Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai



Hasonló dokumentumok
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

Megyei matematikaverseny évfolyam 2. forduló

2006/2007. Feladatlapok és megoldások. Adobe Reader verzió

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai. 81f l 2 f 2 + l 2

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

13. Trigonometria II.

Egyenletek, egyenlőtlenségek VII.

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Másodfokú egyenletek, egyenlőtlenségek

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Másodfokú egyenletek, egyenlőtlenségek

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

Az 1. forduló feladatainak megoldása

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

Németh László Matematikaverseny, Hódmezővásárhely március 30. A osztályosok feladatainak javítókulcsa

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

NULLADIK MATEMATIKA ZÁRTHELYI

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

A tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

Hatványozás. A hatványozás azonosságai

2018/2019. Matematika 10.K

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

10. Koordinátageometria

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

I. A négyzetgyökvonás

egyenlőtlenségnek kell teljesülnie.

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

NULLADIK MATEMATIKA ZÁRTHELYI

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Abszolútértékes egyenlôtlenségek

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

9. évfolyam 2. forduló

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam

Exponenciális és logaritmikus kifejezések Megoldások

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

= 0. 1 pont. Összesen: 12 pont

Megoldások 9. osztály

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Megyei matematikaverseny évfolyam 2. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Magasabbfokú egyenletek

Számelmélet Megoldások

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Függvények Megoldások

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x

TARTALOM. Előszó 9 HALMAZOK

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

NEVEZETES SZÁMELMÉLETI FÜGGVÉNYEKRŐL

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

Oszthatósági problémák

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

PRÓBAÉRETTSÉGI MEGOLDÁSA: MATEMATIKA, KÖZÉP SZINT. 3, ahonnan 2 x = 3, tehát. x =. 2

Osztályozó- és javítóvizsga. Matematika tantárgyból

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Átírás:

Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív osztójuk van és ezek összege 8? 1. megoldás: Legyen n a keresett szám. A négy osztó között van az 1 és n, legyen a másik két osztó a és b, 1 < a < b. Használjuk ki, hogy ezek egymás osztópárjai, azaz ab = n. Ekkor 1 + a + b + n = 1 + a + b + ab = (1 + a)(1 + b) = 8. Ezek szerint a 8-et kell két egész szorzataként felírni. A szorzótényezőkről tudjuk, hogy 3 1 + a < 1 + b. A lehetséges esetek: 8 = 3 8 = 1 = 6 1 = 7 1. A négyféle szorzat esetén az (a; b) párok és a hozzájuk tartozó ab = n érték: 7 = 5, 3 0 = 60, 5 13 = 65, 6 11 = 66. Így megkaptuk n lehetséges értékeit, ezek közül csak az n = 65-nek van osztója. Az 5, 60 és 66 számoknak négynél több osztója van, ezek nem felelnek meg. Az n = 65 valóban jó megoldás, 1+5+13+65=8.. megoldás: Felhasználjuk, hogy ha n prímtényezős felbontása n = α p i i, akkor n osztóinak száma (α i +1). Négy osztó ezek szerint akkor lehet, ha n = p 3, vagy n = p 1 p alakú. pont Ha n = p 3, akkor a négy osztó 1, p, p és p 3. Mivel 1 + p + p + p 3 = 8, ezért p(1 + p + p ) = 83. Ezek szerint 83 összetett szám, ami nem igaz. Ez az eset nem ad megoldást. Ha n = p 1 p, akkor legyen p 1 < p. egy szám legkisebb prímosztója nem lehet nagyobb a szám négyzetgyökénél. Mivel n < 8, ezért p 1 < 8. Ezek szerint p 1 lehet, 3, 5, vagy 7. Ezeket ellenőrizve csak a p 1 = 5 esetén lesz p prím: 1 + + p + p = 8, = p = 7, 1 + 3 + p + 3p = 8, = p = 0, 1 + 5 + p + 5p = 8, = p = 13, 1 + 7 + p + 7p = 8, = p = 9, 5. Ezek szerint egyetlen megoldás lehetséges. Ellenőrizve, az n = 5 13 = 65 valóban jó megoldás, 1+5+13+65=8. pont 1

Amennyiben megtalálja az n = 65 megoldást, de nem bizonyítja, hogy ez az egyetlen megoldás, akkor legfeljebb ot kaphat. Mivel a 8 kis szám, a feladat megoldható szisztematikus próbálkozással, esetvizsgálattal is. Így is megkaphatja a 7 pontot, ha áttekinthető, helyes és hiánytalan az esetvizsgálat.. Az a valós paraméterrel adott az alábbi egyenlet, jelölje az egyenlet valós gyökeit x 1 és x : x 3(a + )x + 9a + 1 = 0. (a) Határozzuk meg a értékét úgy, hogy az x 1 + x kifejezés értéke minimális legyen. (b) Bizonyítsuk be, hogy nincs olyan valós a érték, amely esetén x 1 és x is egész szám. (c) Keressük meg az a paraméter olyan egész értékeit, melyek esetén az egyenletnek egyik gyöke egész. Megoldás: (a) Használjuk fel a gyökök és együtthatók közötti összefüggéseket: x 1 + x = (x 1 + x ) x 1 x = ( ) 3(a + ) 9a + 1 = 9a + 3. Ez akkor lesz minimális, ha a = 0. Ekkor a másodfokú egyenletünk x 6x + 1 = 0, ennek diszkriminánsa pozitív, két különböző valós gyök van, így az a = 0 valóban jó megoldás. (b) Tegyük fel, hogy valamely a értékre x 1 és x is egész. Nézzük meg alaposabban a gyökök és együtthatók közötti összefüggéseket. Mivel a gyökök egészek, összegük és szorzatuk is egész lesz: x 1 + x = 3a + 6, x 1 x = 9a + 1. Az összeg pontosan akkor egész, ha a számláló páros, azaz 3a páros, tehát a páros. A szorzat pontosan akkor egész, ha a számláló páros, azaz 9a páratlan, tehát a páratlan. Mivel a nem lehet egyszerre páros is és páratlan is, ezért nem lehet mindkét gyök egyszerre egész. pont (c) Legyen a egész és x 1 az egyenlet egész gyöke. Ekkor írjuk fel az eredeti egyenletünket, majd rendezzük át: x 1 3(a + )x 1 + 9a + 1 = 0, (1) 3a(3 x 1 ) = x 1 (3 x 1 ) 1. Az (1) egyenlet megmutatja, hogy x 1 nem lehet 3, hiszen akkor a bal oldal 0, a jobb oldal -1 lenne. Ezért oszthatunk (3 x 1 )-gyel: 3a = x 1 + 1 x 1 3.

1 Mivel 3a és x 1 is egészek, ezért is egész, tehát (x x 1 3 1 3) értéke 1, vagy -1. Ebből adódnak a megoldásaink: az a paraméter megfelelő értékei a 3 és az 1. Ha a = 3, az egész gyök az x 1 =. Ha a = 1, az egész gyök az x 1 =. 3. Legyen n egynél nagyobb egész. Egy háromszög oldalainak mérőszámai: a = n+ n+1 + n, b = n+1 n + n 1, c = 3 n 1. Mekkora a háromszög legnagyobb szögének tangense? Megoldás: A feladatban szereplő háromszöghöz hasonlót kapunk, ha minden oldalának hosszát elosztjuk n -nel. A megfelelő új oldalak betűjelét megtartva: a = 1 + 1 = 3, b = 1 1 + 1 = 3, c = 3 1 = 3. A háromszögben a legnagyobb szög a leghosszabb oldallal szemközt van, ez esetünkben az a oldal. Írjuk fel a koszinusztételt: 9 = 9 + 18 9 cos α. Ebből cos α = 1. Mivel α egy háromszög szöge, koszinusza pedig negatív, ezért a legnagyobb szög tompaszög. A sin α+cos α = 1 azonosságból adódóan az α tompaszög további szögfüggvényei: sin α = 7, és ebből tgα = 7. pont 8. Egy táblára felírunk négy darab egymástól különböző pozitív egész számot. Először letörölünk kettőt, helyettük felírjuk a letörölt két szám mértani közepét. A táblán lévő három szám közül újra letörölünk kettőt, helyettük felírjuk a most letörölt két szám mértani közepét. Ezt követően a táblán levő két szám mértani közepe. Mekkora lehetett az eredeti négy szám összege? Megoldás: Legyen a négy szám a, b, c, d. Az első két letörölt szám legyen a és b. Ekkor a táblán van ab, c és d. Most c és d közül valamelyiket biztos letöröljük, legyen ez c. Két lehetőség van: (1.) ab a másik letörölt, ekkor c ab és d marad a táblán; (.) d a másik letörölt, ekkor ab és cd marad a táblán. pont 3

(1.) Ebben az esetben a táblán levő két szám mértani közepe: d c ab =. Ismételt négyzetreemelések után abc d = 8 adódik. Mivel a 8 -nak a -n kívül nincs más prímosztója, ezért a számelmélet alaptétele miatt számaink felírhatóak a következő alakban a = x, b = y, c = z és d = v, ahol x, y, z, v különböző nemnegatív egészek, melyekre x + y + z + v = 8. Ezen feltételek mellett v lehet 0, vagy 1. Ha v = 0, akkor a lehetséges esetek: z = 1, ekkor x és y valamilyen sorrendben és, az eredeti négy szám összege: +16++1=3; z =, ekkor x és y valamilyen sorrendben 1 és 3, az eredeti négy szám összege: +8++1=15. Ha v = 1, akkor a lehetséges esetek: z = 0, ekkor x + y = ennek nincs olyan megoldása, melyben a változók 0-tól, 1-től és egymástól különbözőek lennének; z = 1, ekkor x + y = és ennek sincs megfelelő megoldása. (.) Ebben az esetben a táblán levő két szám mértani közepe: ab cd =, azaz abcd =. Az első eset mintájára dolgozhatunk, a következőt kapjuk: x + y + z + v =. Ennek nincs különböző nemnegatív egészekből álló megoldása. pont A táblán eredetileg szereplő négy szám összege tehát 3, vagy 15 lehetett. 5. A hegyesszögű ABC háromszög AC oldalának mely P pontjára lesz a P B + P C összeg minimális? Megoldás: Legyen a B csúcs AC-re eső merőleges vetülete T. Ekkor a Pitagorasz tételt alkalmazva P B + P C = BT + P T + P C.

A jobb oldalon BT értéke állandó, ezért P T +P C minimumát keressük. A P T +P C minimuma ugyanakkor van, mint P T +P C minimuma. Alkalmazzuk a négyzetes és számtani közepek közötti egyenlőtlenséget: P T + P C P T + P C. A jobb oldal akkor a legkisebb, ha P a CT szakaszon van, ekkor a jobb oldal állandó. A bal oldali kifejezés tehát akkor minimális, ha P rajta van CT -n és a négyzetes és számtani közép egyenlő, ekkor P T = P C. pont A P B + P C összeg akkor minimális, ha P a T C szakasz felezőpontja, azaz a BC szakasz felezőpontjának a AC-re eső merőleges vetülete. 5