Izgalmas újdonságok a klaszteranalízisben
|
|
- Szebasztián Géza Veres
- 6 évvel ezelőtt
- Látták:
Átírás
1 Izgalmas újdonságok a klaszteranalízisben Vargha András KRE és ELTE, Pszichológiai Intézet Vargha András KRE és ELTE, Pszichológiai Intézet
2 Mi a klaszteranalízis (KLA)? Keressük a személyek (vagy bármilyen objektumok) olyan csoportjait, ahol az egy csoportba tartozók egymásra hasonlítanak, de más csoportokba tartozó személyektől különböznek.
3 A klaszterek néha nem egyértelműek Hány klaszter van itt? 2 klaszter? 6 klaszter?
4 Alapvető kritérium a személyek hasonlósága, távolsága 1) A mintázatok hasonlósága mérhető két személy adatsorának a korrelációjával. Minél nagyobb a korreláció (előjelesen!), annál hasonlóbb a két személy. 2) A hasonlóságot (távolságot) leggyakrabban az adatsorbeli értékek átlagos távolságával szokták mérni (Euklideszi távolság). Egy ilyen variáns az ASED (átlagos négyzetes eltérés, Average Squared Euclidian Distance).
5 Klaszteranalízisek fő típusai Hierarchikus (HKA): egymásra épülő klasszifikációk rendszere, melyhez úgy jutunk, hogy lépésenként egyesítünk vagy felbontunk klasztereket Agglomeratív: sok kis klaszterrel kezdünk, egy naggyal végzünk (ez a szokásos) Osztódó: egy nagy klaszterrel kezdünk, sok kicsivel végzünk Nemhierarchikus (k-központú, particionáló): Esetek optimális besorolása k számú csoportba (k fix) Modell-alapú: Feltételezett keverék-eloszlás felbontása komponensekre
6 A HKA szemléltetése Személyek Távolság
7 Klasztertávolság az összevonásnál Minimális távolság módszere (Single linkage method) Maximális távolság módszere (Complete linkage method) Átlagos távolság módszere (Average linkage between groups) Medián módszer (Median method) Centroidok távolsága (Centroid method) Indirekt hierarchikus módszerek Ward-féle módszer Átlagos távolság módszere
8 Egy HKA 10 és 2 klaszter között k EESS% PB SilCoef HCátlag HC min-max Egyesítendő klaszterek 10 78,30 0,360 0,529 0,351 0,15-0,82 17 (22), 18 (44) 9 76,90 0,360 0,527 0,373 0,15-0,82 19 (33), 23 (56) 8 74,81 0,359 0,521 0,406 0,15-0,84 9 (190), 47 (131) 7 72,68 0,449 0,564 0,440 0,16-0,84 16 (44), 50 (76) 6 69,97 0,444 0,567 0,482 0,16-1,11 20 (162), 36 (88) 5 66,97 0,477 0,602 0,530 0,28-1,11 17 (66), 19 (89) 4 62,93 0,472 0,616 0,594 0,28-1,11 16 (120), 17 (155) 3 52,87 0,413 0,612 0,753 0,28-1,60 9 (321), 20 (250) 2 40,07 0,583 0,700 0,957 0,65-1,60 9 (571), 16 (275) Ennek alapján próbálunk dönteni arról, hogy mely k klaszterszám megoldása tetszik
9 Klaszter kvalifikációs mutatók (QC-k) EESS%: Klaszterek által magyarázott varianciaarány (Explained Error SS) PB: Esetpárok mintájában az egy klaszterbe tartozás és az esettávolság közti korreláció SilCoef (Silhouette eh.): A klaszterstruktúra szeparáltságának egyik mértéke HC (homogenitási együttható): Egy-egy klaszterben az esetek átlagos távolsága HCátlag: A k klaszter HC-értékének átlaga HCmin-max: Legkisebb és legnagyobb HC
10 EESS% EESS% 100 SS total SS SS total cluster Többdimenziós eta-négyzet (magyarázott varianciaarány: MV%)
11 Klaszter pont-biszeriális korreláció (PB) PB r(x,y) r(x,y)-t az N személyből kiválasztható összes (n = N(N-1)/2) számú) pár mintáján számítjuk ki X: Egy klaszterbe esnek? (0: nem, 1: igen) Y: A pár két tagjának Euklideszi távolsága (ASED)
12 Alternatív formula PB-re M M n n PB s n(n 1) n 1 PB jelzi, hogy átlagosan mennyivel vannak távolabb egymástól a különböző klaszterbe tartozó személyek, mint az egyazon klaszterbe tartozók
13 Klaszter delta együttható (CLdelta) CLdelta M 1 s n 1 M 0 A PB mutató Cohen-delta-féle változata, értelmezése hasonló PB-éhez
14 Silhouette együttható (SC) Az i-edik személyre legyen ahol SC i = (B i A i )/max(a i, B i ), A i = átlagos távolság a saját társaktól, B i = átlagos távolság az idegen társaktól. SC: az összes egyedi SC i érték átlaga Értelmezés: a személyek mennyivel vannak közelebb saját klasztercentrumukhoz, mint a legközelebbi idegen klaszter centrumához
15 A QC mutatók típusai Homogenitást, kohéziót mérik: EESS%, HCátlag Szeparációt mérik: SC, XBmod, GDI24 Mindkettőt mérik: PB, CLdelta QC-kről bővebben: Desgraupes, B. (2013). Vargha Torma Bergman, 2015 Vargha Bergman Takács, 2016
16 Nemhierarchikus k-központú klaszteranalízis (KKA) A klaszterszámot (k) előre rögzítjük Optimalizálásos módszer több iterációval A kezdő besorolás véletlenszerű is lehet Eseteket ide-oda tesszük (relokáció), amíg EESS% ( MV%) maximális nem lesz A végén homogénebb struktúrát kapunk, mint a HKA-ban Kiértékelés QC-k segítségével
17 Probléma a QC-kkel: erősen függnek a klaszter- és a változószámtól EESS% k=3 k=4 k=5 k=6 k=7 k=8 k=9 V=2 V=3 V=4 V=5 V=6
18 A Silhouette-együttható erősen függ a változószámtól Silhouette Coefficient (SC) k=3 k=4 k=5 k=6 k=7 k=8 k=9 V=2 V=3 V=4 V=5 V=6
19 Megoldás: QC viszonyítása random mintán kapott struktúra QC-jéhez MORI = Measure of Relative Improvement Ez a kapott struktúra belső validitásának (internal validity) legfontosabb mutatója (Vargha Bergman Takács, 2016)
20 Részletek Generálunk random adatokat ugyanannyi változóval, egymás után többször (100-szor) Minden random adatállományon HKA-t vagy KKA-t futtatunk (ugyanannyi klaszterrel) és kiszámítunk a struktúra jóságának a mérésére egy sor QC-t. A kapott QC-ket átlagoljuk (QC rand ) és összevetve a tesztelendő struktúra QCértékeivel, képezzük a MORI indexeket.
21 Kontrollként használt random változótípusok 1.Az aktuálissal megegyező eloszlású, de független változók (adatok random permutálásával változónként) 2.Független random normális eloszlású változók 3.Korreláló random normális változók az input változók páronkénti korrelációi alapján (változók FA-ja, súlymátrix!) (Vargha Borbély, 2017; Vargha Bergman Kövi, in preparation)
22 Kétdimenziós Multivariate normális normal density eloszlás
23 Normalitás és klaszteranalízis Ha az input változók többdimenziós normális eloszlásúak, csak egyetlen csúcsa van az eloszlásnak. Ilyenkor nincs értelme több típust keresni. Ha a normalitás sérül, megjelenhetnek a nemlineáris kapcsolatok. Emiatt az input változók interkorrelációit reprodukáló, random normális korreláló kontroll az egyik leginformatívabb validáló eszköz.
24 Klaszterstruktúrák összehasonlítása k = 5 és k = 7 között hat QC-vel, korreláló random normális kontrollal MORI-indexek (rep = 100) EESS% PB XBmod SilCoef HCátlag CLdelta k = 5 0,21 0,18-0,03 0,21 0,21 0,28 k = 6 0,25 0,22 0,21 0,29 0,25 0,30 k = 7 0,26 0,20 0,07 0,24 0,25 0,30 A 6-klaszteres struktúra tűnik a legjobbnak
25 A belső validitás QC és MORI mutatóinak használata Megítélhetjük velük egy struktúra jóságát Segítséget nyújthatnak a helyes klaszterszám megállapításához Összehasonlíthatunk velük különböző algoritmusokat Összehasonlíthatunk velük különböző klasztermegoldásokat (struktúrákat)
26 Két klasztermegoldás összehasonlítása a ROPstatban Centroid Klaszterközéppontok (centroidok) páronkénti távolságainak a kiszámítása Exacon: Kódváltozók keresztgyakorisági táblázata Hasonlósági mutatók (Cramér-féle V, Jaccard index, Rand, ARand)
27 Külső validitás (external validity) vizsgálata A kapott klasztereket megpróbáljuk olyan változókkal összefüggésbe hozni, amelyek nem szerepeltek a klaszteranalízis modelljében (pl. nem, kor, iskolázottság), de segítenek értelmezni és ezáltal érvényessé tenni a klasztereket
28 KÖSZÖNÖM A FIGYELMET
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Klaszteranalízis Hasonló dolgok csoportosítását jelenti, gyakorlatilag az osztályozás szinonimájaként értelmezhetjük. A klaszteranalízis célja A klaszteranalízis alapvető célja, hogy a megfigyelési egységeket
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Klaszterezés, 2. rész
Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket
Gyakorló feladatok adatbányászati technikák tantárgyhoz
Gyakorló feladatok adatbányászati technikák tantárgyhoz Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Klaszterezés kiértékelése Feladat:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Klaszterelemzés az SPSS-ben
Klaszterelemzés az SPSS-ben Kvantitatív statisztikai módszerek Petrovics Petra Klaszteranalízis Olyan dimenziócsökkentő eljárás, amellyel adattömböket megfigyelési egységeket tudunk viszonylag homogén
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok 9. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
A ROPstat statisztikai programcsomag*
A ROPstat statisztikai programcsomag* Vargha András, a Károli Gáspár Református Egyetem, valamint az Eötvös Loránd Tudományegyetem Pszichológiai Intézetének egyetemi tanára E-mail: vargha.andras@kre.hu
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
V. Gyakorisági táblázatok elemzése
V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Klaszterelemzés az SPSS-ben
Klaszterelemzés az SPSS-ben Petrovics Petra Doktorandusz Klaszteranalízis Olyan dimenziócsökkentő eljárás, amellyel adattömböket megfigyelési egységeket tudunk viszonylag homogén csoportokba sorolni, klasszifikálni.
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
A preferencia térképezés kritikus pontjai az élelmiszeripari termékfejlesztésben
A preferencia térképezés kritikus pontjai az élelmiszeripari termékfejlesztésben Gere A., Losó, V., Györey, A., Szabó, D., Sipos, L., Kókai, Z. Budapesti Corvinus Egyetem, Élelmiszertudományi Kar Érzékszervi
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
IV. Változók és csoportok összehasonlítása
IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
III. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
KLASSZIFIKÁCIÓS MÓDSZEREK MUTATÓI
10.12663/PSYHUNG.3.2015.1.5 KLASSZIFIKÁCIÓS MÓDSZEREK MUTATÓI Takács Szabolcs 1, Makrai Balázs 2, Vargha András 3 Ká roli Gá spá r Reformá tus Egyetem, Pszicholó giai Inté zet 1tanársegéd, 2 hallgató,
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Adatbányászat. Klaszterezés Szociális hálózatok. Szegei Tudományegyetem. Lehetetlenségi tétel Hierarchikus eljárások Particionáló módszerek
Adatányászat Klaszterezés Szociális hálózatok Szegei Tudományegyetem Adatányászat Mit várhatunk egy klaszterezőtől? Az ojektumok olyan csoportjainak megtalálása, hogy az egy csoportan levő ojektumok hasonlóak
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
Variancia-analízis (folytatás)
Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Sztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek
Faktoranalízis 6.-7. előadás Kvantitatív statisztikai módszerek Faktoranalízis Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására
KUTATÁSI JELENTÉS. Multilaterációs radarrendszer kutatása. Szüllő Ádám
KUTATÁSI JELENTÉS Multilaterációs radarrendszer kutatása Szüllő Ádám 212 Bevezetés A Mikrohullámú Távérzékelés Laboratórium jelenlegi K+F tevékenységei közül ezen jelentés a multilaterációs radarrendszerek
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Adatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc 12. téma Klaszterezési módszerek Klaszterezés célja Adott az objektumok, tulajdonságaik együttese. Az objektumok között hasonlóságot és különbözőséget fedezhetünk fel.
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag)
, rangkorreláció Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
PSYCHOLOGIA HUNGARICA
PSYCHOLOGIA HUNGARICA Caroliensis 2013, 1. É V F O L Y A M, 1. S Z Á M - 1 - - 2 - TAKÁCS TÍMEA FEHÉR TIBOR DANIEL HUNYAD RÉKA KASEK ROLAND MATUSZ HUGÓ MURÁNYI MÁTÉ SNEÉ GERGELY SZABÓ BEÁTA TILESCH ANNA
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
PONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants
statisztikai menürendszere Dr. Vargha András 2007
A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102
Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,
Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok
Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok
A települési szegregáció mérőszámai
A települési szegregáció mérőszámai Dusek Tamás egyetemi tanár Széchenyi István Egyetem Nagyvárad, 2016. szeptember 16. A szegregáció, mint területi jelenség Elsősorban, de nem kizárólag települési szinten
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Fkt Faktoranalízis líi Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására szolgál. A kiinduló változók számát úgynevezett faktorváltozókba
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Klaszterezés. Kovács Máté március 22. BME. Kovács Máté (BME) Klaszterezés március / 37
Klaszterezés Kovács Máté BME 2012. március 22. Kovács Máté (BME) Klaszterezés 2012. március 22. 1 / 37 Mi a klaszterezés? Intuitív meghatározás Adott dolgokból halmazokat klasztereket alakítunk ki úgy,
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Klaszteranalízis Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2018. október 20. Tartalom
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Országos kompetenciamérés eredményeinek kiértékelése 6. és 8. évfolyamokon 2012
Országos kompetenciamérés eredményeinek kiértékelése 6. és 8. évfolyamokon 2012 A hatodik osztályban 12 tanulóból 11 írta meg az országos kompetenciamérést. Ebből 1 fő SNI-s, 3 fő BTMN-es tanuló. Mentesítést
Adatbányászat: Klaszterezés Alapfogalmak és algoritmusok
Adatbányászat: Klaszterezés Alapfogalmak és algoritmusok 8. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Tan,Steinbach, Kumar Introduction to Data
Adatbányászat: Klaszterezés Alapfogalmak és algoritmusok
Adatbányászat: Klaszterezés Alapfogalmak és algoritmusok 8. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Tan,Steinbach, Kumar Introduction to Data
Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet
Többváltozós statisztika Szegedi Tudományegyetem, Bolyai Intézet Többváltozós módszerek Ezek a módszerek több változó együttes vizsgálatára vonatkoznak. Alapvető típusaik: többdimenziós eloszlásokra vonatkozó
Vargha András Károli Gáspár Református Egyetem Budapest
Vargha András Károli Gáspár Református Egyetem Budapest Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó,
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
VÁROS- ÉS INGATLANGAZDASÁGTAN
VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az
IBM SPSS Modeler 18.2 Újdonságok
IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Statisztikai becslés
Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,