1. gyakorlat (pótolva: október 17.) feladatai

Hasonló dokumentumok
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

= Φ B(t = t) Φ B (t = 0) t

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

Mágneses mező jellemzése

Mágneses mező jellemzése

Időben állandó mágneses mező jellemzése

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Fizika 1 Elektrodinamika beugró/kis kérdések

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

1. ábra. 24B-19 feladat

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Elektrotechnika. Ballagi Áron

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

Q 1 D Q 2 (D x) 2 (1.1)

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

MÁGNESES TÉR, INDUKCIÓ

Pótlap nem használható!

3.1. ábra ábra

1. fejezet. Gyakorlat C-41

Fizika A2 Alapkérdések

Elektromágnesség tesztek

Az elektromágneses indukció jelensége

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

Tömegpontok mozgása egyenes mentén, hajítások

Fizika A2 Alapkérdések

MÁGNESESSÉG. Türmer Kata

Vezetők elektrosztatikus térben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

FIZIKA II. Az áram és a mágneses tér kapcsolata

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

FIZIKA II. Az áram és a mágneses tér kapcsolata

1. Feladatok a dinamika tárgyköréből

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

W = F s A munka származtatott, előjeles skalármennyiség.

Az aszinkron és a szinkron gépek külső mágnesének vasmagja, -amelyik általában az

Fizika minta feladatsor

Az Ampère-Maxwell-féle gerjesztési törvény

Mechanika. Kinematika

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

Mágneses szuszceptibilitás mérése

Mit nevezünk nehézségi erőnek?

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

Elektromos alapjelenségek

Munka, energia Munkatétel, a mechanikai energia megmaradása

Bevezető fizika (VBK) zh2 tesztkérdések

A II. kategória Fizika OKTV mérési feladatainak megoldása

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Newton törvények, lendület, sűrűség

1. Elektromos alapjelenségek

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

A mechanikai alaptörvények ismerete

Elektrosztatika Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektromágnesség tesztek

Modern Fizika Labor. 2. Elemi töltés meghatározása

Fizika 1 Elektrodinamika belépő kérdések

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

Az elektromágneses tér energiája

Folyadékok és gázok mechanikája

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Kifejtendő kérdések június 13. Gyakorló feladatok

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Elektromos ellenállás, az áram hatásai, teljesítmény

Komplex természettudomány 3.

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Fizika 2 - Gyakorló feladatok

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

A mágneses szuszceptibilitás vizsgálata

LY) (1) párhuzamosan, (2) párhuzamosan

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Mérések állítható hajlásszögű lejtőn

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Mágneses indukcióvektor begyakorló házi feladatok

FIZIKA ZÁRÓVIZSGA 2015

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

PÉLDÁK ERŐTÖRVÉNYEKRE

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Elektromos áramerősség

Newton törvények, erők

Elektrosztatikai alapismeretek

Vektorok és koordinátageometria

7. Mágneses szuszceptibilitás mérése

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

Theory hungarian (Hungary)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Átírás:

1. gyakorlat (pótolva: 2012. október 17.) feladatai 30A-5 Mágneses erőtérben mozgó töltött részecskére erő hat, ami merőleges mind a részecske mozgásirányára, mind a mágneses erőteret jellemző B indukcióvektorra. Megfelelő elrendezés (= a kérdéses vektorok páronként merőlegesek egymásra) esetén az erő nagysága. Körpályán haladó pontszerű részecskére hat a centripetális erő, amelynek nagysága. Itt m a részecske tömege, v a sebessége, R pedig a körpálya sugara. Mágneses térben haladó részecske esetén a centripetális erőt a mágneses erőtér részecskére ható ereje szolgáltatja: egyszerűsítsünk, és rendezzünk át v-re, a részecske sebességére: Ezzel tehát megkapható a részecske sebessége. Esetünkben [a kiszámításhoz szükséges minden adat vagy a feladatból ismert (B, R), vagy a honlapra feltöltött képletgyűjtemény első oldalán, az Állandók című részben található meg (q, m)] Egy részecske kinetikus energiája megkapható a tömege és a sebessége ismeretében, az alábbi képlettel: Esetünkben Ezt elektronvoltba (ev) kell átszámolnunk. Az elektronvolt (szub)atomi részecskék esetén használt energiaegység. 1 ev egyenlő azzal az energiával, amekkora mozgási energiára egy 1 V feszültségű elektromos térben egy elektron gyorsulás útján szert tud tenni. Ez az energia egyenlő az elektron töltésnek [megtalálható a képletes lap Állandók részében], és az 1 V feszültségnek a szorzatával: Ennek ismeretében a proton energiája: 30B-14 Tekintsük ezt a 3 dimenziós derékszögű koordinátarendszert! Legyen a felfelé irány az y- tengely pozitív iránya, a lefelé irány az y-tengely negatív iránya. Keletet azonosítsuk a pozitív x iránnyal. Ekkor a z tengely negatív fele az északi irány. Tehát a vektor a z felé mutat, az vektor pedig y felé. A feladatban használt elektron +x irányba halad. [A jobb megértéshez szerintem érdemes kinyomtatni a lapot, és belerajzolni ezeket, meg az ez utáni erőket is.] A mágneses tér által a mozgó részecskére ható erő az előző feladat alapján. Az erő iránya merőleges mind a haladó részecske, mind az erőtér irányára. Az erőirány a jobbkéz-szabállyal szemléltethető. Ha a jobb kezünk (és szigorúan a jobb kezünk!) hüvelykujját a haladó részecske haladási irányába fordítjuk, a mutatóujjunkat pedig a 1

mágneses térerősség vektorának irányába (az előző irányra merőlegesen), akkor a mágneses tér által a részecskére ható erőt a kinyújtott középső ujjunk ( ) iránya fogja jelezni (mindkét előző irányra merőlegesen). Figyeljünk arra, hogy ezzel a módszerrel a pozitív töltésű részecskékre ható erő iránya határozható meg! A negatív töltésű részecskék esetén (most az elektron ilyen) az erőhatás éppen ellentétes irányú. Ha a hüvelykujjunkat a +x irányba, mutatóujjunkat pedig a z irányba nyújtjuk, látjuk, hogy a pozitív részecskékre ható F erővektor a +y irányba, azaz felfelé mutat. Emiatt az elektronra lefelé, a -y irányba irányuló erő hat. Az elektromos tér esetén a helyzet sokkal egyszerűbb. A pozitív töltésekre ható erő vektorának iránya pont megegyezik az vektor irányával, tehát lefelé, -y irányba mutat. Az erő nagysága pedig arányos a töltés nagyságával:. Az elektronra ható erő ismét ellentétes irányú, tehát a +y irányba mutat. A gravitációs erő nyilván lefelé, -y irányba mutat, a részecske töltésétől függetlenül. Nagysága Ha kiszámoljuk az egyes erők nagyságát, az következőt kapjuk [minden szükséges adat vagy a feladatban, vagy a képletgyűjteményben szerepel]., -y irányba, +y irányba, -y irányba 2 megfigyelés: - A gravitációs erő 12-13 nagyságrenddel kisebb a másik két erőnél, tehát gyakorlatilag elhanyagolható. - A felfelé mutató elektromos erő kb 5x nagyobb a lefelé mutató mágneses erőnél, az eredő erő tehát felfelé fog mutatni. 30B-12 Még mielőtt belefognánk bármelyik részfeladatba, írjuk fel a részecske (elektron!) kinetikus energiáját: A feladatban adott, pedig a képletek között szerepel. Ezért, ha átrendezünk, a sebességet ki tudjuk fejezni kizárólag ismert mennyiségek függvényeként: majd gyökvonással: Vigyázzunk, hogy csak SI mértékegységeket helyettesítsünk be! Ehhez még a fenti képletbe való helyettesítés előtt váltsuk át az elektron energiáját kev-ből Joule-ba! Most pedig a részfeladatok: 2

a) Vegyük elő a 30A-5-ben már szerepelt összefüggést a mágneses tér által kifejtett erő, és a centripetális erő között: Egyszerűsítsünk, rendezzünk át a pályasugárra, és helyettesítsük be az ismert adatokat: b) A sugár ismeretében tudjuk a kör kerületét, és az energiából ismerjük a sebességet. A periódusidő éppen egy kör megtételéhez szükséges idő, azaz c) A frekvencia bármilyen periodikus jelenség jellemzője. Gondoljuk el, hogy a periódusidő a mozgás, vagy bármilyen jelenség egyszeri végbemenéséhez szükséges idő (nyilván körmozgás esetén ez az 1 kör megtételéhez szükséges idő). A frekvencia esetén pedig nem azt nézzük, hogy egy darab jelenség mennyi idő alatt megy véghez, hanem hogy egységnyi idő alatt hány darab jelenség megy véghez. Ebből könnyen érthető, hogy a frekvencia éppen a periódusidő reciproka: Ha ezt behelyettesítjük a periódusidő fenti képletébe, azt kapjuk, hogy Átrendezéssel kifejezhetjük a körmozgást végző test sebességét a frekvenciája függvényében: A ciklotron-frekvencia egy a körpályán lévő részecskék mozgását jellemző frekvencia. Képlete, ahol B a mágneses tér erőssége, q a részecske töltése, m pedig a tömege. Induljunk ki az erőkre vonatkozó, már többször használt összefüggésből, és próbáljuk visszakapni a ciklotron-frekvencia definícióját: Írjuk be a helyére a fentebb kapott, frekvenciával kapcsolatos összefüggést: Egyszerűsítsünk, És rendezzünk át a frekvenciára: Pontosan visszakaptuk tehát a ciklotron-frekvenciát úgy, hogy a periódusidőből számított frekvenciát használtuk fel. 3

30B-15 Ez a feladat szinte pontosan ugyanolyan, mint a 30B-14. Legelőször határozzuk meg a 750 ev energiájú elektron sebességét [előtte váltsunk át Joule-ba!]: A +x irányba haladó elektronra a +y irányba mutató mágneses térben a jobbkéz-szabály értelmében +z irányú erő fog hatni. Ebből rögtön tudjuk, hogy az E térerősség vektorának az ellentétes, -z irányba kell mutatnia. A térerősség nagyságát abból kaphatjuk meg, hogy ahhoz, hogy a pálya egyenes maradjon, az elektronra ható elektromos és mágneses erőknek ki kell egyenlíteniük egymást. Ez ellentétes irányt, és azonos abszolútértéket jelent: Egyszerűsítés után, majd az ismert adatokat behelyettesítve: 30A-16 Először válaszoljuk arra a kérdésre, hogy melyik a telep pozitív pólusa! A telepre és a huzalra lefelé mutató gravitációs erő hat. Ezt nyilván csak a vezető mágneses térben lévő részére ható mágneses erő tudja ellensúlyozni. Az áramjárta vezetőre ható erő iránya ugyanolyan jobbkéz-szabállyal határozható meg, mint a töltött részecskére ható erő iránya: Az erőre vonatkozó képlet ebben az esetben, ahol I a vezetőben folyó áram erőssége, a vezető mágneses térbe eső részének hossza, B pedig a mágneses térerősség. A lefelé mutató gravitációs erő ellensúlyozásához felfelé mutató mágneses erőre van szükség. A B vektor iránya a lapba befelé mutat. Ahhoz, hogy az erő felfelé mutasson ilyen mágneses tér mellett, az áramot jellemző vektornak a lapon jobbra kell mutatnia. A hurokban tehát balról jobbra folyik az áram. Ennek az a feltétele, hogy a telep bal oldali pólusa negatív, jobb oldali pólusa pozitív legyen. Ahhoz, hogy a mérleg nullát mutasson, a gravitációs és mágneses erőnek éppen ki kell egyenlítenie egymást. Mivel a lényeges vektorok kölcsönösen merőlegesek egymásra, ezért a mágneses erő nagyságára írható, hogy. Tehát Fejezzük ki az áramot a feszültség és az ellenállás hányadosaként, majd írjuk ezt be az egyenletbe: 4

Rendezzünk át az ellenállásra, és helyettesítsünk be: 30A-24 A Hall-effektus során mágneses térbe helyezett, áramjárta elektromos vezető oldalai között feszültség jelenik meg. A mágneses tér olyan erőhatást gyakorol a vezető protonjaira és elektronjaira, amely azokat a vezető különböző oldalai felé mozgatja. A töltésszétválasztódás következtében elektromos tér alakul ki, amely az egyes töltésekre éppen ellentétes irányú erővel hat, mint teszi azt a mágneses mező, ezzel korlátozva (de nem teljesen megszüntetve) a szétválasztódást. Végeredményben valamilyen egyensúlyi, szétválasztott töltésű állapot alakul ki. A szétválasztott töltések miatt kialakuló elektromos térben potenciálkülönbség áll elő, ezt hívjuk Hall-feszültségnek. A Hall-feszültség nagyságát leíró képletet megtaláljuk a Hudson-Nelson könyv 720. oldalán (és a gyakorlat képletgyűjteményében): ahol B a mágneses térerősség, I a vezető árama, n a töltéshordozók sűrűsége, e az elemi töltés, b a vezető vastagsága (a feladatban ez a 0,1 mm vékonyság, a 4 cm szélesség pedig csak megtévesztésként van megadva, nem kell felhasználni). A Hall-effektus fenti képletéből a feladatban, vagy képletgyűjteményben az n töltéshordozósűrűség kivételével mindent megtalálunk. A töltéshordozó-sűrűséget megkaphatjuk, ha ismerjük az ezüstatomok sűrűségét, és tudjuk, hogy egy atom hány töltéshordozóval vesz részt az áramvezetésben (ezt megadja a feladat kiírása: eggyel). Egy ismert sűrűségű és moláris tömegű anyag atomsűrűségét [azaz a térfogategységre eső atomszámot] a következő képlet adja meg: A képletben az anyag sűrűsége [g/cm 3 ], M az anyag moláris tömege [g/mol], pedig az Avogadro-szám [1/mol]. Ennek értéke szerepel az képletgyűjtemény állandói között. A képletbe a zárójelben jelzett mértékegységekkel megadott adatokat behelyettesítve a következő eredményt kapjuk n-re: A köbcentiméterenkénti atomszám elterjedt mértékegysége az atomsűrűségnek, a további számolásokhoz azonban váltsuk át ezt a számot SI-mértékegységbe, azaz 1/m 3 -be: Mivel tudjuk, hogy atomonként egy elektron vesz részt a vezetésben, ezért ismerjük a töltéshordozók sűrűségét is: 5

Ekkor pedig minden adatot ismerünk a Hall-feszültség kiszámításához. Az ismert adatokat behelyettesítve: 31A-13 Ismert menetszámú, hosszú, és ismert erősségű árammal átjárt (vasmag nélküli!) szolenoid belsejében a mágneses tér nagysága a következő képlettel kapható: A képletben szereplő a vákuum a mágneses permeabilitása. Értéke megtalálható az állandók között a képletes lapon. A mágneses fluxust mindig egy felületre vonatkozóan adhatjuk meg, a következő integrállal: A fluxus tehát a térerősség felületen vett integrálja. Speciális esetben, amikor a felület minden pontjára igaz, hogy az adott ponthoz tartozó felületi normálvektor, és a B térerősségvektor párhuzamos (azaz akkor, amikor a mágneses térerősség minden pontban merőleges a felületre), az integrál egyszerű szorzatként írható fel: A szolenoid belsejében olyan homogén mágneses tér alakul ki, hogy ott ezt megtehetjük. a) A mágneses fluxus a tekercs belsejében tehát megkapható a B indukció és az A felület ismeretében. Fejezzük ki a szolenoid felületét az átmérőjével. Majd helyettesítsünk be: A mágneses indukció mértékegysége a weber, másképpen. b) Ennek a részfeladatnak a megoldásához egyszerűen rendezzük át a mágneses indukció szolenoidra vonatkozó képletét: 31B-16 Használjuk az Ampère-törvényt! Az előző heti [okt. 10.] gyakorlaton már előkerült a kiegészített Ampère-törvény, itt elég a fapados Ampère-törvény, amiben nem szerepel az eltolási áramot leíró tag. Az általunk használandó alak a következőképpen néz ki: A törvény azt írja le, hogy egy zárt felület határa mentén a mágneses térerősség vonalmenti integrálja egyenlő a felületet átdöfő áramvezetők áramának előjeles összegével. A feladatban szereplő zárt felület egy mágnes két pólusa között található, olyan térrészben, amelyet egyetlen áramvezető sem döf át. Ezért az integrál jobb oldala nulla: 6

Szedjük tagokra a bal oldali integrált! Ehhez bontsuk fel a mágnes két pólusa között felvett felület határát az ábrán jelölt módon 4 részre. A 4 rész közül az (1)-gyel és (3)-mal jelölt szakaszokon a skalárszorzat a szakasz minden pontjában nulla lesz, mert minden pontban merőleges egymásra a mágneses térerősség vektora, és a szakasz irányába eső vektor. Ekkor az a helyzet áll elő, hogy a egyenlet teljesüléséhez a (4) és (2) jelű szakaszok integráljának összege kell, hogy 0 legyen. Tegyük fel, hogy a (2) szakaszon a mágneses térerősség minden pontban 0, azaz a mágneses erőtér a mágnesek végeinél hirtelen véget ér. Ekkor ellentmondásra jutunk, hiszen a (4) szakasz minden pontjában párhuzamos egymással a és a vektor, és így az erre a szakaszra eső részintegrál nem 0. Egy nulla értékű, és egy nem nulla értékű integrál összege pedig nem lehet nulla, pedig mi ezt szeretnénk. Az ellentmondás feloldása az, hogy a (4) szakasz pontjaiban valóban nem 0 a mágneses tér. A kinyúlás milyenségéről ebből a feladatból nem lehet következtetni, csak arra, hogy a mágnesek szélénél nem csökken hirtelen nullára az indukcióvektor nagysága. 32B-5 A hurokban a mágneses fluxus megváltozása hatására feszültség indukálódik, ami miatt aztán áram is fog folyni. Az indukció jelenségét a Faraday-törvény írja le, amelyik kapcsolatot teremt a mágneses mező időbeli változásának nagysága, és az ez által a változás által létrehozott elektromos mező térerőssége között. A Faraday-törvény a következő: A törvény szerint egy tetszőlegesen felvett felület határa mentén kiszámolva, az elektromos térerősség vonalmenti integrálját, eredményül a felületre számolt mágneses fluxus időbeli megváltozását kapjuk. A képlet mínusz-előjele azt jelzi, hogy a mágneses fluxus és az elektromos térerősség nagysága mindig ellentétes irányban változik. Ha a fluxus csökken, az elektromos tér nő, és fordítva. Ha ez nem így lenne, az azt jelentené, hogy valahol a térben kicsit megnövelve a mágneses térerősséget, tetszőleges mennyiségű energiát állíthatnánk elő, mivel a mágneses térerősség növekedése megnövelné az elektromos térerősséget, amely a kiegészített Ampère-törvény értelmében tovább növelné a mágneses térerősséget. Ez a pozitív visszacsatolás pedig a végtelenségig lehetővé tenné a mágneses, azon keresztül pedig az elektromos tér erősségének, egyúttal a bennük tárolt energiának a növekedését. Ilyen nincs, ez a semmiből való energiatermelés lenne. A Faraday-törvény következtében változó fluxusú mágneses mezőben lévő körvezetőben feszültség indukálódik: együtt. [N a vezető menetszáma, ha a vezető esetleg tekercs. A mi esetünkben a vezető egy egyszerű hurok, azaz egy egymenetes tekercs.] Egy zárt hurokban ez nyilván áram folyásával jár 7

a) A változó mágneses fluxus által indukált elektromos tér irányáról az úgynevezett balkéz-szabály ad információt. Eszerint, ha az ember a mágneses indukcióvektor VÁLTOZÁSÁNAK (tehát nem feltétlenül az aktuális irányának! növekedés esetén a változás iránya megegyezik az aktuális iránnyal, csökkenés esetén a változás ellentétes az aktuális iránnyal) irányába mutat a bal keze hüvelykujjával, a bal keze többi ujját pedig begörbíti, a létrejövő elektromos mező irányultsága a begörbített ujjak irányultságát fogja követni. A feladatban érdekes helyzet áll elő, mert az képlettel számolható mágneses fluxus ugyan megváltozik (csökken), de éppen nem a B indukcióvektor, hanem az A felület változásán keresztül. Ha azonban a felület lenne változatlan, és a B indukcióvektor változna meg, úgy, hogy a fluxusváltozás összességében ugyanakkora legyen, akkor az indukcióvektor változása a lap síkjából kifelé mutatna (mivel az indukcióvektor alapból a lap síkjába befelé mutat, csökkenés esetén pedig a változás éppen ezzel ellentétes lenne). Kifelé mutató db esetén pedig a balkéz-szabály értelmében az óramutató járásával megegyező irányú áram folyik a keretben. A keretben folyó áram irányát más meggondolással is megállapíthatjuk. A feladat szerint be fog állni egy olyan állapot, amelyben a hurok gyorsulás nélkül fog mozogni. Annak, hogy a bármilyen test ne gyorsuljon (ebbe beletartozik az az eset is, hogy nyugalomban marad, és az az eset is, hogy az aktuális sebességével folytatja a mozgását) az szükséges, hogy a testre ható erők kiegyenlítsék egymást. A hurokra, mint testre az esés kezdetekor egyedül a gravitációs erő hat, ami nyilván lefelé mutat. Ahhoz, hogy a rá ható erők kiegyenlítsék egymást, olyan mágneses erőhatásnak kell érnie a hurkot, hogy az semlegesítse a gravitációs erő hatását. Mágneses erőhatás a hurokban folyó áramra fog hatni. Az áram irányának ezek szerint olyannak kell lennie, hogy a feladatban ábrázolt befelé mutató mágneses térben olyan erő érje, hogy az felfelé, vagyis a gravitációs erővel ellentétes irányba mutasson. A huroknak csak három oldalára fog hatni mágneses erő, mégpedig azokra, amelyek mágneses téren belül találhatóak. A bal és jobb oldalára ható erők azonban ki fogják egymást egyenlíteni (és egyébként is, bal-jobb irányúak lesznek). A felső oldalra ható erő lesz ezért az, amelynek ki kell egyenlítenie a gravitációs erőt. A 30A- 16 feladatban leírt jobbkéz-szabályt használva kitalálható, hogy ehhez a felső oldali vezetékben az áramnak jobbra kell folynia. Ez pedig az egész hurkot tekintve azt jelenti, hogy abban az óramutató járásával megegyező irányú áram kell folyjon. [Szerencsére az előző gondolatmenettel is ezt kaptuk.] b) Az előző részfeladatban volt szó a gyorsulásmentes mozgás feltételéről. Ehhez az kell, hogy a hurokra ható gravitációs erőt kiegyenlítse a hurokban folyó áramra ható mágneses erő. Tehát a 30A-16-hoz hasonlóan: Ebben a feladatban írjunk az helyett a következőkben a-t, annyi ugyanis a hurok felső, erőhatásért felelős részének hossza. Illetve ugyanúgy, mint a 30A-16-ban, írjuk be az áram helyett a feszültség és ellenállás hányadosát: 8

Ami ebben a feladatban máshogy alakul, az az indukált feszültség nagysága. Ehhez használjuk fel az egyszer már felírt törvényt: A menetszámról tudjuk, hogy, a fluxus megváltozásáról pedig tudjuk, hogy azt a hurok belsejébe eső, mágneses erővonalakkal átdöfött felület csökkenése okozza, nem pedig a B vektor megváltozása. Fejezzük ki a felületet a két oldalhossz szorzatával, és vegyük észre, hogy ezek közül csak a b oldal hossza változik: A hányados pedig éppen a hurok v esési sebessége: Így tehát az indukált feszültség amit ha beírunk az erőhatások egyenlőségét leíró egyenletbe: majd ebből kifejezzük a v-t: Ez pedig pont az a feltétel, ami a feladatban is szerepelt. Gíber-Sólyom 137 A feladatban a Biot-Savart törvény alkalmazását lehet gyakorolni, de talán túl bonyolultan ahhoz, hogy érdemes lenne ezt teljesen kifejteni. [Illetve nem hiszem hogy még egyszer annyit tudnék írni, mint az előző feladatban, bocsánat mindenkitől. Ha valakit komolyabban érdekel a megoldás, szívesen elmondom személyesen, valamelyik gyak előtt, vagy után.] A Biot-Savart törvény fentebb látható. Lényege, hogy megadja egy I áram által átjárt elektromos vezető differenciálisan kis darabja által létrehozott mágneses mező indukcióvektorának nagyságát, a vezetőtől r távolságban. Tetszőleges alakú és kiterjedésű áramjárta vezető mágneses hatásra megmondható bármelyik pontban úgy, hogy a vezető differenciálisan kis részei által létrehozott indukcióvektorokat összegezzük ebben a bizonyos pontban. A feladatban éppen ezt kell csinálni, úgy, hogy ezt a bizonyos pontot éppen a vezetőkeret közepén vesszük fel. A vezetőt érdemes négy részre bontani, és a négy oldal hatását külön-külön vizsgálni a pontban. A feladatlapon látható megoldás-képlet egy-egy oldal hatását írja le. Úgy kapható meg, ha felírjuk a Biot-Savart törvényt a vezetőkeret egyes oldalainak minden egyes pontjára, majd 9

integrálunk. A, I és d tényezők szerepe érthető, a sinα tag pedig arra az ábrán látható α szögre vonatkozik, tehát arra a szögre, amit az adott oldal, és a keret megfelelő fél-átlója bezár. (Bocs a csúnya ábráért.) Gíber-Sólyom 153 Az indukált feszültségre vonatkozó képletben a mágneses fluxus időbeli deriváltja szerepel. A derivált rendkívül kicsi idő alatt történő megváltozást jelent. A feladatban az történik, hogy alatt a kezdetben értékű fluxus nullára csökken, azaz nagyságú változást szenved el. Írjuk tehát úgy a fluxus deriváltját, hogy: A kezdeti fluxust meg tudjuk mondani a képletből, miután a tekercsben olyan mágneses mező van, ahol B és da egy kiválasztott felület minden pontján párhuzamosak egymással. A B nagyságát pedig úgy számoljuk, mint bármilyen áramjárta tekercs esetén: Helyettesítsünk be az képletébe mindent, amit ismerünk: 2 Megjegyzés: - Ne felejtsetek el mindig SI mértékegységben behelyettesíteni! - A lapon szereplő megoldásban 2 hiba is van, az egyik a képlet (N 2 helyett N szerepel), a másik pedig a képletből következően a végeredmény. Gíber-Sólyom 154 A mágneses fluxus legáltalánosabb képlete A legtöbb esetben könnyítette a feladatok megoldását, hogy és egymással párhuzamosak voltak, ennél a feladatnál azonban éppen azt kell felhasználnunk, hogy a forgás során minden pillanatban különböző szöget zárnak be egymással! Tekintsük a mágneses mezőben mozgó vezetőkeret fluxusát! Nyilván időfüggő fluxust fogunk kapni. A fenti skalárszorzatban a nagysága és iránya állandó lesz (mivel állandó indukciójú mágneses térről beszélünk). Az A felület nagysága állandó lesz, iránya viszont (és ezáltal a vektorral bezárt szöge) fokozatosan változni fog. 10

A körmozgás és a harmonikus rezgőmozgás kapcsolata 1 alapján belátható, hogy az A felület normálvektorának iránya éppen úgy fog változni, hogy a fluxus nagysága éppen egy szinusz függvény szerint változzon. Azaz az időfüggő fluxusra felírható: Ahol a körmozgás körfrekvenciája, amire igaz, hogy, ahol f a forgás frekvenciája. A keretben (= egymenetes tekercs) indukált feszültség nagysága arányos lesz a fluxus időbeli deriváltjával: Lederiválva a kérdéses függvényt, majd behelyettesítve -t: Látható, hogy az indukált feszültség nagysága időben nem minden esetben ugyanakkora. Tudjuk azonban azt, hogy abban a pillanatban, vagyunk kíváncsiak az indukált feszültségre, amikor a és A bezárt szöge éppen 45, azaz: A képletben d a keret oldalhosszúságát jelöli. 1 http://hu.wikipedia.org/wiki/harmonikus_rezg%c5%91mozg%c3%a1s#az_egyenletes_k.c3.b6rmozg.c3.a1s _.C3.A9s_a_harmonikus_rezg.C5.91mozg.C3.A1s_kapcsolata 11