben

Matematika. 5. 8. évfolyam

Matematika. 5. 8. évfolyam Matematika 5. 8. évfolyam 5. 6. évfolyam Éves órakeret: 148 Heti óraszám: 4 Témakörök Óraszámok Gondolkodási és megismerési módszerek folyamatos Számtan, algebra 65 Összefüggések, függvények, sorozatok

Részletesebben

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á Kompetencia alapú oktatás (tanári kompetenciák) A kompetencia - Szakértelem - Képesség - Rátermettség - Tenni akarás - Alkalmasság - Ügyesség stb. A kompetenciát (Nagy József nyomán) olyan ismereteket,

Részletesebben

Vizuális informatika oktatás a szakképzésben (Visual Information Technology in Vocational Training)

Vizuális informatika oktatás a szakképzésben (Visual Information Technology in Vocational Training) Vizuális informatika oktatás a szakképzésben (Visual Information Technology in Vocational Training) Berke József - Tóth István Veszprémi Egyetem, Georgikon Mezõgazdaságtudományi Kar, 8360 Keszthely, Deák

Részletesebben

szka105_22 É N É S A V I L Á G Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5.

szka105_22 É N É S A V I L Á G Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5. szka105_22 É N É S A V I L Á G Külföldi vendéggel Magyarországon Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5. ÉVFOLYAM tanári Külföldi vendéggel Magyarországon

Részletesebben

Matematika. Padányi Katolikus Gyakorlóiskola 1

Matematika. Padányi Katolikus Gyakorlóiskola 1 Matematika Alapelvek, célok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

Miben fejlődne szívesen?

Miben fejlődne szívesen? Miben fejlődne szívesen? Tartalomelemzés Szegedi Eszter 2011. január A vizsgálat egy nagyobb kutatás keretében történt, melynek címe: A TANÁRI KOMEPETENCIÁK ÉS A TANÍTÁS EREDMÉNYESSÉGE A kutatás három

Részletesebben

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP / STORYLINE KERETTÖRTÉNET

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP / STORYLINE KERETTÖRTÉNET XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 STORYLINE KERETTÖRTÉNET STORYLINE METHODE, KERETTÖRTÉNET MÓDSZER: Élményalapú, felfedeztető tanítási forma FORRÁSA,

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó

Részletesebben

Képzési beszámoló június - július

Képzési beszámoló június - július 2014. június - július Képzési beszámoló A TÁMOP-2.2.2-12/1-2012-0001 azonosítószámú A pályaorientáció rendszerének tartalmi és módszertani fejlesztése című kiemelt projekt keretén belül megvalósuló Pályaorientációs

Részletesebben

Fejlesztı neve: Tavi Orsolya. Tanóra / modul címe: DINAMIKAI ISMERETEK RENDSZEREZÉSE, ÖSSZEFOGLALÁSA KOOPERATÍV TECHNIKÁVAL

Fejlesztı neve: Tavi Orsolya. Tanóra / modul címe: DINAMIKAI ISMERETEK RENDSZEREZÉSE, ÖSSZEFOGLALÁSA KOOPERATÍV TECHNIKÁVAL Fejlesztı neve: Tavi Orsolya Tanóra / modul címe: DINAMIKAI ISMERETEK RENDSZEREZÉSE, ÖSSZEFOGLALÁSA KOOPERATÍV TECHNIKÁVAL 1. Az óra tartalma A tanulási téma bemutatása; A téma és a módszer összekapcsolásának

Részletesebben

Alkossunk, játsszunk együtt!

Alkossunk, játsszunk együtt! SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák

Részletesebben