1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont) 3. Egy 3 lapos magyar kártyában 8 piros lap van. Mennyi a valószínűsége annak, hogy egyet kihúzva az éppen piros lesz? (5 pont) 4. Oldja meg a következő egyenletet! (1 pont) (3x 1) (5 3x) (3x )(3x ) x 5. Hány olyan háromjegyű szám van, amelyiknek minden számjegye páros?(8 pont) 6. Egy mértani sorozat első tagja 80, első három tagjának összege 140. Mennyi a sorozat második és harmadik tagja? ( pont) Megoldás: 1. cos 50 pont c c cos50 c,9 cm 4 pont. b helyes megrajzolása: hossza b-vel megegyezik, b-vel párhuzamos, iránya ellentétes. b helyes megrajzolása: hossza b-nek kétszerese, b-vel párhuzamos, egyirányúak. pont a b helyes megrajzolása: a két vektort közös kezdőpontból felmérjük, a két végpontot összekötjük, a b a kisebbítendő felé mutat. 3 pont 6 pont 1
3. Kedvező kimenetelek száma: k = 8. Összes eset száma: n = 3. A valószínűség a kedvező és az összes kimenetel számának hányadosa: k p n. pont 8 1 p = 0,5. 3 4 Megjegyzés: A százalékban megadott helyes válasz is elfogadható. 5 pont 4. (3x 1) (5 3x) (3x )(3x ) x (3x 1) 9x 6x 1 pont (5 3x) 6x pont (3x )(3x ) 9x 4 pont A fentieket behelyettesítve: 9x 6x 1 6x 9x 4 x. Rendezve, összevonva: 9 4 x. pont A megoldás: x = 5. pont Ellenőrzés: 14 ( ) = 13 1 5 16 = 16 pont 1 pont 5. I. megoldás: Ötféle páros számjegy van: 0; ; 4; 6; 8. 1. helyre a nulla kivételével bármelyik kerülhet: 4 lehetőség. pont. helyre bármelyik kerülhet: 5 lehetőség. pont 3. helyre bármelyik kerülhet: 5 lehetőség. Összesen 4 5 5 lehetőség van. A megfelelő háromjegyű számok száma 0. 8 pont
II. megoldás: Ötféle páros számjegy van: 0; ; 4; 6; 8. Komplementer módszerrel számolunk, azaz az összes lehetőségből kivonjuk a nullával kezdődő háromjegyűek számát. Az összes lehetőség száma 5 3. A nullával kezdődők száma 5. Különbségük: 5 3 5. A megfelelő háromjegyű számok száma 0. pont pont 8 pont 6. 80 a a3 140 a q a q 60, azaz 80q + 80q = 60. 1 1 4q + 4q 3 = 0 pont 4 16 48 q 8 4 8 8 1 q 1 3 q Az első esetben a sorozat második tagja 40, harmadik tagja 0. A második esetben a sorozat második tagja, harmadik tagja 180. Ellenőrzés. pont 3
. tétel 1. Definiálja tetszőleges nagyságú szög tangensét! (4 pont). Végezze el a következő műveleteket és a végeredményt normálalakban adja meg! Számológépet ne használjon! (4 pont) 8,5 4 8 3. Ábrázolja derékszögű koordinátarendszerben a valós számokon értelmezett x x függvényt! Adja meg a függvény értékkészletét, zérushelyét, és jellemezze a függvényt növekedés, illetve fogyás szempontjából! ( pont) 4. Anikó a múlt héten hétfőn, pénteken és vasárnap 3-3 órát, kedden órát, szerdán és csütörtökön 5-5 órát, szombaton 5,5 órát tanult. Hány órát tanult naponta átlagosan? Mennyi a tanulással töltött órák módusza, mediánja és terjedelme? (9 pont) 5. Adott három halmaz: A = {; 4; 6; 8} B = {egyjegyű prímszámok} C = {5-tel osztható egyjegyű pozitív egész számok} Határozza meg a következő halmazok elemeit! (9 pont) A B A C A (B \ C) 6. a) Határozza meg az x y 5 egyenletű kör középpontjának koordinátáit és sugarát! b) Számolja ki az x y 5 egyenletű kör és a x + y = egyenletű egyenes metszéspontjainak koordinátáit! (1 pont) Megoldás: 1. I. megoldás: Egy szög tangense egyenlő a szög szinuszának és koszinuszának hányadosával sin tg, pont cos ahol k, * k Z. * 4 pont 4
Megjegyzés: Ha a vizsgázó a cos α 0 feltételt megadja, de azt nem tudja megoldani, akkor a csillaggal jelölt pontból 1-et kapjon. II. megoldás: Az α szög tangense a koordinátasíkon annak a pontnak a második koordinátája, amelyet az α szöggel elforgatott i egységvektor egyenese az origó körüli egységsugarú kör (1; 0) pontjához húzott érintőből kimetsz. pont A metszéspont akkor létezik, ha k, * ahol k Z. * 4 pont Megjegyzés: Ha a vizsgázó kimondja, hogy azokra a szögekre nincs értelmezve a tg α, amikor a két egyenes párhuzamos, de az α szöget nem tudja megadni, akkor a csillaggal jelölt pontból 1-et kapjon.. 8,5 4 8 1 = 5 = 1 = = 3 1 = 4 = 1, 4 pont Megjegyzés: Kevésbé részletezett, jól elvégzett számításért is jár a 4 pont. 3. Jó grafikon. Értékkészlet: [0; [. Zérushelye: x = 0. (Szigorúan) monoton növekszik: ]0; [. (Szigorúan) monoton csökken: ] ; 0[. pont pont * * pont Megjegyzés: A vizsgázó a csillaggal jelzett pontokat abban az esetben is kapja meg, ha a zárt intervallumokat ad meg. 5
33 5 5,5 4. Átlag = = 31,5 = = 4,5 óra. Módusz: 3 óra. Medián: 5 óra. Terjedelem: 4 óra. pont* pont* pont* 9 pont Megjegyzés: Ha az utolsó három érték valamelyike hibás, de a vizsgázó a szükséges fogalommal tisztában van, akkor az egyes esetekben helyett kapjon ot. 5. B = {; 3; 5; } C = {5} A B = {; 3; 4; 5; 6; ; 8} pont A C = pont B \ C = {; 3; } pont A (B \ C) = {} 9 pont 6. I. megoldás a) A középpont koordinátái: (0; 0), a sugár 5 egység. pont b) Meg kell oldani a következő egyenletrendszert: y = x + x y 5 x y x ( x ) 5 4 x x 40x 0 5 5x 40x 5 0 6
40 1600 1500 x = = 40 x 1 = 5 és x = 3 y 1 = 0 és y = 4 Tehát a metszéspontok koordinátái: (5; 0) és (3; 4). 1 pont II. megoldás: a) A középpont koordinátái: (0; 0), a sugár 5 egység. pont b) Az x y 5 kör ábrázolása. pont A x + y = egyenes ábrázolása. pont A metszéspontok koordinátáinak leolvasása: A (3; 4) B (5; 0) Ellenőrzés behelyettesítéssel. pont pont pont 1 pont
3. tétel 1. Mit nevezünk paralelogrammának? Sorolja fel a paralelogrammának azokat a tulajdonságait, amelyek az oldalaira, a szögeire és az átlóira vonatkoznak! (6 pont). Egy hatpontú gráfban öt pont fokszámát ismerjük: 1; ; ; 3; 4. Mennyi a 6. pont fokszáma, ha tudjuk, hogy a gráfban összesen él van berajzolva? (4 pont) 3. Egy háromoldalú egyenes hasáb minden éle 6 cm. Mekkora a felszíne? (5 pont) 4. Oldja meg a következő egyenletet a valós számok halmazán! ( pont) log 3 x log 3( x ) 1 5. Egy számtani sorozat első tagja 4, harmadik tagja. Számítsa ki a sorozat 0. tagját és az első 0 tag összegét! ( pont) 6. Egy dobozban 5 piros, 1 kék és 1 sárga színű golyó van, és az azonos színűeket nem különböztetjük meg egymástól. a) Hányféleképpen lehet sorba rakni a hét golyót? (3 pont) b) Mennyi a valószínűsége annak, hogy ha egymás után három golyót kiválasztunk, azok egyforma színűek lesznek? ( pont) Megoldás: 1. A paralelogramma olyan négyszög, melynek két-két szemközti oldala párhuzamos. A paralelogramma két-két szemközti oldala egyenlő. A paralelogramma szemközti szögei egyenlők. A paralelogramma bármely két szomszédos szögének összege 180. A paralelogramma belső szögeinek összege 360. A paralelogramma átlói felezik egymást. 6 pont. él esetén a fokszámok összege 14. pont A megadott fokszámok összege 1. A 6. pont fokszáma. 4 pont 8
6 sin 60 3. Az alaplap háromszög területe: t 1 9 3 15,59 (cm ). pont Egy oldallap területe: t 6 6 36 (cm ). A hasáb felszíne: A t 3t 18 3 8 1 139, cm. 5 pont 4. Az értelmezési tartomány: ]0; [. * A logaritmus azonossága szerint: log 3 x ( x ) 1. pont Ebből következik, hogy x ( x ) 3. pont A másodfokú egyenlet: x x 3 0. 4 1 4 x pont x1 = 1, ami megoldása az eredeti egyenletnek. x = 3, ami nem eleme az értelmezési tartománynak, ezért nem megoldás. pont Megjegyzés: A csillaggal jelölt akkor is jár, ha a vizsgázó ellenőrzéssel dönti el, hogy melyik megoldás jó. 5. a 1 = 4 és a 3 = Az a n a ( n 1) d képletbe behelyettesítve: 1 = 4 + d, ebből d = 3. pont a 4 99 3 93 pont 0 Az S n a 1 a n n képletbe behelyettesítve: 4 93 S 0 0, ebből pont S0 = 14 450. pont 9
6. a) I. megoldás:!-féleképpen lehetne sorba rakni őket, ha mind különbözők lennének, de az 5 piros nem különböztethető meg egymástól,! ezért az összes lehetséges sorrend: = 5! = 4. 3 pont II. megoldás: A kék és sárga golyó elhelyezkedése egyértelműen megadja a piros golyók helyét, ezért a megfelelő sorrendek száma 6 = = 4. 3 pont b) I. megoldás: A három egyforma színű csak piros lehet. Kedvező eset akkor következik be, ha a három kihúzott piros golyót az 5 pirosból választjuk ki, ezért e lehetőségek száma 5 3. Összesen golyóból kell kiválasztani hármat, ezért az összes eset száma A valószínűség a kedvező és az összes eset hányadosa,. 3 ezért 5 3 p 3. 35 pont
II. megoldás A három egyforma színű csak piros lehet. Kedvező eset akkor következik be, ha a kék és a sárga az utolsó négy hely valamelyikén lesz, így e lehetőségek száma 4 3 = 1. Az összes eset azt jelenti, hogy a kék és a sárga bárhová kerülhet, ezért e lehetőségek száma 6 = 4. A valószínűség a kedvező és az összes eset hányadosa, ezért 1 p. 4 pont 11