Almássy Kornél*, Subert István* Dinamikus teherbírási - és tömörségmérések az M7 letenyei szakaszán (I.rész) Az M70 Letenyei szakaszán épülő földmű és ágyazat rétegein összehasonlító méréseket végezhettük el a Bau-Teszt Laboratóriuma segítségével. A dinamikus méréseket a BME Út és Vasútépítési Tanszéke B&C típusú könnyűejtősúlyos tömörség- és teherbírásmérő berendezésével mértük. Vizsgálódásaink célja volt, hogy a dinamikus modulus és a statikus modulus közötti kapcsolatot különböző szempontok alapján vizsgáljuk és elemezzük, illetve az új dinamikus tömörségmérés módszerét tanulmányozzuk. A dinamikus tömörség- és teherbírásmérés rohamosan terjed. A berendezés előnye kis súlya, jó mobilitása, terhelő gépkocsi szükségtelensége. A magyar szabályozásban az ÚT 2-2.119:1998, a német szabályozásban a TP BF StB (1997) Teil B 8.3 rögzíti a d=300 mm-es átmérőjű (p=0,1 MPa tárcsa alatti terhelésű) berendezésre vonatkozó mérési előírásokat. 2003-ban megjelent a legújabb dinamikus mérőeszköz, a kistárcsás B&C az ÚT 2-2.124 ÚME szabályozásában. Ez a módszer új ellenőrzési- és minősítési lehetőséget teremtett a minőségellenőrzésben és minőségtanúsításban Európa szerte. A dinamikus tömörség mérés további előnye, hogy egy méréssorozattal mind a dinamikus tömörségi fok, mind az dinamikus teherbírás meghatározható. A földművek, alapok teherbírása és tömörsége meghatározó minden építmény teljes további minőségére, ezért fokozott figyelmet érdemel. A minőségi előírásokra fokozott gondot fordító autópálya tendereknél megfigyelhető, hogy a töltés alapra már minimum 25 MPa tájékoztató teherbírási követelményt írnak elő. A tömöríthetőség feltétele ugyanis az anyagjellemzők megfelelőségén túl az, hogy a tömörítés megfelelő végrehajtásához kellő teherbírású ellenfelület szükséges. A minősítési határértékre általában jellemző (tender), hogy az E2 statikus alakváltozási modulusra vonatkozik, így a mért dinamikus modulus minősítése, elbírálása nehézkes. A dinamikus berendezést gyártó cégek ezért úgynevezett átszámításokat ajánlanak, melyek e probléma megoldására elterjedtek. Ezek olyan képletek (lásd 1 táblázat), melyek különböző adatbázisokból számítva, a korreláció szorosságának megjelölése nélkül keringenek kézről kézre. Általában jellemző, hogy ezek az átszámítások megbízhatósága esetleges ellenőrzéskor jellemzően gyenge, a korrelációs együttható jellemzően 0,60-65 körüli. Leginkább ismeretes ezek közül az átszámítási képletek közül az úgynevezett KTI, vagy gyakran Baksay-féle átszámításnak nevezett képlet, mely ugyan több akkreditált laboratórium jegyzőkönyvén szerepel, ugyanakkor egyetlen szabványban sem található. 1.sz. táblázat Dinamikus modulusok átszámítása statikus modulusra Sorsz Módszer neve Kifejezése 1 KTI (Baksay) módszer E2=(Evd-9,1)/0,52 2 Der Eisebahn-unterbau E2=(Evd-5,5)/0,42 3 Zorn 1. version (Georam) E2=0,005Evd 3-0,0636Evd 2 +4,582Evd-31,885 4 Zorn neue version E2=600ln(300/300-Evd)) Tervezet - 1-2004. október.
Ezek az átszámítások nem vonatkoznak a B&C dinamikus modulusára, melynek 0,35 MPA nagyságú tárcsa alatti terhelése az MSZ 2509-3 szerinti statikus modulushoz való hasonlósága miatt szinte ahhoz hasonló, azonos értéket ad. A dinamikus teherbírás mérési módszer terjedését erősen gátolja a megfelelő határértékek hiánya. A statikus és dinamikus modulusok közötti összefüggés (ha erről egyáltalán beszélhetünk) hosszú évek kutatásai ellenére, még ma sem egyértelmű. A két eltérő modellhatású módszer, a statikus E v2 és dinamikus E vd közötti erőltetettnek tűnő átszámíthatóság nem tiszta, sőt az elterjedt közelítő képletek önmagukban is gyakran ellentmondásosak. A különböző tapasztalati összefüggésekkel átszámított értékek egymásnak akár háromszorosai is lehetnek, mely az átszámítások komolyságát megkérdőjelezi. A dinamikus mérések igen nagy előnye az, hogy a forgalom modellhatásával egyező a ténylegesen alkalmazott a dinamikus terhelés ideje. Az alkalmazott 18 ms terhelési idő a tárcsa 30cm-es átmérőjére vonatkoztatva 16,17 m/s azaz 60km/óra járműsebességnek megfelelő érték. Ezzel ellentétben a statikus tárcsás teherbírás mérésünk legföljebb csak a pályaszerkezet súlyának elviselését, vagy álló járművek terhének hordozását jellemezheti. Mérése lassú, nehézkes és jelentős tömegű ellensúlyt igényel. A statikus mérésnél a tárcsát 0,05MPa lépcsőkben terheljük p=0,3mpa (pályaszerkezeti rétegnél 0,5Mpa) terhelési szintig, majd két lépcsőben tehermentesítve, és a konszolidációs időt kivárva 0,1 MPa lépcsőkben újra terheljük a végterhelési szintig. Mivel a terhelés egyenletes kell legyen és az egy hidraulikus emelővel történik, a 0,05 Mpa terhelési lépcső ideje általában 15-20 secundumnak vehető. Egy statikus teherbírás mérés egy felterhelése tehát a leolvasással együtt 180-200 secundum (2-3 perc) felterhelési sebességű, mely alatt a konszolidáció egy bizonytalan része is lezajlik. Két szabványos felterheléssel számolva tehát a mérés 4-6 percre tehető. E2 - Evd átszámítások Evd- E2 átszámítási képletek E2 számított (MPa) 350 300 250 200 150 50 0 0 20 40 60 80 120 Evd (MPa) KTI (Baksay) Eisebahn Zorn 1. Zorn új Tervezet - 2-2004. október.
A dinamikus teherbírási modulust németországban az ÚT 2-2.119 ÚME kifejezéséből, a német TP BF StB Teil B 8. (2.2.fejezet) egyszerűsített képlettel egyezően számoljuk: Evd=1,5. /s =22,5/s Ellentmondás, hogy a kifejezés az alkalmazott =0,5 Poisson-tényező és c=2,0 Boussinesq-féle hajlékony tárcsa-szorzóra semmilyen magyarázatot, vagy indoklást nem ad. A magyar ÚME egy helyen ugyan a tárcsára merevet mond, de végül hajlékonnyal számol: E vd c d 2 1 p a A kistárcsás B&C mérési módszerének lényege, hogy a Boussinesq-féle összefüggéssel a teherbírást jellemző dinamikus modulus meghatározásakor a valós tárcsaszorzóval és a Poisson-féle haránt-kontrakciós tényezőt 0,3-0,4-0,5 értékek közüli választható értéken vehetjük figyelembe. A és a C értékek megválasztása fontos, mert jelentős eltéréseket okoz (lásd 2. sz. táblázat). Ha a süllyedés átlaga 1,0mm lenne, akkor e táblázat közvetlenül a dinamikus modulus értékét adja. Jól látható, hogy ez a választott paraméterektől függően igen tág, 17,7-44,5 MPa közötti (!) lehet. Nyilvánvaló ebből, hogy ezek a paraméterek nem hanyagolhatók el. C =constans értékének alakulása a megválasztott paraméterektől függően 2.táblázat p din =0,1MPa, r=150mm = 0,3 0,4 0,5 Hajlékony tárcsa C = 2 27,3 25,2 22,5 Merev tárcsa C = /2 21,4 19,8 17,7 p din =0,3MPa, r=81,5mm = 0,3 0,4 0,5 Hajlékony tárcsa C = 2 44,5 41,4 36,7 Merev tárcsa C = /2 34,9 32,2 28,8 din Dinamikus tömörségmérés Az ÚT 2-2.124:2003 ÚME szerinti mérőberendezés a dinamikus modulus mérésén túl alkalmas a hagyományos tömörségi fokkal azonos, dinamikus tömörségi fok meghatározására is. Egy B&C berendezéssel egy BMGE tanulmány keretében nagyobb mennyiségű összehasonlító méréssorozatot végezhettünk. A dinamikus mérés a tömörödési görbe meghatározásán, az alakváltozás mérésén alapul. A leejtett ejtősúly a tárcsa alatti réteget tömöríti. Az ejtések során a tömörödés (süllyedési amplítúdó) egyre kisebb és egy constans értékhez tart. Ez a laboratóriumi Proctor-minta bedolgozása során tapasztalt viselkedéssel egyező, melyből a viszonyítási alap számítható a dinamikus tömörségi fok meghatározásához. Ehhez szükséges a számítása és ismerte, mely nagy számú vizsgálatok során -0,365 +/-0,025 közöttire adódott. Mivel a helyszíni méréskor a laboratóriumi Proctor-vizsgálattal egyező munkával történik a tömörítés, a tömörségi fok ezen összefüggésből számítható. A mért süllyedésből számítható a tömörségi állapotot az adott víztartalom mellett elérhető helyszíni relatív tömörség, mely a hengerlés hatékonyságát jellemzi. Ezt az optimális Tervezet - 3-2004. október.
víztartalomhoz még viszonyítani kell, hogy a dinamikus tömörségi fokot megkapjuk. A helyszíni víztartalom és az optimális víztartalom eltérésének figyelembevételére szolgál a nedvességkorrekciós tényező: Trwi = di / dmax értéke <=1, (w opt -nál=1) A nedvességkorrekciós tényező kizárólag az anyag tömöríthetőségét jellemzi a víz hatására, tulajdonképpen a Proctor-görbe normalizált változata. Az anyagok eltérő viselkedését az eltérő görbület jellemzi, de minden görbe maximuma 1,0. Az alkalmassági vizsgálat részeként (a mérés előtt) már meghatározandó Trwi táblázat, ahol a Trwi értékeit a víztartalom függvényében kell megadni. A T rd % dinamikus tömörségi fokot tehát a relatív helyszíni tömörségi fok és a nedvességkorrekciós tényező szorzata adja T rd %= T re * T rw (%) A dinamikus tömörségmérési módszer lényeges eleme, hogy a tömörödési görbe mérésével a Proctor-vizsgálattal azonos mértékű munkával a tömörítést a helyszínen, az adott anyagon elvégezi minden esetben, minden mérésnél újra és újra. Ehhez a végértékhez viszonyítja az első ejtés előtti állapotot. Az M7-70 autópálya Letenyei szakaszán alkalmazott homokoskavics rétegen lehetőség nyílt a mérések elvégzésére és ar eredményekből tehető következtetések elemzésére. A F lineáris együttható értéke az ÚME előírásainak megfelelt. 3 sz. táblázat A lineáris összefüggés paraméterei Sorsz vizsg.száma dmax wopt% s Lineáris együttható korreláció. 1 _009 2,23 6,7 2,75 0,3810 0,9999 2 _013 2,30 5,7 2,75 0,3749 0,9997 3 _014 2,30 5,0 2,76 0,3668 0,9992 4 _020 2,22 5,7 2,60 0,3652 0,9989 5 _022 2,22 5,4 2,58 0,3773 0,9992 6 _030 2,28 5,9 2,75 0,3829 0,9999 7 _031 2,22 6,3 2,75 0,3850 0,9999 Valamennyi Letenyei HK védőréteg Proctor-vizsgálatát a térfogatváltozás szempontjából együtt dolgoztunk fel a 2.sz. ábrában, igen kedvező korrelációval. Tervezet - 4-2004. október.
Tömörségi fok Trd% 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 Tömörségi fok és alakváltozás mm összefüggése y = -0,3526x + 99,832 R 2 = 0,9981 y = 0,0013x 2-0,3923x + 99,993 R 2 = 1 0 5 10 15 20 25 30 35 40 45 50 alakváltozás mm Az ÚT 2-2.124 szerinti dinamikus tömörség mérés nagy előnye, hogy világosan jelzi az esetleges nem megfelelő tömörségi fok okát. Például, ha a TrE% értéke a 97-98 %-ot elérte akkor a hengerlési munka megfelelő, elegendő volt. A relatív tömörséget e fölé már csak nagy tömörítési munkával lehetett emelni. A Trw nedvességkorrekciós tényező szerepe egyértelmű és a jelenlegi vizsgálódásaink szerint hihetetlenül fontos, jelentős hatású a tömörségi fokra. Durván azt lehet mondani, hogy a tömörségi fok nagysága tekintetében szinte kisebb jelentőségű a relatív tömörség, melyet a lelkiismeretes kivitelező rutinszerűen, szinte mindig elért a tömörítés folyamán. A nedvességkorrekciós tényező szerepe viszont mindig jelentős, azaz a megfelelő nedvesség, a megfelelő előkészítés a mérnöki munka elengedhetetlen része kell legyen. Nem hanyagolható el a folyamatos (rendszeres és pontos) helyszíni víztartalom mérés (Trident T-90 USA) A w opt -ra a beépítési víztartalom határok a legritkább esetben szimmetrikusak. Ezért hibás az olyan előírás, ami a wt értékének megengedett ingadozását ±3% sőt, egyes esetekben ±5% megengedett eltéréshez köti. E helyett javasolható a wopt,wa%, wf% Tervezet - 5-2004. október.
jelöléssel annak előírása, hogy az alsó és felső beépítési víztartalom határokat az alkalmassági vizsgálatban már meg kell határozni. A dinamikus tömörség-mérés alakváltozás mérésén alapuló mérés módszerének gyakorlati elemzése azt igazolta, hogy az anyag sűrűségi inhomogenitása a mérési eredményeket nem befolyásolja, mint az izotópos mérésnél, ezért nagyságrenddel pontosabb és precízebb módszer. Az izotópos mérési eredményből is számítható a relatív tömörség a TrEiz%= Tr % / Trw kifejezéssel, mely nem más, mint az adott víztartalom mellett elért tömörségi fok, azaz az addig végzett hengerlési munka hatékonyságának mutatója. Ha az izotópos mérések eredményeiből %-nál nagyobb relatív tömörséget kapunk, az csak hibás mérés lehet, ezért a módszer az amúgy gyenge megbízhatóságú mérési mód ellenőrzésére is alkalmas. Az izotópos mérőeszközzel mért víztartalomnak a hibája magas. Ennek hatása még a tömörségi fokra is jelentős, mert a száraz sűrűség di= w*(1/(1+w)), melyet különböző víztartalmaknál az 3 sz. táblázatban számítottuk. 3 sz táblázat A víztartalom mérési hibájának hatása az izotópos tömörségi fokra wt% mért dw 1/(1+w) di Tr % számított Tr % hiba 2 2,18 0,980 2,137 96,7% + 4,1% 4 2,18 0,962 2,096 94,8% + 2,2% 6 2,18 0,943 2,055 93,0% + 0,4% 7 2,18 0,935 2,037 92,2% - 0,4% A jelenlegi izotópos tömörség mérési módszernél az alacsony víztartalom előnyös a jó eredményhez, mert akkor magasabb a tömörségi fok. Mivel a víztartalom mérése nem hitelesített, igazán nem is tudjuk mekkora eltérése lehet. Néhány mintát leellenőrizve szárító szekrényben 2-3%-os eltéréstől akár 6-10%-os eltérésig valószínűsíthető, mely a tömörségi fokban számítva elérheti a 4-5 Trg%-ot. Ha ehhez hozzátesszük, hogy a nedves sűrűség hibája is elérheti a 0,07 g/cm3 értéket, továbbá figyelembe vesszük, hogy a viszonyítási sűrűség is tartalmaz hibát, akkor az izotópos tömörségmérés hibája elérheti a +/- 6-8 Trg%-ot is. Az ÚT 2-3.103 izotópos tömörségmérés a bemutatottak miatt az előírt 97%-os tömörség meghatározására az autópályákon gyakorlatilag tehát alkalmatlan. A Trd% dinamikus tömörségi fok akkor lehet 97% felett (reális körülmények között), ha a TrE% helyszíni relatív tömörség 97-% közötti és a Trw = (Trd% / TrE%) = 1,000-0,970 közötti. Ez is csak úgy, ha a relatív tömörség % felé, a Trw 0,970 felé tart. Ha a relatív tömörség eléri a 98% értéket, akkor a Trw= 0,990 kell legyen legalább. Ha a relatív tömörség 99-% közötti, akkor a Tr %>=97% -0% előírás alkalmazásához Trw>=0,980 kell legyen. Ez a homokos kavicsok esetében általában a wopt +/-2,5% beépítési víztartalom tartomány, mely csak igen gondos munkával és a víztartalom folyamatos ellenőrzésével állítható csak elő. Mindezek a földmű felső 1,0m alsó 0,5m részére - mivel itt a különösen jól tömöríthető homokos kavics anyag alkalmazása nincs is előírva - reménytelen teljesíteni a Tr %>=97% -0% tömörségi követelményt nagy felületen bármilyen intenzív tömörítéssel, víztartalom mérésével, vagy bármilyen pontos méréssel is. Tervezet - 6-2004. október.
A 3.2/2005 ÉME-ben autópályákra előírt Trd%>=97% tömörségi követelmény a felső 50cm rétegben, a szabad ég alatti kivitelezési körülményeket figyelembe véve, maximális tömörítési technikával, erre alkalmas anyagból csak a legjobb homokos kavics anyagokkal -2%(20%) eltérés megengedésével tartható csak be, kellő méréstechnikai biztonsággal. A földmű felső 1,0m alsó 0,5m részében - mivel itt a kiváló földműanyag alkalmazása nem előírás - reménytelen tartósan teljesíteni a Trd%>97% tömörségi fok követelményt, egyszerű méréstechnikai megfontolások alapján. A statikus és dinamikus alakváltozási modulusok összehasonlíthatóságában, átszámíthatóságában egyre kevésbé hiszünk, a következők miatt: - a terhelési idő jelentősen eltérő a két modellnél (18msec < > 160-300 sec) - eltérő a modellhatás (dinamikus modulus < > statikus modulus) - más anyagoknál sem azonos a dinamikus és statikus modulus (pl aszfalt) - terhelési idő alatti konszolidáció igen eltérő a két modellnél - szemeloszlási és granulometriai jellemzők hatása igen eltérő a két modellnél - dinamikus modulusok reprezentativitása eltérő - a statikus alakváltozási modulus reprezentativitásának elemzése hiányzik, nincs - a mért réteg magas telítettségénél a két modell jelentősen eltérően viselkedik - nem áll rendelkezésre két valóban összehasonlítható adathalmaz (a Poissontényező, a Boussinesq-szorzó és a terhelési szint a két mérésnél más és utólag azonosíthatatlan) A víztartalom fokozott figyelése a dinamikus méréseknél különösen indolkolt. A magas telítettség elérésekor ugyanis a telített réteg alakváltozás a 18 msec terhelési idő mérése alatt jelentősen lecsökken, azaz a valósnál magasabb teherbírás érték jelentkezik, mely természetesen NEM vehető figyelembe. Ezért a dinamikus teherbírás mérés a víztartalom mérése nélkül súlyos hibához, tévedésekhez vezethet. Összefoglalva, a részletes elemzéséből levonható általános következtetésünk, hogy a dinamikus modulus és a statikus modulus általános érvényű átszámítására való törekvést el kell vetni. A dinamikus és statikus jellemzők alapvetően eltérőek és alapvetően más műszaki követelményt támasztanak. Mind a statikus mind a dinamikus teherbírás értékeit sürgősen szabályozni szükséges, mert a statikus modulus a tartós terhek hatásainak, míg a dinamikus modulus a mozgó terhelés tartós hatásainak elviselésére kell megfelelő határértéket biztosítson. Tervezet - 7-2004. október.
Almássy K.*, Subert I.* Dinamikus teherbírási - és tömörségmérések az M7 letenyei szakaszán (II.rész) Az M70-M7 Letenyei szakaszán épülő földművön és védőrétegen összehasonlító méréseket végezhettük el a Bau-Teszt Laboratóriuma segítségével. A dinamikus méréseket a BME Út és Vasútépítési Tanszéke B&C típusú könnyűejtősúlyos tömörség- és teherbírásmérő berendezésével mértük. Vizsgálódásaink célja az volt, hogy a dinamikus modulus és a statikus modulus közötti kapcsolatot különböző szempontok alapján vizsgáljuk és elemezzük, valamint az új dinamikus tömörségmérés módszerét közelebbről tanulmányozhassuk. Vizsgálatok jellege Vizsgálatok száma Szabvány Proctor vizsgálat, dmax, wt, s 8 db MSZ 14304-7 Tárcsás teherbírás mérés, E2, E1, Tt 43 db MSZ 2509-3 Dinamikus modulusok, Ed, EdM 54 db ÚT2-2.124 Dinamikus tömörségi fok, Trd% 54 db ÚT2-2.124 Izotópos tömörségmérés, Tr %, wt,iz 54 db ÚT2-3.103 Általános megállapítások A Proctor vizsgálat jegyzőkönyveiből kitűnt, hogy a természetes víztartalom jóval az optimális alatt volt. Ez a védőréteg alacsony nedvességtartalmát általánosságban valószínűsítette. A Proctor vizsgálatok jellemzői jelentős szórást mutattak, mely rontja a vizsgálati megbízhatóságot az izotópos tömörség mérésénél is. Ha az lehetséges volt, több Proctor-mintát vontunk össze, egy görbébe. A dinamikus és statikus teherbírási modulusok összehasonlításában a d=300mm-es tárcsával és p=0,1 MPa tárcsaterheléssel közismerten gyenge, ezért jelenleg a kistárcsás dinamikus B&C berendezéssel mértünk. Ennél a tárcsa alatti terhelés p=0,35 MPa, azaz a statikushoz hasonló. Az izotópos berendezéssel a mért tömörségi fokból és a nedvességkorrekciós tényezőből számítottuk a TrE% helyszíni relatív tömörséget. Megbízhatóságának megítélésekor figyelembe kell venni, hogy a víztartalmat és a nedves sűrűséget egyszerre mérték. A dinamikus tömörségméréshez a Trw nedvességkorrekciós együtthatót a tömörítéskori állapotra kell meghatározni. Lehet, hogy a tömörítés és a mérés között jelentős száradás következett be. Ezért külön figyelemmel voltunk arra, hogy a nedvesség hatása nélküli relatív tömörséggel a mérés összhangban maradjon. A statikus teherbírás vizsgálatok és a dinamikus teherbírás vizsgálatok párhuzamosan, egymástól egy méterre, azonos időben készültek Statikus és dinamikus teherbírás összehasonlítása Az MSZ 2509-3 szerinti statikus teherbírás méréssel meghatározott teherbírási modulust és ezek arányait jellemző tömörségi tényezőt (E1, E2, Tt), valamint az ÚT 2.2-124 ÚME Tervezet - 8-2004. október.
szerinti Ed dinamikus modulust, Edv végmodulust mértük. Célunk volt az esetleges összefüggések feltárása, szorosságának megállapítása, általános, vagy eseti összefüggések igazolása. A dinamikus modulust B&C berendezéssel és mérési módszerrel határoztuk meg azért is, hogy a statikus modulusokhoz hasonló Poisson-tényező és Boussinesq szorzók eltérései ne terheljék hibaként a tervezett összehasonlítást és következtetéseinket. 4.sz. táblázat Teherbírási jellemzők statisztikai értékelése Vizsgált jellemző db Átlag Min-max Szórás Statikus alakváltozási modulus E1 (MPa), első felterhelés Statikus alakváltozási modulus E2 (MPa), második felterhelés Tömörségi tényező Tt=E2/E1 Dinamikus modulus Ed (MPa) Dinamikus végmodulus Ed vég (MPa) Dinamikus Tömöségi tényező Ttdin 43 52,2 16,0 135,0 22 43 96,7 37,0 173 28 43 1,9 1,0-3,1 0,3 54 92 17 219 39 54 114 22 240 42 54 1,5 1,0 3,1 0,4 Megállapítható volt a statikus és dinamikus modulusok összehasonlításából, hogy a statikus és dinamikus modulusok nagyságrendje egyező, a dinamikus modulusok mérési terjedelme szignifikánsan nagyobb, mint a statikus teherbírás vizsgálatnál. A statikus és dinamikus modulusok közötti átszámítás a szakirodalmi adatok szerint csak fenntartásokkal fogadható el, azonos anyagon, azonos vastagság mellett. Az egyezőség a jelenleg vizsgált halmazban áll fenn és vélhetően nem jelent általános átszámíthatóságot a statikus és dinamikus mérések között. A szélsőségeket egyedileg is megvizsgáltuk. Ed-E2 közötti összefüggések A statikus alakváltozási modulus E2 és az Ed dinamikus modulus (ÚT2-2.124) közötti összefüggés és a regresszió szorossága foka két szélső érték elhagyásával (az origón való áthaladást feltételként szabva) a szakirodalmi adatokhoz képest kiemelkedően jóra adódott. 200 E2 - Ed Összefüggése y = 8,906x 0,5238 R 2 = 0,7585 150 E2 MPa 50 0 0 50 150 200 250 Ed MPa Tervezet - 9-2004. október.
E2=0,9291*E2 R 2 =0,2413 E2=8,906*Ed 0,5238 R 2 =0,7585 R=0,871 E2=44,260*ln(Ed)-101,74 R 2 =0,7179 R=0,847 E2=0,0034Ed 2 + 1,3655Ed R 2 =0,6646 R=0,815 Edvég-E2 közötti összefüggések Lényegesen hasonlóbb a második felterheléssel a dinamikus végmodulus. Az alakváltozási modulus E2 (MSZ 2509-3) és az Edvég (ÚT2-2.124) dinamikus végmodulus közötti összefüggések és a szorossági foka a két szélsőséges eredményt elhagyva még mindig megfelelő szorosságú korrelációs együtthatót mutat. E2=0,7697*E2 R 2 =0,5000 E2=6,4738*Ed 0,5626 R 2 =0,7050 R=0,840 E2=47,583*ln(Ed)-127,94 R 2 =0,6884 R=0,830 E2= -0,0020Ed 2 + 1,0665Ed R 2 =0,6902 R=0,831 E2 - Edvég összefüggése y = 6,4738x 0,5626 R 2 = 0,705 E2 MPa 200 150 50 0 0 50 150 200 250 300 Edvég MPa Megállapítható volt, hogy a dinamikus végmodulusok és az E2 összefüggése, a regresszió szorossága valamennyi esetben hasonlóan fennállt, azaz igaznak tűnik az a feltevés, hogy az összefüggés ugyanúgy terhelt a statikus második felterhelésnek megfelelő szituáció hiányával, mint az első dinamikus mérésnél. Ezzel egyben magyarázható a nagyobb szorosság hiánya, főleg ha a két jelentősen eltérő modellhatást is figyelembe vesszük. Nem mutatkozott összefüggés az alábbi teherbírási jellemzők és paraméterek között: E2 alakváltozási modulus Tt tömörségi tényező között Tt statikus tömörségi tényező Tt dinamikus tömörségi tényező között Tr % izotópos tömörségi fok - Tt statikus tömörségi tényező között (!!!) TrE% din relatív dinamikus tömörségi fok Tt statikus tömörségi tényező között TrE% din relatív dinamikus Tt dinamikus tömörségi tényező között A dinamikus modulusra előírandó határértékeinek tekintetében tehát azt lehet ajánlani, hogy az ÚT2-2.124 szerinti B&C mérőeszközzel meghatározott teherbírási határértékek az eddig alkalmazott E2 határértékeknek 1,2-szorosa legyen. Tervezet - 10-2004. október.
E2 - Edvég átszámítások E2 számított (MPa) 220 200 180 160 140 120 80 60 40 20 0 0 20 40 60 80 120 140 160 Edvég (MPa) Lin. Edvég Hatvány Edvég p1^2/p2^2 átszámítás másodf.edvég Ln(x) Edvég Tömörségi fok összehasonlítása A tömörségi fok mellett a helyszíni relatív tömörséget és a nedvességkorrekciós tényezőt is vizsgáltuk mind az izotópos, mind a dinamikus tömörségi méréseknél. Az átlagok és terjedelem összehasonlításán túl, a megbízhatósági intervallumot is számítottuk =0,10 szignifikancia szinten. Elemeztük a dinamikus Tt és statikus Tt esetleges összefüggését, valamint az ÚT2-3.206-ban feltételezett Tr % tömörségi fok és a Tt statikus tömörségi fok összefüggését. 6 sz. táblázat Tömörségi jellemzők statisztikai értékelése Vizsgált jellemző db Átlag Min-max Szórás Megbízhatósági intervallum Tömörségi fok izotópos 45 97,2 91,2 99,9 1,8 97,2 +/- 3,0 Tömörségi fok dinamikus 47 91,1 82,7 97,2 3,9 91,1 +/- 6,4 Relatív töm.fok izotópos 45 101,0 91,7 108,7 3,2 101,0 +/- 5,2 Relatív töm.fok dinamikus 47 94,8 84,7 99,5 3,1 94,8 +/- 5,1 Tömörségi fokok összehasonlítása Az adott adathalmazon az eltérés a két mérési módszer átlagértékei között első pillantásra nagyra 6,1 Trg% tömörségi fokra adódott. Az izotópos tömörségi fok azonban nem tűnik a többihez hasonló statisztikai halmaznak, mert szórása igen nagy. A két eltérő modellhatású mérési módszer megbízhatósági intervalluma a 94,2-97,5 Trd% között átfedi egymást, egyébként az izotópos mérés magasabb értékeket, míg a dinamikus tömörségi fok Tervezet - 11-2004. október.
alacsonyabb (és mondjuk ki, reálisabb) értékeket mutat. A két tömörségmérési adathalmaz várható értékének azonossága =0,1 szignifikancia-szinten elfogadható volt. A relatív tömörségek elemzésénél kitűnik az izotópos mérésben előbb megjelenő hiba oka, ugyanis a relatív tömörség többször is jóval % feletti lett. A dinamikus tömörségi fok szimpatikusabb terjedelmet mutat a relatív tömörségben. Az izotópos tömörségi fokkal való jelentős eltérés okát keresve, az eseteket egyedileg is megvizsgáltuk. Megállapításunk szerint valamennyi esetben magyarázható volt a mérési eredmény és a dinamikus tömörségi fok elfogadhatósága jobbnak tűnt. A két tömörségi fok összefüggését ábrázolva jellemző sörétfoltot kapunk, mely a véletlenszerű összefüggést igazolja. Pontosabb elemzéseink is ezt igazolták, azaz a két mérés azonossága az igen eltérő szórás miatt csak a várható értékkel mutatható ki. Megállapítható volt a tömörségi fokok összehasonlításából, hogy a dinamikus tömörségi fok megbízhatósága, pontossága kedvezőbb, mint az izotópos mérésekből számított, mely a szakirodalmi adatokkal is egyező. 5. ábra Tömörségek összefüggése Relatív töm örségi fokok öf Tömörségi fokok öf TrEiz% ÚT2-3.103 98 96 94 92 Trg% ÚT2-3.103 98 96 94 92 90 70 72 74 76 78 80 82 84 86 88 90 92 TrE% ÚT2-2.124 94 96 98 90 70 72 74 76 78 80 82 84 86 88 90 Trd% ÚT2-2.124 92 94 96 98 Szélsőségek eseti vizsgálata Szélsőségek eseti elemzésére egy példát mutatunk be, melyet valamennyi esetre elvégeztünk. A 0+750 kmsz-ben a 38.sz. mérésnél például a dinamikus relatív tömörség TrE%=85,9 igen alacsony. A Trw nedvességkorrekciós tényező a wt=2,2% viztartalom és a wopt=6,7% nagy eltérése miatt 0,963, emiatt a Trd%=82,7%. Az Ed=59 MPa, Edvég=240 MPa, az azonos helyen mért statikus alakváltozási modulus E2=71, E1=33 MPa, Tt=2,2. Az izotópos tömörségi fok Tr %=97,8%. Ha az izotópos relatív tömörségi foknál átlagban megállapított (6-7)%-ot figyelembe vennénk (kb Tr %=90%), akkor is nagy marad az eltérés a két tömörségi fok között. A mért izotópos tömörségi fok nem illik az általános megítélésbe, ezért újra ellenőriztük a dinamikus tömörségmérés során regisztrált alakváltozási görbét, mely nagy deformációt, komoly tömörödést mutat. Nem a víztartalom tehát az alacsony tömörségi fok oka. A TrE% értéke a helyes megítélésünk szerint és Tr % a hibás. Erre utal a végmodulus és a dinamikus modulus jelentős eltérése (240/59=4), a tömörödési görbe alakja és a magas Tt érték is. Tervezet - 12-2004. október.
Süllyedési amplitudók No 38 No 42 No 45 No 52 No 72 s (mm*) 700 600 500 400 300 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ejtések száma Nem mutatkozott összefüggés: Tr % izotópos tömörségi fok - Trd% dinamikus tömörségi fokok között egyedenként TrE%iz izotópos tömörségi fok - TrE%din relatív dinamikus tömörségi fokok között Tt statikus Tt dinamikus tömörségi tényezők között Tr % izotópos tömörségi fok- Tt statikus tömörségi tényező között (!) TrE% dinamikus relatív tömörségi fok Tt statikus tömörségi tényező között TrE% dinamikus relatív tömörségi fok Tt dinamikus tömörségi tényező között Megállapítható volt, hogy az izotópos mérések mintegy 5-7%-os véletlenszerű mérési hibát tartalmaznak. Ez jól látszik abból, hogy a TrE% relatív tömörségre akár 108,7% is adódhat, ami nem elfogadható érték. A nedvességkorrekciós tényezők hatása a tömörségi fokra jelentős, mely a Proctor-vizsgálatok viselkedését tekintve indokolt is. Meglepő azonban a tekintetben, hogy az izotópos mérések alatt elszoktunk a nedvességtartalom ilyen célú figyelésétől. Nedvességkorrekciós együtthatók elemzése, értékelése Megállapítottuk, hogy a nedvességkorrekciós tényezők hatása a tömörségi fokra közepesen jelentős volt, mely a Proctor-vizsgálatok viselkedését tekintve indokolt is. Meglepő azonban a tekintetben, hogy az izotópos mérések miatt elszoktunk a nedvességtartalom ilyen célú figyelésétől, pedig a nedvességkorrekciós tényező hatása mind a tömörségre, mind a teherbírásra jelentős. Indokolt ezek alapján a szemcsés anyagok és földműanyagok nedvességtartalmának fokozottabb figyelemmel kísérése a bányabeli jövesztés szállítás - beépítés teljes folyamatában. Az alkalmassági vizsgálatnak fontos és kellően dokumentált része kellene legyen a nedvességkorrekciós tényező táblázata, mert az nem csak a dinamikus tömörségmérésnél, hanem attól függetlenül is használható, jellemző paramétere a bedolgozási feltételeknek. Az alkalmassági vizsgálatnak része kellene legyen továbbá a beépítési víztartalom határok megadása az adott anyagra, a telítettség víztartalomtól függő megadása, a wl% és az S=0,8-0,9-1,0 telítési vonal, valamint a s hézagnélküli anyagsűrűség korrekt mérésével, a mérési eredményének figyelembevételével. Tervezet - 13-2004. október.