Modellek és változásaik a fizikában I.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Modellek és változásaik a fizikában I."

Átírás

1 Modellek és változásaik a fizikában I. Az ókor Kicsik vagyunk, de hódítani akarunk Kis képes relativitáselmélet azok számára, akik úgy hiszik, hogy meghatározó szerepük van a passzátszél előidézésében. Forrás: 1

2 2

3 3

4 4

5 Ókor, cinikusok A cinikusok egy ókori görög filozófiai iskolát alkottak, melyet Antiszthenész alapított az i. e. 4. században. Maga a szó a hagyomány szerint a filozófus csúfnevéből ("küón"- kutya) származik. A cinikusok a boldogságot tartották életük céljának, mentesítve minden külső és belső hatástól. A pénzt minden rossz okának tekintették, így maguk is tartózkodtak az anyagi javaktól ("Diogenész hordója"). Ezenkívül támadtak minden családi, társadalmi, hagyományokon alapuló értéket, mert ezeket az egyén függetlenségét veszélyeztető elemeknek tekintették Cinizmus=az emberi értékek öncélú, fennhéjázó tagadása. Diogenész (Szinópé, Kr. e. 404 Korinthosz, Kr. e ) görög filozófus. A minden kényelemtől, megkötöttségtől mentes teljes igénytelenség volt az eszméje, amely az embert a társadalmon kívül helyezi, s így teljes szabadságot biztosít számára. (ivópohár, gyerek) Az állatok ösztönös életét tartotta követendőnek, s gúnyosan ostorozta a fennálló társadalmat. 5

6 Diogenész (idézetek) Hé emberek!...embereket hívtam, nem mocskokat. Minden dolog az isteneké. A bölcsek az istenek barátai, a barátok javai pedig közösek. Ennélfogva minden dolog a bölcseké. Ne álld el előlem a napot. (Nagy Sándornak) Embert keresek. Ó, te boldogtalan, hát nem tudod, hogy tisztító szertartások révén a bűneidtől ugyanúgy nem szabadulsz meg, mint a helyesírási hibáidtól? Bárcsak az éhséget is elűzhetném üres hasam dörzsölésével. Volt idő, amikor én is olyan voltam, mint te most. De amilyen én most vagyok, olyan te sose leszel. Ha valamire, akkor arra beszélnélek rá, hogy kösd fel magad. Miért élsz ha nem törődsz azzal, hogy az életedet helyesen formáld meg. Az egész világnak a polgára vagyok. Szofisták Gorgiász (Szicília, Kr. e. 485 körül - Athén, Kr. e. 380 ) 1. Semmi sem létezik; minden látszat; 2. Ha létezne is valami, azt nem lehetne megismerni; mert az érzékek csalnak; 3. Ha valami létezne is és talán még megismerhető is lenne, azt úgysem lehetne elmondani, mivel a nyelv közlései és fogalmai szubjektívek (nem a reális fogalmakat adnánk át másoknak, ha ilyenek lennének is, csak a róluk való beszédet), azonkívül változandók, elmosódottak. 6

7 Szofisták A szofisták azt állítják, hogy tudással rendelkeznek és ezek átadására is képesek. Céljuk, hogy logikai trükkökkel felülkerekedjenek a vitákban. Azt is hirdetik, hogy végső soron az eredmények a döntőek egy ember megítélésében ugyanúgy, mint az elméleti vitáknál. Így a szónoklás művészete a szofistáknál a gyakorlatban inkább a rászedés, rábeszélés, mint a meggyőzés. Az egyik szofista például így jellemezte a retorikát: "... az a képesség, hogy beszédeinkkel meggyőzzük a bírákat a törvényszéken, a tanácsnokokat a tanácsban., a polgárokat a népgyűlésben. [...] A beszéded hatalmával szolgáddá teszed az orvost, szolgáddá teszed a tornamestert. Arról a pénzkufárról pedig ki fog tűnni, hogy nem magának gyűjti a vagyont, hanem neked, aki értesz hozzá, hogyan kell szónokolni, s a tömeget okoskodással meggyőzni." (Prótágorász paradoxona) Modellek és változásaik a fizikában A mozgás 7

8 Néhány kérdés Mi a mozgás? Miért mozog, ami mozog? Mi a mozgató erő (ok)? Mi a nyugalom? Van-e mozgás egyáltalán? Van-e bármi egyáltalán? Van-e értelme ezeknek a kérdéseknek (egyáltalán)? Hérakleitosz epheszoszi filozófus, Kr. e. 550 körül született és Kr. e. 475 A dolgokat a változás és a mozgás tartja össze, ami szükséges a tartós rend fenntartása érdekében. A híres pantha rhei", minden változik állítással jellemzett örökké változó, de egységes mindenséget nevezi egy helyen Istennek. Sohasem lehet kétszer ugyanabba a folyóba belelépni 8

9 Eleai Zénón (Elea, i. e i. e. 430) görög filozófus Érvei három témakört érintenek: kimutatja, hogy egynél több létező fölvetése, valamint a hely (azaz a tér) és a mozgás létezésének elfogadása logikai ellentmondáshoz vezet. Zénón paradoxonjai Ha sok dolog van, akkor éppen annyinak kell lennie, ahány van, sem többnek, sem kevesebbnek. De ha annyi van, ahány van, akkor végesen sokan volnának. Ha sok dolog van, akkor végtelenül sok dolog van: mert a dolgok között más dolgok vannak, és ez utóbbiak között megint mások. És így a dolgok végtelenül sokan vannak. A létező dolgok egységet alkotnak, mégpedig a Létező egységét, ami teljes, nincs neki hiányzó része, ezért nem lehetséges, hogy osztható legyen, mert ez ellenkezne természetével, azaz már nem lehetne egység és főleg nem teljesség. Egy Létező van 9

10 Zénón mozgásparadoxonjai I. Akhilleusz és a teknős Képzeljük el Akhilleuszt, a leggyorsabb görögöt, amint versenyt fut egy teknőssel. Mivel olyan gyors, nagyvonalúan száz láb előnyt ad a hüllőnek. Alighogy elindul a verseny, Akhilleusz pár ugrással ott terem, ahol a teknős kezdett. Ezalatt az idő alatt azonban a teknős is haladt egy keveset, talán egy lábnyit. Akhilleusz egy újabb lépéssel ott terem, ám ezalatt a teknős ismét halad egy kicsit, és még mindig vezet. Akármilyen gyorsan is ér Akhilleusz oda, ahol a teknős egy pillanattal korábban volt, amaz mindig egy kicsit előrébb lesz. Zénón érvelése azt látszik igazolni, hogy Akhilleusz sohasem fogja megelőzni, de még csak utolérni sem a teknőst. Zénón mozgásparadoxonjai II. A fának hajított kő Ez a paradoxon az előző egy variánsa. Zénón nyolc lábnyira áll egy fától, kezében egy követ tart. A követ a fa felé hajítja. Ahhoz, hogy a kő eltalálja a fát, először meg kell tennie a köztük lévő távolság, azaz a nyolc láb felét, ehhez pedig valamennyi időre van szüksége. Ezután még mindig hátra van négy láb, ennek megtételéhez pedig először ennek a felét, vagyis további két lábat kell repülnie, és ehhez ismét adott idő kell. Ezután további egy, majd fél, majd negyed lábat kell megtennie, és így tovább a végtelenségig. Zénón következtetése: a kő sohasem éri el a fát. 10

11 Zénón mozgásparadoxonjai III. A nyílvessző Itt egy repülő nyílvesszőt kell elképzelnünk. Bármely időpillanatban a nyíl a levegő egy ismert pontján tartózkodik. Ha ennek a pillanatnak nincs időbeli kiterjedése, akkor a nyílnak nincs ideje, hogy elmozduljon, tehát nyugalomban kell, hogy legyen. Hasonló logikával belátható, hogy az ezt követő pillanatokban is nyugalomban van. Mivel ez az idő bármelyik pillanatára igazolható, a nyílvessző egyáltalán nem mozoghat: a mozgása csak illúzió. Zénón tehát azt állítja, hogy a mozgás csak illúzió, valójában nem létezik, így tehát sebességről sincs értelme beszélni, sem annak határértékéről. Zénón mozgásparadoxonjai IV. Stadion: Ha a stadionban mondjuk AAAA egységek állnak, és hozzájuk képest a BBBB egységek balról, míg a CCCC egységek jobbról közelednek azonos sebességgel (1.ábra) úgy, hogy mikor az első B találkozik az első C-vel, akkor az említett B a második A-nál van, míg a C a harmadiknál, A-nál(2. ábra). A következő pillanatban egymást pontosan fedik (3.ábra). Ekkor az első C elhalad az összes B mellett, de az első B csak a fele A mellett. Az azonos gyorsasággal mozgó testek ugyanannyi idő alatt nem azonos utat tesznek meg, ez ellentmondás. A mozgás negyedszer is adabszurdnak, értelmetlennek adódik. 11

12 Arisztotelész,( i. e i. e. 322) Az arisztotelészi világmindenség alapvetően három rétegre oszlik: a földön lévő dolgok tartományára, illetve a föld felett lévő dolgok, jelenségek további két tartományra oszthatóak: melyek a Hold alatt vannak (szublunáris szféra), s melyekkel a meteorológia tudománya foglalkozik, illetve az égitesteknek, a túlsó világ dolgainak ( ta endade ) helyt adó, forgó szférákból álló tartományra melyben az égitestek találhatóak. Arisztotelész Az innenső világ ( ta ecei ) négy alapelemből, a földből, levegőből, tűzből és vízből áll össze, a túlsó világ testei pedig egy éter nevű ötödik elem ből (quinta essentia). A föld hideg és száraz, a víz hideg és nedves, a levegő meleg és nedves, a tűz meleg és száraz, és ezen ellentétpárok összes lehetséges kombinációinak száma négy lévén, több közönséges alapelem nem lehetséges. A négy közönséges elem egymáshoz képest könnyű vagy nehéz; a tűz a levegőhöz, a levegő a vízhez, a víz a földhöz képest könnyű, a körben mozgó éter pedig se könnyűnek, se nehéznek nem mondható. A négy elem között a nehéz föld foglalja el a mindenség közepét, és a könnyű tűz a szublunáris világ kerületét alkotja, az éterrel határosan. 12

13 Arisztotelész Az egész mindenség külső határát az ősmozgató foglalja el (primum mobile). Így tehát a mindenség az innenső és a túlsó világból van összetéve, amott a változatlanság és örökkévalóság világa, emitt pedig vég nélkül való keletkezést és enyészést látunk, a meteorológiai folyamatokat és a szerves élet jelenségeit. Arisztotelész: Tér, idő, mozgás A Fizika nyolc könyve a tér, idő és a kettőnek összekapcsolásából eredő mozgás fogalmait tárgyalja. A tér és az idő vég nélkül osztható. A világ jelenségeinek alapja a mozgás, melyet a legtágabb értelemben definiál, t.i. mint akármilyen változást, azaz mint a potenciális létről aktuális létre való átmenetet. A mozgások természetszerű (a mozgó egyed természetéből adódó) vagy természetellenes (erőszakolt) mozgások. A tér mellett a hely fogalma fontos, mely azonban nem képvisel egy bizonyos térrészt. Minden tárgy azon hely felé tart, melyben otthon van, mégpedig gyorsuló mozgással - az időben nem gyorsuló egyetlen mozgás az, mely körpályán egyenletesen megy végbe. Ha valamely tárgy a maga természetrendelte helye felé mozog, akkor ez természetszerű mozgás, így szükségképp gyorsuló, ha ellenben más irányba erőszakosan tereltetik, akkor mozgása lassuló. 13

14 Összefoglalva Arisztotelész mechanikája Az égi és a földi mozgások más természetűek: az égiek örökké tartanak, a földiek hamar megállnak. A földi tárgyak természetes állapota a nyugalom. A földi tárgyaknak megvan a természetes helye. Összefoglalva Arisztotelész mechanikája Mozgások típusai: 1) Égi mozgások (mozgás az örök rend szerint körpályákon) 2) Földi mozgások: 2a) élőlények mozgása 2b) természetes mozgás (a rend helyreállítására törekvés) 2c) kényszerített mozgás 14

15 Sok megoldatlan probléma. Pl. miért repül a nyílvessző, miután kilőtték? Magyarázat.: a levegő közvetíti a hatást. Teljesen téves, de nehéz cáfolni. Összefoglalva Arisztotelész mechanikája Le nem írt alapegyenlet: Newton kb év múlva: 15

16 Arkhimédész (i.e.: ) Arkhimédész jelentőségét nem nagyon ismerték fel az ókorban sem. Ő és kortársai alkotják valószínűleg a görög matematikai szigorúság csúcsát. Arkhimédészt római katonák ölik meg. Jellegzetes mozzanat: röviddel utána a görög kultúra csak mint a Római Birodalom vezető szellemisége él tovább. Arkhimédész után jelentős új elméleti eredmény nem születik. Itt kezdődik a természettudomány fejlődésének lassulása, nem a középkorban! Arkhimédész a matematikus Kreativitása és éleselméjűsége minden reneszánsz előtti európai matematikusét megelőzte. Egy esetlen számrendszerű civilizációban, ahol a miriád (szó szerint tízezer) végtelent jelentett, olyan helyiértékes számrendszert állított fel és használt, amiben a számokat 1064-ig le tudta írni. Olyan heurisztikus statisztikán alapuló módszert fejlesztett ki, amit ma integrálszámításnak neveznénk, de ami után egzakt geometriai módszerekkel bizonyította be a számítás helyességét. Vita tárgyát képezi, hogy integrálszámítása milyen pontosságig ment el. Bebizonyította, hogy egy kör kerületének és átmérőjének aránya ugyanannyi, mint a területének és a sugara négyzetének az aránya. Ezt nem hívta π-nek, de megadott egy módszert a tetszőleges megközelítésére, és adott egy közelítést rá, mint ami /71 (kb ) és 3 + 1/7 (kb ) közé esik. Ő volt az első matematikus, aki a mechanikai görbéket (amelyeket egy mozgó pont követ) legitim vizsgálható objektumoknak tekintette. Bebizonyította, hogy egy gömb felszíne és térfogata úgy aránylik egymáshoz, mint a köréírt egyenes henger felszíne és térfogata. Erre az eredményre olyan büszke volt, hogy ezt tette meg sírfeliratául. 16

17 Arkhimédész a fizikus Bevezette a sűrűség fogalmát, felfedezte a felhajtóerőt (Arkhimédész törvénye) fürdés közben, minek örömére kiugrott a kádból és meztelenül végigrohant az utcákon azt kiáltozva, hogy Heuréka. Ide kapcsolódik a híres történet, amikor a szürakuszai király felkérte, állapítsa meg, vajon a koronája tényleg teljesen aranyból készült-e. Arkhimédész rájött, hogy ha vízbe mártja a koronát, akkor a vízszint emelkedése okozta térfogatváltozás megegyezik a korona térfogatával, a korona súlycsökkenése pedig úgy aránylik a korona súlyához, mint a víz sűrűsége a korona sűrűségéhez. Ebből meg tudta állapítani, milyen arányban kevertek ezüstöt a korona aranyához, azaz mennyi aranyat loptak el belőle. Archimédész valószínűleg az első ismert matematikai fizikus és a legjobb Galilei és Newton előtt. Létrehozta a statika tudományát, leírta az emelőt és a hidrosztatikai egyensúlyt. Meghatározta a tömegközéppont fogalmát és kiszámolta számos geometriai alakzatra. Arkhimédész a csillagász Cicero ír két eszközről, amit Marcellus római consul vitt haza a kifosztott Szirakuzából. Az egyik egy gömbön ábrázolta a csillagos eget, a másik megjósolta a Nap, a Hold és a bolygók mozgását. Ő Thalésznek és Eudoxosznak tulajdonította őket. Ezt sokáig legendának gondolták, de az antiküthérai szerkezet felfedezése új megvilágításba helyezte a dolgot, valóban elképzelhető, hogy Arkhimédésznek volt ilyen szerkezete. Alexandriai Papposz ír arról, hogy Arkhimédész írt egy kézikönyvet ilyen éggömbök szerkesztéséről. 17

18 antiküthérai szerkezet egy mechanikus csillagászati naptár lehetett az antiküthérai gépezet - úgy gondolták, alkalmas volt a Nap helyzetének pontos meghatározására, az égitestek mozgásának követésére és mutatta a Hold fázisait is. Az már régóta kétségtelen volt, hogy ez lehetett az első mechanizmus, amiben fogaskereket használtak. mutatta a Nap és a Hold állatövi útját, a nap- és holdfogyatkozásokat is jelezte, mi több, képes volt pontosan modellezni a Hold pályamozgásának anomáliáit is! Összetettségére és technológiai fejlettségére nézve pedig elmondható, hogy alkatrészei voltak annyira finoman kidolgozottak, mint egy 18. századi óra. Sőt, még differenciálművet is tartalmazott. 18

Valószínűségszámítási paradoxonok

Valószínűségszámítási paradoxonok Bolyai Tehetséggondozó Gimnázium és Kollégium Gimnazija sa domom učenika za talentovane učenike "Boljai" Valószínűségszámítási paradoxonok érettségi dolgozat valószínűségszámításból Tanuló: Tokić Rudolf

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

FIZIKA Tananyag a tehetséges gyerekek oktatásához

FIZIKA Tananyag a tehetséges gyerekek oktatásához HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia

Részletesebben

Kozmológia. Ajánlott irodalom. Soós Anna

Kozmológia. Ajánlott irodalom. Soós Anna Ajánlott irodalom 1] Leon Sterling: The Art of Prolog, MIT, 1981. 2] Márkusz Zsuzsanna: Prologban programozni könnyû, Novotrade.1988. 3] Makány György: Programozási nyelvek: Prologika. Mikrológia, 1989.

Részletesebben

Az erő legyen velünk!

Az erő legyen velünk! A közlekedés dinamikai problémái 8. Az erő legyen velünk! Utazási szokásainkat jelentősen meghatározza az üzemanyag ára. Ezért ha lehet, gyalog, kerékpárral vagy tömegközlekedési eszközökkel utazzunk!

Részletesebben

FRAKTÁLOK ÉS A KÁOSZ

FRAKTÁLOK ÉS A KÁOSZ FRAKTÁLOK ÉS A KÁOSZ Meszéna Tamás Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma, Pécs, meszena.tamas@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS A fraktálok olyan

Részletesebben

ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulójának feladatai 2005. április 5.

ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulójának feladatai 2005. április 5. ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulójának feladatai 2005. április 5. Kedves Versenyzők! Az I. forduló teljesítése után itt az újabb próbatétel. A II. fordulóban a következő feladatok várnak

Részletesebben

Ha vasalják a szinusz-görbét

Ha vasalják a szinusz-görbét A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék

Részletesebben

BALASSI BÁLINT GIMNÁZIUM FIZIKA HELYI TANTERV 2013

BALASSI BÁLINT GIMNÁZIUM FIZIKA HELYI TANTERV 2013 BALASSI BÁLINT GIMNÁZIUM FIZIKA HELYI TANTERV 2013 Tartalomjegyzék Óraszámok... 2 Célok és feladatok... 2 Az ismeretek ellenőrzésének formái és módjai... 2 Nyolc évfolyamos matematika-fizika emelt óraszámú

Részletesebben

2. Légköri aeroszol. 2. Légköri aeroszol 3

2. Légköri aeroszol. 2. Légköri aeroszol 3 3 Aeroszolnak nevezzük valamely gáznemű közegben finoman eloszlott (diszpergált) szilárd vagy folyadék részecskék együttes rendszerét [Més97]. Ha ez a gáznemű közeg maga a levegő, akkor légköri aeroszolról

Részletesebben

Tartalomjegyzék. Tanmenetek és szakmódszertani felvetések. 1. Szakmódszertani felvetések, javaslatok! 2. Fizika tanmenet 9. osztály (heti 2 óra)

Tartalomjegyzék. Tanmenetek és szakmódszertani felvetések. 1. Szakmódszertani felvetések, javaslatok! 2. Fizika tanmenet 9. osztály (heti 2 óra) Tartalomjegyzék ek és szakmódszertani felvetések 1. Szakmódszertani felvetések, javaslatok! 2 2. Fizika tanmenet 9. osztály (heti 2 óra) 5 3. Fizika tanmenet 9. osztály (heti 1,5 óra) 18 1 Bevezetô szakmódszertani

Részletesebben

Tommaso Grado SÓLYOMLÁNY

Tommaso Grado SÓLYOMLÁNY Néha fel kell adnunk az elveinket, hogy megélhessük az álmainkat Tommaso Grado SÓLYOMLÁNY - részlet - Szakmai konzultáns: dr. Almási Krisztina Borító és tördelés: White Noise Team ISBN 978-963-12-4568-4

Részletesebben

Vállalkozás alapítás és vállalkozóvá válás kutatás zárójelentés

Vállalkozás alapítás és vállalkozóvá válás kutatás zárójelentés TÁMOP-4.2.1-08/1-2008-0002 projekt Vállalkozás alapítás és vállalkozóvá válás kutatás zárójelentés Készítette: Dr. Imreh Szabolcs Dr. Lukovics Miklós A kutatásban részt vett: Dr. Kovács Péter, Prónay Szabolcs,

Részletesebben

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I. Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?

Részletesebben

Különféle erőhatások és erőtörvényeik (vázlat)

Különféle erőhatások és erőtörvényeik (vázlat) Különféle erőhatások és erőtörvényeik (vázlat) 1. Erőhatás és erőtörvény fogalma. Erőtörvények a) Rugalmas erő b) Súrlódási erő Tapadási súrlódási erő Csúszási súrlódási erő Gördülési súrlódási erő c)

Részletesebben

Buzsáki Gábor: Az életed kiszámolható!

Buzsáki Gábor: Az életed kiszámolható! Minden jog fenntartva 2015 www.asztropatika.hu 1 Ha egy problémával sokat foglalkozol, előbb-utóbb rátalálsz a megoldásra! Pontosan úgy, ahogyan ez lassan már 20 éve velem is történt a személyes tanácsadásaim

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK

JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK Gallai Ditta BME Két Tanítási Nyelvű Gimnázium, Budapest, gallai.ditta@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Az oktatás sikerességében

Részletesebben

III.4. JÁRŐRÖK. A feladatsor jellemzői

III.4. JÁRŐRÖK. A feladatsor jellemzői III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:

Részletesebben

A vágy titokzatos tárgya

A vágy titokzatos tárgya Fehér Dorottya A vágy titokzatos tárgya Tallér Edina: A húsevõ. Kalligram, Pozsony, 2010 Tallér Edina könyve már a fedőlapját tekintve is figyelmet ébreszt: borítóján vérvörös harisnyába bújtatott, a talajon

Részletesebben

Bizonyára, ha még embereknek igyekeznék tetszeni, Krisztus szolgája nem volnék!

Bizonyára, ha még embereknek igyekeznék tetszeni, Krisztus szolgája nem volnék! 2014. december 31. Mandabokor Óévi Istentisztelet 1 Kérve kérlek az Isten és a Krisztus Jézus színe előtt, aki ítélni fog élőket és holtakat; az ő eljövetelére és országára kérlek: 2 hirdesd az igét, állj

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY Telefon: 483-540, 37-8900, Fax: 37-890 Kalmár László (matematikus) NSZFH nyilvántartásba vételi szám: E-0006/04 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő Második nap Javítási útmutató

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Testek mozgása. Készítette: Kós Réka

Testek mozgása. Készítette: Kós Réka Testek mozgása Készítette: Kós Réka Fizikai mennyiségek, átváltások ismétlése az általános iskolából, SI Nemzetközi Mértékegység Rendszer 1. óra Mérés A mérés a fizikus alapvető módszere. Mérőeszközre,

Részletesebben

Futball Akadémia 9-11. évf. Fizika

Futball Akadémia 9-11. évf. Fizika 3.2.08.1 a 2+2+2 9. évfolyam E szakasz legfőbb pedagógiai üzenete az, hogy mindennapjaink világa megérthető, mennyiségileg megközelíthető, sajátos összefüggésekkel leírható, és ez a tudás a mindennapi

Részletesebben

Élet a Marson? Hamarosan lesz!

Élet a Marson? Hamarosan lesz! PÁLYÁZAT Témakör: Expedíciók a Naprendszerben Élet a Marson? Hamarosan lesz! Készítette: Polák Péter 6b osztályos tanuló Fényi Gyula Jezsuita Gimnázium és Kollégium Fényi Gyula Csillagvizsgáló Miskolc

Részletesebben

Vérfolyásos hívő gondolkozás (mód)otok megújulásával alakuljatok át harc az elménkben dől el

Vérfolyásos hívő gondolkozás (mód)otok megújulásával alakuljatok át harc az elménkben dől el Vérfolyásos hívő Róm 12:1 Kérlek titeket testvérek, Isten irgalmára, adjátok oda a testeteket Isten számára élő, szent, és neki tetsző áldozatul, ez legyen a ti ésszerű, igeszerű istentiszteletetek, 12:2

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

A figurális számokról (I.)

A figurális számokról (I.) A figurális számokról (I.) Tuzson Zoltán, Székelyudvarhely A figurális számok felfedezését a pitagoreusoknak tulajdonítják, mert k a számokat kavicsokkal, magokkal szemléltették. Sok esetben így jelképezték

Részletesebben

START ÉPÍTÉSSZERELÉS BIZTOSÍTÁS SZABÁLYZATA (SÉB-05)

START ÉPÍTÉSSZERELÉS BIZTOSÍTÁS SZABÁLYZATA (SÉB-05) START ÉPÍTÉSSZERELÉS BIZTOSÍTÁS SZABÁLYZATA (SÉB-05) Az Argosz Biztosító Rt. /a továbbiakban: Biztosító/ vállalja, hogy a biztosítási díj megfizetése ellenében e Szabályzatnak megfelelő módon és mértékben

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

Az időmérés története. Beadta: Baksay Dóra 9.B 2013/14. tanév

Az időmérés története. Beadta: Baksay Dóra 9.B 2013/14. tanév Az időmérés története Beadta: Baksay Dóra 9.B 2013/14. tanév Az idő mérése Az idő mérése mindig valamilyen állandó, stabil csillagászati vagy fizikai jelenség alapján történik. Az időmérés módszerei csillagászati

Részletesebben

hogyan működik a 6. ÉVFOLYAM é n é s a v i l á g SZKA_106_30 A modul szerzője: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK

hogyan működik a 6. ÉVFOLYAM é n é s a v i l á g SZKA_106_30 A modul szerzője: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK hogyan működik a SZKA_106_30 é n é s a v i l á g mobilod? A modul szerzője: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 6. ÉVFOLYAM 432 Szociális, életviteli és környezeti kompetenciák

Részletesebben

A rádió* I. Elektromos rezgések és hullámok.

A rádió* I. Elektromos rezgések és hullámok. A rádió* I. Elektromos rezgések és hullámok. A legtöbb test dörzsölés, nyomás következtében elektromos töltést nyer. E töltéstől függ a test elektromos feszültsége, akárcsak a hőtartalomtól a hőmérséklete;

Részletesebben

MUNKAANYAG. Forrai Jánosné. Előkészítő munka. A követelménymodul megnevezése: Monolit beton készítése I.

MUNKAANYAG. Forrai Jánosné. Előkészítő munka. A követelménymodul megnevezése: Monolit beton készítése I. Forrai Jánosné Előkészítő munka A követelménymodul megnevezése: Monolit beton készítése I. A követelménymodul száma: 0482-06 A tartalomelem azonosító száma és célcsoportja: SzT-002-30 ELŐKÉSZÍTŐMUNKA

Részletesebben

Táblás játékok 2. 1. modul

Táblás játékok 2. 1. modul Táblás játékok 2 1. modul Készítette: KÖVES GABRIELLA 2 Táblás játékok 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A tudatos észlelés, a megfigyelés és a figyelem fejlesztése

Részletesebben

Bói Anna. Konfliktus? K. könyvecskék sorozat 1.

Bói Anna. Konfliktus? K. könyvecskék sorozat 1. Bói Anna Konfliktus? K könyvecskék sorozat 1. Tartalom: Üdvözölöm a kedves Olvasót! Nem lehetne konfliktusok nélkül élni? Lehet konfliktusokkal jól élni? Akkor miért rossz mégis annyira? Megoldás K Összegzés

Részletesebben

Terület- és térségmarketing. /Elméleti jegyzet/

Terület- és térségmarketing. /Elméleti jegyzet/ Terület- és térségmarketing /Elméleti jegyzet/ Terület- és térségmarketing /Elméleti jegyzet/ Szerző: Nagyné Molnár Melinda Szent István Egyetem Szerkesztő: Nagyné Molnár Melinda Lektor: Szakály Zoltán

Részletesebben

A meteorológia az időjárás tudománya

A meteorológia az időjárás tudománya Ismerd meg! A meteorológia az időjárás tudománya A meteorológia a légkörben végbemenő folyamatok, jelenségek vizsgálatával foglalkozó tudomány, amelyen belül különös hangsúlyt fektetnek az időjárási és

Részletesebben

választással azaz ha c 0 -t választjuk sebesség-egységnek: c 0 :=1, akkor a Topa-féle sebességkör teljes hossza 4 (sebesség-)egységnyi.

választással azaz ha c 0 -t választjuk sebesség-egységnek: c 0 :=1, akkor a Topa-féle sebességkör teljes hossza 4 (sebesség-)egységnyi. Egy kis számmisztika Az elmúlt másfél-két évben elért kutatási eredményeim szerint a fizikai téridő geometriai jellege szerint háromosztatú egységet alkot: egymáshoz (a lokális éterhez mért v sebesség

Részletesebben

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat A fizika tankönyvcsalád és a tankönyv célja A Fedezd fel a világot! című természettudományos tankönyvcsalád fizika sorozatának első köteteként

Részletesebben

Miért tanulod a nyelvtant?

Miért tanulod a nyelvtant? Szilágyi N. Sándor Mi kell a beszédhez? Miért tanulod a nyelvtant? Nyelvtani kiskalauz (Részletek a szerző Ne lógasd a nyelved hiába! c. kötetéből, Anyanyelvápolók Erdélyi Szövetsége, 2000) 2. rész Térjünk

Részletesebben

garmadát. Abban sem volt nagy köszönet, ahogy cseperedtem, mert, ami rosszat elképzelhet az ember, azt én mind véghezvittem: a macska talpára

garmadát. Abban sem volt nagy köszönet, ahogy cseperedtem, mert, ami rosszat elképzelhet az ember, azt én mind véghezvittem: a macska talpára Mire megvirrad... Julis! Julis! Asszony! Csak nem hagy békén, s én áldozatként, hogy szabaduljak tőle, elvonulok, mint a nagyokosok, tollat veszek a kezembe, azzal ámítom őnagyságát, hogy úr lettem, ahogy

Részletesebben

Petőcz András. Idegenek. Harminc perccel a háború előtt

Petőcz András. Idegenek. Harminc perccel a háború előtt Petőcz András Idegenek Harminc perccel a háború előtt Peut-être à cause des ombres sur son visage, il avait l air de rire. (Camus) Megyünk anyámmal haza, a plébániára. Szeretek az anyámmal kézen fogva

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szakács Jenő Megyei Fizikaverseny 04/05. tanév I. forduló 04. december. . A világ leghosszabb nyílegyenes vasútvonala (Trans- Australian Railway) az ausztráliai Nullarbor sivatagon át halad Kalgoorlie

Részletesebben

ő ü ő ü ő ü ő Ő ü ő ú ő ű ü ú ő ű ű ű ú ű ő ő ő ő ő Ó Á Á ő ő ő ő ő ő ő ő Ó Ó ü ő ő ő ő ő ő ő ü ő ü ő ü ü ü ü ü ő Á ő ő ő ő ő ő ő ő ő ő ü ő ü ü ő ű ő ü ő ő ü ő ő ő ü ű ű ű ű ű ú ű ú ű ú ü É ü ő É ű ő ű

Részletesebben

Idő és tér. Idő és tér. Tartalom. Megjegyzés

Idő és tér. Idő és tér. Tartalom. Megjegyzés Tartalom Az idő és tér fogalma és legfontosabb sajátosságaik. Megjegyzés Ez egy rövid, de meglehetősen elvont téma. Annyiból érdekes, hogy tér és idő a világunk legalapvetőbb jellemzői, és mindannyian

Részletesebben

Energiaszegénység Magyarországon

Energiaszegénység Magyarországon Mûhely Fülöp Orsolya, az Energiaklub Szakpolitikai Intézet és Módszertani Központ munkatársa, közgazdász E-mail: fulop@energiaklub.hu Energiaszegénység Magyarországon Lehoczki-Krsjak Adrienn, a KSH munkatársa,

Részletesebben

A közép-és hosszútávfutás, állórajt

A közép-és hosszútávfutás, állórajt Nyugat-magyarországi Egyetem Savaria Egyetemi Központ Művészeti, Nevelési-és Sporttudományi Kar Sporttudományi Intézet A közép-és hosszútávfutás, állórajt Készítette: Süle Szilvia CIK759 1. A közép-és

Részletesebben

É Ő É É Á É Á Ü Ú ű Á ü Á ú ü ú ü Á Á Ú Ü ü ű ú ü ú Ü ű Ü ü ü ű ü ü ű ű ü ü ü ü ü ü ú ü ü ú ű ü ü ü ü ü ü ú Ü ü ü Á Ü ú ü ú ü ü ü ü ü ü ú ü Ú ú ü ü ü ü ú ú ű ú ü ü ú ű ü ü É ú ü ü ü ü ú Á ü ü É Á ü ü ü

Részletesebben

Mágia. Varázslatok. Isteni mágia

Mágia. Varázslatok. Isteni mágia Mágia Mivel a mágia úgymond megszűnt a világban mikor egy nagyhatalmú mágus isten akart lenni minden mágikus tudást magába szívót hogy beférkőzőn az istenek panteonjába. Ekkor vette kezdetét az istenek

Részletesebben

Ü É Í Í ű ű ű ű ű ű É Í Á Á Á Á É Á Á Á Á Á Á É Á Á Í Á Á Á ű É É Á Á Á Á Á Á É Á Á Á Á Í ű ű ű Í ű ű ű Í ű Í ű ű ű Í ű Í ű ű ű ű ű É Í ű ű Í ű Á ű ű ű ű ű ű ű É Í Á Á Í Í ű É ű ű ű ű ű Í Í ű É ű ű Í Í

Részletesebben

VI.9. KÖRÖK. A feladatsor jellemzői

VI.9. KÖRÖK. A feladatsor jellemzői VI.9. KÖRÖK Tárgy, téma A feladatsor jellemzői A kör területe, arányok változatlansága sokszorozás esetén. Előzmények Cél A kör részeinek területe egyszerű esetben, szimmetriák, a négyzet és átlójának

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú

Részletesebben

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 18 év pentominók adott tulajdonságú alakzatok építése szimmetrikus alakzatok egybevágó alakzatok

Részletesebben

V. monológ (Variációk az utcalámpához) A szárazon hagyott csaj esetei A kitartó masszőr. Borda Réka. Vojakovič Cyntia S Z Ö V E G G Y Á R

V. monológ (Variációk az utcalámpához) A szárazon hagyott csaj esetei A kitartó masszőr. Borda Réka. Vojakovič Cyntia S Z Ö V E G G Y Á R Borda Réka V. monológ (Variációk az utcalámpához) És ha semmi nem úgy van, ahogy hisszük? Ha a Titánia csak meg akart csobbanni a vízben, mert kaparászták hátát a milliomosok, ha lehet fejjel lefelé szeretkezni,

Részletesebben

1. ZÁRTTÉRI TŰZ SZELLŐZETÉSI LEHETŐSÉGEI

1. ZÁRTTÉRI TŰZ SZELLŐZETÉSI LEHETŐSÉGEI A tűz oltásával egyidőben alkalmazható mobil ventilálás nemzetközi tapasztalatai A zárttéri tüzek oltására kiérkező tűzoltókat nemcsak a füstgázok magas hőmérséklete akadályozza, hanem annak toxicitása,

Részletesebben

Táncoló vízcseppek. Tartalomjegyzék. Bevezető

Táncoló vízcseppek. Tartalomjegyzék. Bevezető TUDEK 2013 Szerző: Veres Kincső Bolyai Farkas Elméleti Líceum Marosvásárhely Fizika kategória Felkészítő tanár: Szász Ágota Táncoló vízcseppek Tartalomjegyzék Bevezető... 1 1. Leidenfrost jelenség... 2

Részletesebben

Í ű ű ű ű ű ű ű ű Í ű Í É Ó Á Á Á Á É Á Á Á Á É Á ű Á É Á Á É Í ű É É Á Á Á ű Á Á É ű Á Á Á Í Á É Í ű Í ű Í ű Í ű ű ű Í ű ű ű ű ű ű Í Í É Í ű ű Í ű ű ű Á ű Í ű Á Á Í ű É ű ű ű ű ű ű Í ű Í ű ű ű ű ű ű ű

Részletesebben

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat

Részletesebben

Í ű ű ű ű Í ű ű ű ű ű ű É Í Á Á É Á Á Á Á Á Á Á Ó Á Í Í ű Í Á ű Á Á Á Á Á Á Á É É Á Á Í Í Í ű ű Í Í ű Í ű ű ű Í ű Í Í ű ű ű ű ű ű ű É ű ű ű ű ű ű Á Á ű ű Í Í Í Í Í Í ű ű ű ű ű Í ű ű Í ű Í ű ű ű Í Í ű ű

Részletesebben

Iskola: Móricz Zsigmond Mezőgazdasági Szakközépiskola és Kollégium. Téma: Az őszibúza gazdasági jelentősége és botanikai jellemzői

Iskola: Móricz Zsigmond Mezőgazdasági Szakközépiskola és Kollégium. Téma: Az őszibúza gazdasági jelentősége és botanikai jellemzői 2. számú melléklet (Forrás: K.B) ÓRAVÁZLAT Iskola: Móricz Zsigmond Mezőgazdasági Szakközépiskola és Kollégium Osztály: 13. b osztály Tantárgy: Növénytermesztés Téma: Az őszibúza gazdasági jelentősége és

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

6. RADIOAKTIVITÁS ÉS GEOTERMIKA

6. RADIOAKTIVITÁS ÉS GEOTERMIKA 6. RADIOAKTIVITÁS ÉS GEOTERMIKA Radioaktivitás A tapasztalat szerint a természetben előforduló néhány elem bizonyos izotópjai nem stabilak, hanem minden külső beavatkozástól mentesen radioaktív sugárzás

Részletesebben

É Í ű ű ű ű ű ű ű ű Ü ű É Í Á Á Á É Á Á Á Á Á Á Á É Á É Ó Ó ÁÁ Á ű É Á Á Á É Á É Í Á Á Á Á Ó ű ű Í Í ű ű Í ű ű ű Í ű ű ű ű Í ű ű Í ű ű Í ű ű ű ű Í Í ű Á Á É Á É Í ű ű É Ü ű Í É É ű ű ű ű ű ű Ő ű ű ű ű

Részletesebben

FIZIKA B VÁLTOZAT (hat évfolyamos gimnázium, 2x1x2x2x2) 7. évfolyam Éves óraszám: 72

FIZIKA B VÁLTOZAT (hat évfolyamos gimnázium, 2x1x2x2x2) 7. évfolyam Éves óraszám: 72 FIZIKA B VÁLTOZAT (hat évfolyamos gimnázium, 2x1x2x2x2) 7. évfolyam Éves óraszám: 72 Tematikai egység/ Fejlesztési cél Előzetes tudás A tematikai egység nevelési-fejlesztési céljai Problémák, jelenségek,

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

Állapottér-reprezentálható problémák

Állapottér-reprezentálható problémák 1 fejezet Állapottér-reprezentálható problémák 11 Állati karácsony 111 A feladat A karácsonyra készülő Nagy családban a gyerekek (Botond, Emese, Karcsi, Orsi és Vanda) alaposan feladták a leckét a szülőknek

Részletesebben

Geometriai axiómarendszerek és modellek

Geometriai axiómarendszerek és modellek Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének

Részletesebben

szeptember vége tanmenetek havonta foglalkozási naplók vezetése 3-4 havonta

szeptember vége tanmenetek havonta foglalkozási naplók vezetése 3-4 havonta ÉRTÉKELÉS A szuhakállói Gárdonyi Géza Általános Iskola Minõségirányítási Programjának végrehajtásáról Intézményünk szülõi szervezete 26. július 3-án, nevelõtestülete 26. július 4-én értékelte a Minõségirányítási

Részletesebben

MÁRCIUS BÖJTMÁS HAVA TAVASZELŐ KIKELET HAVA - bölénytor (fák) hava

MÁRCIUS BÖJTMÁS HAVA TAVASZELŐ KIKELET HAVA - bölénytor (fák) hava MÁRCIUS BÖJTMÁS HAVA TAVASZELŐ KIKELET HAVA - bölénytor (fák) hava A hónap régi magyar (katolikus) neve Böjtmás hava. Ez az elnevezés arra utal, hogy március a böjt második hónapja. A nagyböjt java többnyire

Részletesebben

GONDOLATOK AZ ÍRÁSÉRTELMEZÉSRŐL

GONDOLATOK AZ ÍRÁSÉRTELMEZÉSRŐL 1 GONDOLATOK AZ ÍRÁSÉRTELMEZÉSRŐL ÍRTA: DEMETER JÓZSEF ÁLTALÁNOS HERMENEUTIKAI SZABÁLYOK ÉS IRÁNYELVEK. Az alapgondolat: mindenkinek joga van értelmezni a Szentírást. Ehhez azonban a megértés utáni őszinte

Részletesebben

7. Hitoktatás egyéb gyakorlati kérdései

7. Hitoktatás egyéb gyakorlati kérdései 7. Hitoktatás egyéb gyakorlati kérdései II. A hitoktatás mai helyzetelemzése a. A hittanórák időpontjával kapcsolatos kérdések A közoktatási intézményekben (óvodákban, általános iskolákban) törvény által

Részletesebben

A beszélgetésen részt vett Erdélyi Klári és Farkas István

A beszélgetésen részt vett Erdélyi Klári és Farkas István A révész A belső újjászületés felé vezető út felébredést követel, mindenekelőtt annak megakadályozását, ami az önmagam megerősítésében áll. Ez egy döntő próba. Nem lehet egyezkedés az igazsággal. Ez az,

Részletesebben

Használati utasítás. Kombi Plusz Kft.

Használati utasítás. Kombi Plusz Kft. Használati utasítás 1 Tisztelt Vásárló! Gratulálunk az új VarioCooking Center MULTIFICIENCY készülékéhez. Az azonnal érthető vizuális üzemeltetési koncepciónak köszönhetően nagyon gyorsan kiemelkedő főzési

Részletesebben

Dessewffy Tibor Elgépiesedő világ, vagy humanizált technológia

Dessewffy Tibor Elgépiesedő világ, vagy humanizált technológia 1 Dessewffy Tibor Elgépiesedő világ, vagy humanizált technológia Ebben a dolgozatban elsősorban a DEMOS Magyarország keretein belül véghezvitt két vállalkozás eredményeiről, az azoknak a magyar társadalomra

Részletesebben

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. D kategória

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. D kategória Fizikai olimpiász 52. évfolyam 2010/2011-es tanév D kategória Az iskolai forduló feladatai (további információk a http://fpv.uniza.sk/fo vagy www.olympiady.sk honlapokon) A D kategória 52. évfolyamához

Részletesebben

INTEGRÁLT TERMÉSZETTUDOMÁNYOS VERSENY 2011

INTEGRÁLT TERMÉSZETTUDOMÁNYOS VERSENY 2011 NEMZETI TANKÖNYVKIADÓ ZRT. KRÚDY GYULA GIMNÁZIUM, KÉT TANÍTÁSI NYELVŰ KÖZÉPISKOLA, IDEGENFORGALMI ÉS VENDÉGLÁTÓIPARI SZAKKÉPZÕ ISKOLA INTEGRÁLT TERMÉSZETTUDOMÁNYOS VERSENY 2011 AZ ISKOLA NEVE:... AZ ISKOLA

Részletesebben

Andersen meséi AZ ÖREG UTCAI LÁMPÁS

Andersen meséi AZ ÖREG UTCAI LÁMPÁS Andersen meséi AZ ÖREG UTCAI LÁMPÁS Hallottad-e már az öreg utcai lámpás történetét? Igaz, nem éppen vidám história, de azért egyszer végighallgathatod. Volt egyszer egy jóravaló, öreg utcai lámpás, aki

Részletesebben

Szakköri segédlet. FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet

Szakköri segédlet. FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet Szakköri segédlet FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet 1 Tartalomjegyzék 1. Szakköri tematika. 2 2. Szakköri tanári segédlet... 8 2.1. Hosszúság, terület, idő, térfogat,

Részletesebben

Örömre ítélve. Már jön is egy hölgy, aki mint egy

Örömre ítélve. Már jön is egy hölgy, aki mint egy Örömre ítélve Fotók: Gál Efraim Ha a drog egy fallal körbezárt város, akkor ki engedélyezi vagy tiltja a kijárást? Vajon ha az embernek több száz kulcsa lenne az örömhöz, bárhova bezárhatnák? Nem tudom.

Részletesebben

Az önértelmezés hangneme Füzi László: Kötések, szakadások (hármaskönyv)

Az önértelmezés hangneme Füzi László: Kötések, szakadások (hármaskönyv) SZIGETI CSABA Az önértelmezés hangneme Füzi László: Kötések, szakadások (hármaskönyv) Füzi Lászlónak ez a második kötete, amely az énszigetről íródott és énkönyv. Különlegességét és értékét nem annyira

Részletesebben

jor ge bucay Caminò a könnyek útja

jor ge bucay Caminò a könnyek útja jor ge bucay Caminò a könnyek útja A Z ÚT RÉTEGEI Biztosan van egy út, mely bizonyára sok mindenben személyes és különleges. Bizonyára van egy út, mely biztosan sok mindenben közös mindenki számára. Van

Részletesebben

Üzenet. A Prágai Református Missziói Gyülekezet Hetilapja IV. Évfolyam 26. szám, 2011. jún. 26. Kedves Testvérek!

Üzenet. A Prágai Református Missziói Gyülekezet Hetilapja IV. Évfolyam 26. szám, 2011. jún. 26. Kedves Testvérek! Kedves Testvérek! Üzenet A Prágai Református Missziói Gyülekezet Hetilapja IV. Évfolyam 26. szám, 2011. jún. 26. Isten! Add törvényeidet a királynak... Zsolt 72,1 Érdekes kérés: szerintem egyszerre jó

Részletesebben

Advent 3. vasárnapja 2015. december 13. VÁRAKOZÁS

Advent 3. vasárnapja 2015. december 13. VÁRAKOZÁS Advent 3. vasárnapja 2015. december 13. VÁRAKOZÁS Simeon várakozása (LK 2,21-40) 21Amikor elérkezett a nyolcadik nap, hogy körülmetéljék a gyermeket, a Jézus nevet adták neki, úgy, amint az angyal nevezte,

Részletesebben

2. A KOMMUNIKÁCIÓS STRATÉGIA ÉS A CÉLCSOPORT MEGHATÁROZÁS

2. A KOMMUNIKÁCIÓS STRATÉGIA ÉS A CÉLCSOPORT MEGHATÁROZÁS 2. A KOMMUNIKÁCIÓS STRATÉGIA ÉS A CÉLCSOPORT MEGHATÁROZÁS A fejezet célja, hogy elolvasása után a hallgatók választ tudjanak adni az alábbi kérdésekre: Milyen feladatokat kell elvégezni a kommunikáció

Részletesebben

Csokonai Vitéz Mihály I.

Csokonai Vitéz Mihály I. Csokonai Vitéz Mihály I. CIMBALOM EGY SOKHÚRÚ MŰVÉSZ NYOMÁBAN 1. feladat Alább olyan költőket és írókat találsz, akik Csokonaihoz hasonlóan a Debreceni Református Kollégium diákjai voltak. Ady Endre, Arany

Részletesebben

Fizika. Fejlesztési feladatok

Fizika. Fejlesztési feladatok Fizika Célok és feladatok A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni, megvédeni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány

Részletesebben

Verzár Éva Kelj fel és járj!

Verzár Éva Kelj fel és járj! Verzár Éva Kelj fel és járj! A Tatárdombot megkerülte a viharos szél, ott fenn még egyszer jól összerázta a méltóságos, nehéz fellegeket, lehúzta őket egészen a földig, s mire Terike 1911 pityergő őszén

Részletesebben

MUNKAANYAG. Földi László. Szögmérések, külső- és belső kúpos felületek mérése. A követelménymodul megnevezése:

MUNKAANYAG. Földi László. Szögmérések, külső- és belső kúpos felületek mérése. A követelménymodul megnevezése: Földi László Szögmérések, külső- és belső kúpos felületek mérése A követelménymodul megnevezése: Általános anyagvizsgálatok és geometriai mérések A követelménymodul száma: 0225-06 A tartalomelem azonosító

Részletesebben

FOLYADÉKCSEPPES LEVELEK NAPÉGÉSE Egy biooptikai diákkísérlet

FOLYADÉKCSEPPES LEVELEK NAPÉGÉSE Egy biooptikai diákkísérlet A FIZIKA TANÍTÁSA FOLYADÉKCSEPPES LEVELEK NAPÉGÉSE Egy biooptikai diákkísérlet Stonawski Tamás, Murguly Alexandra, Pátzay Richárd, Cérna László Ecsedi Báthori István Református Gimnázium és Kollégium,

Részletesebben

ó á á á á á ó á ó Á ö é á ó Ú á á á ó Á ö é á á á ó ó ó á á ó á ó Ú á é á ó ü é ü é á á á á ó é é á ú á ó á é ó á ó Ó é á ó é á ó ó á Ó Ö é á ó á ó é é é ü é ó á Ó é é é ó ó ó á ó é é ó á ü ó é á ó é é

Részletesebben

Elektromágneses sugárözönben élünk

Elektromágneses sugárözönben élünk Elektromágneses sugárözönben élünk Az Életet a Nap, a civilizációnkat a Tűz sugarainak köszönhetjük. - Ha anya helyett egy isten nyitotta föl szemed, akkor a halálos éjben mindenütt tűz, tűz lobog fel,

Részletesebben

Vörösiszappal elárasztott szántóterületek hasznosítása energianövényekkel

Vörösiszappal elárasztott szántóterületek hasznosítása energianövényekkel Vörösiszappal elárasztott szántóterületek hasznosítása energianövényekkel Dr. Gyuricza Csaba SzIE Mezőgazdaság- és Környezettudományi Kar, Növénytermesztési Intézet, Gödöllő Dr. László Péter MTA Talajtani

Részletesebben

Tangramcsodák. Tuzson Zoltán, Székelyudvarhely

Tangramcsodák. Tuzson Zoltán, Székelyudvarhely Tangramcsodák Tuzson Zoltán, Székelyudvarhely A tangramok si kirakójátékok. A játék célja az, hogy a tangramkövek maradéktalan felhasználásával kirakjunk különböz alakzatokat, illetve megfejteni, hogy

Részletesebben

Sankarácsárja: Átma Bódha 1

Sankarácsárja: Átma Bódha 1 1 Sankarácsárja: Átma Bódha 1 1. Ezen Átma Bódha azért íródott, hogy kielégítse a megszabadulást keresők szükségleteit, akik állhatatos önmegtagadásuk révén már megtisztultak a szennyeződésektől, békéssé

Részletesebben