A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában



Hasonló dokumentumok
QualcoDuna jártassági vizsgálatok - A évi program rövid ismertetése

Kontrol kártyák használata a laboratóriumi gyakorlatban

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

Teljesítményparaméterek az akkreditálás és a hatósági eljárás során

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Hibaterjedési elemzés (Measurement uncertainty) EURACHEM/CITAC Guide

Laboratóriumi jártassági vizsgálatok jelentősége, szervezése. Készítette:Szegény Zsigmond Jártassági Vizsgálati Osztály, osztályvezető

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

Mérési hibák

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Visszatekintés a évre és a évi program rövid ismertetése

6. Előadás. Vereb György, DE OEC BSI, október 12.

MAGYAR ÉLELMISZERKÖNYV (Codex Alimentarius Hungaricus) Hivatalos Élelmiszervizsgálati Módszergyűjtemény /16 számú előírás (1.

Méréselmélet és mérőrendszerek

Gyártástechnológia alapjai Méréstechnika rész 2011.

[Biomatematika 2] Orvosi biometria

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

A mérési eredmény megadása

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

MAGYAR ÉLELMISZERKÖNYV. Codex Alimentarius Hungaricus /78 számú előírás

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

BIOMATEMATIKA ELŐADÁS

Akkreditáció. Avagy nem minden arany, ami fénylik Tallósy Judit

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Laboratóriumok Vizsgálatainak Jártassági Rendszere MSZ EN ISO/IEC 17043:2010 szerint

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Biomatematika 2 Orvosi biometria

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

[Biomatematika 2] Orvosi biometria

KÖVETKEZTETŐ STATISZTIKA

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

A maximum likelihood becslésről

Populációbecslések és monitoring

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Kísérlettervezés alapfogalmak

Populációbecslések és monitoring

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

y ij = µ + α i + e ij

1/8. Iskolai jelentés. 10.évfolyam matematika

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

[Biomatematika 2] Orvosi biometria

Kábítószer szubsztanciavizsgálatok. EWS december 14.

Kísérlettervezés alapfogalmak

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Biostatisztika VIII. Mátyus László. 19 October

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Valószínűségszámítás összefoglaló

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Segítség az outputok értelmezéséhez

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Körvizsgálatok

Munka azonosító jele: (C1276/2016) Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft Nyírgelse, Debreceni út 1.

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során)

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Visszatekintés a évre és a évi program rövid ismertetése

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

Biometria gyakorló feladatok BsC hallgatók számára

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Normális eloszlás tesztje

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

Több valószínűségi változó együttes eloszlása, korreláció

A év tapasztalatai és a évi jártassági vizsgálati program rövid ismertetése

Bevezetés a hipotézisvizsgálatokba

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Kettőnél több csoport vizsgálata. Makara B. Gábor

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Természetes és medencés fürdővíz mikrobiológiai körvizsgálatok értékelése. Schuler Eszter, dr. Vargha Márta

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

Mérések hibája pontosság, reprodukálhatóság és torzítás

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság

2011. ÓE BGK Galla Jánosné,

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

3. Az országos mérés-értékelés eredményei, évenként feltüntetve

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2017.

Átírás:

A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában Készítette: Szegény Zsigmond Mezőgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Műszaki-technológiai Laboratórium 2012.01.18.

Általános elvek A mérés eredménye a legjobb esetben is csupán közelítésea mérendő mennyiség valódi értékének. A mérési eredmény csak akkor teljes, ha a mért érték mellett a mérés bizonytalanságát is megadjuk.

Átlag, szórás, normális eloszlás és bizonytalanság (1) Többször megismétlünk egy mérést és ezekből kiszámolható a mérések átlaga ( ) és korrigált szórása (s (q) ) Ha az ismétlések száma nagyon nagy ( pl.>100 db [kontrol kártya]), akkor igaz: Gyakoriság Ha semmit nem változtatunk és +1 ismétlést végzünk, akkor annak az eredménye 95%-os valószínűséggel az átlag (várható értékbecslése) ± 2*s intervallumba fog esni. (pontosabban ± 1.96*s) A görbe alatti összes terület 95%-a az A ± 2*s tartományban van A= : a várható érték becslése

Átlag, szórás, normális eloszlás és bizonytalanság (2) Az átlag bizonytalansága: = ( ) = 1 ( 1) ( ) Tehát ha nagyon sok mérési eredményünk van, akkor a várható, vagy valódi érték 95 %-os valószínűséggel az átlag (sok eredmény) ±2 ( ) tartományba esik. A gond az, hogy a nagyszámú mérés várható értékét és szórását, a haranggörbe természetét nem ismerjük(sokba kerül). Ezért leggyakrabban csak kis számú mérésre (<20) számolt átlag, szórás és a t-eloszlás segítségével végezzük a becslést: átlag (k mérés átlaga) ± ( ) ahol = ( ( ) ) (95 %-os szignifikanciaszinten a t értéke k=3 esetén 4,3 ; k=5 esetén 2,776; ha k= akkor 1,96)

Precizitás és helyesség Precizitás (szórással összefügg) Helyesség vagy pontosság (a valódi értéktől való távolság) Precizitás: - Helyesség: - Valódi érték Átlag eredmény Precizitás: + Helyesség: - Precizitás: - Helyesség: + Precizitás: + Helyesség: +

A mérési eredmény, a hiba és a bizonytalanság (1) A mérési hibája a mérés bizonytalansága Egy laboratórium akkor határozza meg jól a bizonytalanságát, ha az legalább akkora, mint a mérés hibája ( Ideális esetben a bizonytalanság = a hiba )

A mérési eredmények, a hibák és a bizonytalanság (2) Végtelen sok mérés sűrűségfüggvénye Gyakoriság Végtelen sok mérés átlaga Néhány mérés átlaga Néhány mérés hisztogramja Valódi érték Egyetlen mérés (y) Y Néhány mérés hibája Helyesség vagy módszeres hiba Egyetlen mérés hibája Átlagok hibájának különbsége y - U y + U Bizonytalansági tartomány : a valódi érték nagy (pl.95%) valószínűséggel beleesik

Mérési bizonytalanság A mérések természetes velejárója Mérési folyamat során a végzett műveletek mindegyikének elemi bizonytalansága van. Ezek egymásra rakódása következtében alakul ki a mérés teljes bizonytalansága A mérési bizonytalanság a mért érték körüli tartomány.a mérendő paraméter valódi értéke azon belül nagy valószínűséggel megtalálható

A mérési bizonytalanság forrásai Mintavétel (mennyire reprezentatív) Tárolási körülmények (stabilitás) Minta előkészítés (homogenitás) Készülékek állapota Reagensek tisztasága A mérés környezeti körülményei Minta effektusok (zavaró hatások) Számítástechnikai effektusok (pl. integráció) Operátortól függő hatások Véletlenszerű effektusok

Miért kell a mérési bizonytalanságot használni? (1) 1. A méréseink megbízhatóságát tudjuk igazolni. (Pl. CRM minta mérése) C LAB ±U LAB : a labor eredménye (C LAB ) a bizonytalansággal (U LAB ) C CRM ±U CRM : a CRM minta tanúsított értéke (C CRM ) a bizonytalansággal (U CRM ) Ha akkor a laboratórium jól mér, mert az eredmények különbsége kisebb mint az un. kombinált bizonytalanság. 2. Lehetővé teszi a különböző laboratóriumokból származó, eredmények összehasonlítását: Követelmény: C LAB1 C 2 1 2 2 1 + 2 (Kérdés, hogy legalább az egyik labor eredménye mennyire van a valódi érték közelében? Ezt valamilyen módon igazolni kell. [CRM mérés vagy körvizsgálat])

Miért kell a mérési bizonytalanságot használni? (2) 3. Megalapozott döntéseket lehet hozni, hogy az illető paraméter koncentrációja biztosan túllépi-e a megadott határértéket, vagy egy adott intervallumon biztosan belül van-e 4. A mérési bizonytalanság összetevőinek átfogó értékelése rámutat a vizsgálati módszer esetleges kritikus pontjaira, amelyekre nagyobb figyelmet kell fordítani. 5. Meghatározását az ISO/IEC 17025 nemzetközi szabvány előírja minden akkreditált laboratóriumnál: 5.4.6.2. A vizsgálólaboratóriumoknak legyenek olyan eljárásaik, amelyek alkalmasak a mérési bizonytalanság becslésére, és ezeket az eljárásokat alkalmazniuk kell.

A mérési bizonytalanság becslésének módszerei I. Szigorú matematikai módszer: számba vesszük a részbizonytalanságokat és becsüljük az eredő bizonytalanságot (halszálka diagram) Mintavétel Térfogat mérés Analitikai jelképzés és jelértelmezés Bizonytalanság Előkészítés Tömeg mérés II. Meglévő minőségbiztosítási adatok (gyűjtött, ill. a kombinált bizonytalanságok) alapján történő meghatározás ( fekete doboz elve ) Bizonytalanság III. Kombinált módszer (a fenti két módszer együttes alkalmazása)

I. Szigorú matematikai módszer (1) START Mérendő paraméter, a módszer és a végeredmény számolás definiálása Független bizonytalanságforrások azonosítása (A- vagy B-típusú bizonytalanság) Az elemi standard bizonytalanságok kiszámítása Az eredő, kombinált standard bizonytalanság kiszámítása A kiterjesztett bizonytalanság meghatározása (95%-os szignifikancia szint mellett) és DOKUMENTÁLÁSA STOP

I. Szigorú matematikai módszer (2) ISO iránymutatás a mérési bizonytalanság kifejezésére (ISO Guide to the Expression of Uncertainty Measurement)(GUM) alapján A bizonytalanság értékelés típusai: A-típusúbizonytalanság értékelés: a mért értékek bizonytalanságának statisztikai módszerekkel történő becslése El kell végezni minden korrekciót azért, hogy torzítás ne legyen: q i = korrigált mérési eredmény (a módszeres hibát kiiktatjuk) Átlag: Korrigált szórás: A standard bizonytalanság (középérték szórása, a számtani közép bizonytalansága):

I. Szigorú matematikai módszer (3) B-típusúbizonytalanság értékelés: egyedileg mért vagy becsült értékek bizonytalanságának nem-statisztikaimódszerekkel végzett értékelése (hozott anyag)» a kalibrálási bizonyítványból vett adatok;» a gyártói specifikációk;» a kézikönyvekből vett referenciaadatok bizonytalanságai;» korábbi mérések adatai;» eszközök viselkedésére és tulajdonságaira vonatkozó tapasztalatok és általános ismeretek (digitális mérleg, büretta) Lehetőségek: 1. A rendelkezésre álló adatot és tartományt 95%-os szignifikanciaszinthez tartozó konfidencia intervallumként adták meg (pl. a certifikáltérték 50.0 ±aμg/l), ekkor az adat feltehetőleg normális eloszlású: Ekkor a megadott bizonytalanság fele tekinthető standard bizonytalanságnak(mert az un. kiterjesztett bizonytalanságot adták meg): =

I. Szigorú matematikai módszer (4) 2. Ha a változó egyenletes eloszlású, akkor az egyenletes eloszlás standard bizonytalansága a félszélesség osztva 3-mal. (digitális mérleg). Amikor az eloszlást nem ismerjük, gyakran folytonosnak tekintjük azt. Ebben az esetben a standard bizonytalanság: 3. Háromszög (Simpson) eloszlás esetében (amikor a szélső értékek valószínűsége nagyon kicsi) az osztó értéke 6. (Pl. mérőlombik jelzésig való feltöltése) A standard bizonytalanság:

I. Szigorú matematikai módszer (5) A mérés egyenlete (a mérés matematikai modellje): Y= G(X 1, X 2.., X M ) Bemeneti mennyiségek : X 1, X 2.., X M ; eloszlásaik (valószínűségi sűrűségfüggvények): pdf 1, pdf 2,.. pdf M Y a mérendő mennyiség eloszlása: F Y vagy pdf(y) Kiterjesztett (eredő) bizonytalanság: U, az Y eloszlásból. A legvalószínűbb érték körüli tartomány, ahol a görbe alatti terület 95%-a a teljes görbe alatti területnek. *Ha nem tekinthetők függetlennek X 1, X 2,, X M -ek, akkor együttes eloszlás-/ sűrűségfüggvényt kell alkalmazni.

I. Szigorú matematikai módszer (6) A kombinált bizonytalanság meghatározása: Ha a mérési egyenletcsak összeadásokat és kivonásokat tartalmaz (y=x 1 +x 2 +x 3 -x 4.), akkor a kombinált bizonytalanság a bizonytalanságok négyzetösszegének a négyzetgyöke (pl. büretta leolvasás titráláskor): Ha a mérési egyenlet szorzásokat és osztásokat tartalmaz (y=x 1 x 2 x 3 /x 4.), akkor a kombinált bizonytalanság a relatív bizonytalanságoknégyzet összegének a négyzetgyöke (a legtöbb mérési eredményünk így számolódik):

I. Szigorú matematikai módszer (7) A kiterjesztett bizonytalanság meghatározása: Az eredmény megadásának helyes módja: Y = y±u U= k u comb (y) Ahol y: a mérési eredmények átlaga U : a kiterjesztett bizonytalanság k : a kiterjesztési tényező k= 2, akkor 95 %-os szignifikancia szint (ez a leggyakoribb) k= 3, akkor 99 %-os szignifikancia szint Programozható,ezért lehet programokat venni, vagy a laboratórium maga is készíthet számolótáblát a bizonytalanság becslésére. Példa: a Mg eredmény formája a kiterjesztetett bizonytalanság megadásával a következő módon történik (u comb (y) =0,75): c Mg = 23,5 ±1,5 mg/l (k=2 ; 95%) => a valódi érték 95 %-os valószínűséggel 22 és 25 mg/l közé esik.

II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (1) 1. Szabványokban leírt bizonytalansági adatok (bizonytalanság, reprodukálhatósági adatok, körvizsgálati eredmények) Ha a labor bizonyítja, hogy alkalmas a szabvány végrehajtására, használhatja ezeket a bizonytalansági értékeket, vagy ezekből az adatokból számolt bizonytalanságokat

II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (2) 2.Sok ismétlésből számolt eredmények, a laboratórium saját módszereinek validálásasorán keletkező adatok (ismételhetőség, [reprodukálhatóság]) használhatók a bizonytalansági intervallum megállapításához : Ahol c: a koncentráció c ±k*rsd R * c RSD R : a reprodukálhatóság relatív korrigált szórása k: kiterjesztési tényező

II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (3) 3. Körvizsgálati eredmények : A jártassági körvizsgálatok (JV) szervezői vagy számolják, vagy előírásokból veszik a maximálisan megengedhető hibát. A labor jól szerepel a körvizsgálatban, ha lx lab Āl 2*s (3*s). ahol x lab : labor eredménye, Ā: a hozzárendelt érték, s: a JV célszórása Ha egy megengedett eltérést (Δ ) írnak elő, akkor a jó szereplés feltétele lx i Āl Δ. A laboratórium bizonytalanságának értékelése : Sok résztvevő esetén az eredmények átlagának (hozzárendelt érték) standard bizonytalansága : u (x) = ahol n: a résztvevők száma : az illető komponens eredményinek szórása Az átlag (hozzárendelt érték) kiterjesztett bizonytalansága: U (x) =2* u (x) A labor x lab eredményének kiterjesztett bizonytalanságára U lab otadott meg Kiszámoljuk az E n számot, amely fontos teljesítményjellemző : Elvárás a labor felé: E n 1 HA EZ IGAZ, AKKOR A LABORATÓRIUM JÓL BECSÜLI A KITERJESZTETT BIZONYTALANSÁGÁT Ha a labor nem tudja x lab eredményéhez tartozó kiterjesztett bizonytalanságot (U lab ), akkor E n = 1 esetre a labor kiszámolhatja, hogy mekkora az U lab minimális értéke az adott körvizsgálatban. mg/kg 35,0 30,0 25,0 20,0 15,0 10,0 5,0 0,0 2 3 4 5 6 8 9 10 11 12 13 14 15 16 18 19 Laborkód / Lab. code = ( )

II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (4) 4. Szakértői becslések: A Horwitz-egyenletekből becsülhetjük a mérések szórását (s), standard bizonytalanságát. Ha ezt 2-vel szorozzuk a kiterjesztett bizonytalanságot kapjuk. Ez jellemző az adott koncentrációra (szilárd minták előkészítése, majd mérése). A koncentrációtól függően a std. bizonytalanságra (becsült szórásra) három egyenlet: Ha Ā <120 ppb, akkor s= 0,22(Ā*ta) /ta= 0,22Ā (ebben a tartományban RSD=22,0 R% ) Ha 120 ppb<= Ā <=13,8%, akkor s= 0,02 (Ā*ta) 0,8495 /ta (RSD=22,0.2,7 R%) Ha Ā >13,8%, akkor s= 0,01 (Ā*ta) 0,5 /ta (ha 90 %-ig vizsgálunk, akkorrsd=2,7 1,0 R%) (ta: dimenzió nélküli tömegarány, pl. ha a mértékegység ppmakkor 10-6, ha % akkor10-2 )

II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (5) 5. Kontrol kártya adatok: > 20 db mérés estén az ismételhetőség kiterjesztett bizonytalansága az adott koncentrációnál: U= 2*s 53 Klorid (névleges konc. 50 mg/liter) mg/liter 52 51 50 49 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (6) 6. Hiteles anyagminta használatával: a mérés visszavezethetősége és a bizonytalanság becslése is megoldható és az esetleges módszeres hiba is benne van a becslési intervallumban C LAB ±U LAB C CRM ±U CRM C C akkor + Tehát a labor által mért középérték kiterjesztett bizonytalansága legalább U LAB

III. A bizonytalanság becslése kombinált Példa: módszerrel Szulfát meghatározás ionkromatográfiásan Kontrol kártyánkon a szulfát mérés relatív bizonytalansága (szórása) u kk =3,8 % (átlag= 5,0 mg/l) A mintában 100,0 mg/l szulfátot mértünk Mivel a kontrol minta koncentrációja távol esik a mérendő koncentrációtól, ezért hígítás szükséges. A hígítás relatív bizonytalansága u hig = 1% u comb = (u kk2 + u hig2 ) = (3,8 2 + 1 2 )= 3,9 %, tehát u comb = 3,9 mg/l a 100 mg/l szulfátra U kiterjesztett = k u comb = 2 3,9 mg/l = 7,8 mg/l Tehát a szulfát tartalom: 100,0 ±7,8 mg/l (k=2; 95%)

Mikrobiológiai vizsgálatok bizonytalansága (1) (G108---A2LA (American Association for Laboratory Accreditation)) Az értékelésnél a telepszámok (CFU) logaritmusát kell venni, mert ez normális eloszlású 1. Becslés a reprodukálhatósági vizsgálatokból: A reprodukálhatóság relatív standard deviációja: = (lg ) 2 /2 lg a i és lg b i : az az i-edik mérési adatpár telepszám eredményeinek logaritmusa M: lg a i és lg b i eredmények nagy átlaga n: az adatpárok száma c telepszámnál a kiterjesztett mérési bizonytalanság intervalluma: lg c ±k*rsd R *lg c ahol k: a kiterjesztési tényező (k=2) Telepszámra átszámolva: 10 (lg c -k*rsdr*lg c) 10 (lg c +k*rsdr*lg c) CFU amely a c telepszámot tekintve aszimmetrikus.

Mikrobiológiai vizsgálatok bizonytalansága (2) Mikrobiológiai vizsgálatok bizonytalanságának meghatározása reprodukálhatósági vizsgálatokból A reprodukálhatóság relatív standard deviációja: = (lg 2 /2 Labor Minta sorszám 1.ismétlés (ai) CFU/g 2.ismétlés (bi) CFU/g lg ai lg bi Különbség (lg ai-lg bi) Különbség 2 (lg ai-lg bi) 2 A 1 131 142 2,1173 2,1523-0,0350 0,00123 B 2 69 90 1,8388 1,9542-0,1154 0,01332 A 3 45 76 1,6532 1,8808-0,2276 0,05180 B 4 40 55 1,6021 1,7404-0,1383 0,01913 A 5 31 20 1,4914 1,3010 0,1903 0,03623 B 6 33 40 1,5185 1,6021-0,0835 0,00698 A 7 31 62 1,4914 1,7924-0,3010 0,09062 B 8 37 50 1,5682 1,6990-0,1308 0,01710 A 9 186 167 2,2695 2,2227 0,0468 0,00219 B 10 218 258 2,3385 2,4116-0,0732 0,00535 A 11 200 243 2,3010 2,3856-0,0846 0,00715 B 12 39 54 1,5911 1,7324-0,1413 0,01997 A 13 217 180 2,3365 2,2553 0,0812 0,00659 B 14 119 133 2,0755 2,1239-0,0483 0,00233 A 15 28 46 1,4472 1,6628-0,2156 0,04648 B 16 106 112 2,0253 2,0492-0,0239 0,00057 A 17 107 89 2,0294 1,9494 0,0800 0,00640 B 18 45 62 1,6532 1,7924-0,1392 0,01937 A 19 98 128 1,9912 2,1072-0,1160 0,01345 B 20 240 220 2,3802 2,3424 0,0378 0,00143 Nagy átlag (M): 1,9219 Mérések száma (2*n): 40 s 2 =szum(különbség 2 )/2n: 0,00919 gyök(s 2 ) 0,0959 RSD (s/m): 0,0499 2*RSD 0,0998 Kiterjesztett mérési bizonytalanság intervalluma: MU=lg c ± k*rsd R *lg c c= 150 CFU/g k= 2 lg c = 2,1761 k*rsdr*lg c = 0,2171 lg c - k*rsdr*lg c = 1,9590 Amely megfelel 10 (lg c - k*rsdr*lg c ) = lg c + k*rsdr*lg c = 2,3932 Amely megfelel 10 (lg c + k*rsdr*lg c ) = 90,986 CFU/g 247,290 CFU/g Tehát a 150 CFU/g kiterjesztett mérési bizonytalanság intervalluma: 91 -- 247 CFU/g CFU/g CFU/g Bizonytalansági intervallum Bizonytalansá 300,000 gi intervallum 250,000 150,000 200,000 100,000 50,000 150,000 0,000 100,000 50,000 012 Sorozat ok1 Mikrobiológiai mérés 0,000 0 1 2 Mikrobiológiai mérés

Mikrobiológiai vizsgálatok bizonytalansága (3) 2. Becslés a visszanyerési vizsgálatokból (nagyobb koncentráció tartomány): a) % rec=(lg b i / lg a i )*100 ahol: lg b i : visszanyert CFU (mátrixban) lg a i : beoltott CFU (mátrix nélkül) b) Kiszámoljuk a % rec nekastandard deviációját (%recsd) c) c telepszámnál a kiterjesztett mérési bizonytalanság intervalluma: lg c ±k*[(% recsd)/100]*lg c ahol: a [(% recsd)/100] a visszanyerési arány SD-je; k: kiterjesztési tényező d) Tízes hatványra emelve a bizonytalansági intervallum: 10 (lg c -k*[(% recsd)/100]*lg c)...10 (lg c + k*[(% recsd)/100]*lg c)

Mikrobiológiai vizsgálatok bizonytalansága (4) Mikrobiológiai vizsgálatok bizonytalanságának meghatározása visszanyerési vizsgálatokból Visszanyerési %= (lg b i / lg a i )*100 Minta sorszám Nagy koncentráció tartományban vizsgáljuk a visszanyerést Beoltott (mátrix nélkül) (ai) CFU/g Visszanyert (mátrixban) (bi) CFU/g lg ai lg bi A lg értékek %-os visszanyerése (lg bi / lg ai)*100 Visszanyerési arány 1 30000 20000 4,4771 4,3010 96,1 0,961 2 17000 12000 4,2304 4,0792 96,4 0,964 3 36000 49000 4,5563 4,6902 102,9 1,029 4 150 90 2,1761 1,9542 89,8 0,898 5 2400 1300 3,3802 3,1139 92,1 0,921 6 43000 32000 4,6335 4,5051 97,2 0,972 7 100 98 2,0000 1,9912 99,6 0,996 8 42000 31000 4,6232 4,4914 97,1 0,971 9 19000 12000 4,2788 4,0792 95,3 0,953 10 100 120 2,0000 2,0792 104,0 1,040 11 580000 410000 5,7634 5,6128 97,4 0,974 12 2500 2000 3,3979 3,3010 97,1 0,971 13 1100 930 3,0414 2,9685 97,6 0,976 14 18000 12000 4,2553 4,0792 95,9 0,959 15 2000 1900 3,3010 3,2788 99,3 0,993 16 1700 2100 3,2304 3,3222 102,8 1,028 17 2100 1700 3,3222 3,2304 97,2 0,972 18 150 100 2,1761 2,0000 91,9 0,919 19 2000 1600 3,3010 3,2041 97,1 0,971 20 150 110 2,1761 2,0414 93,8 0,938 21 Visszanyerési arány lg értékek %-os visszanyerésének átlaga (M): 97,0 % 0,970 A %-os visszanyerés SD (% rec SD): 3,6 % 0,0361 %-os visszanerés kiterjesztett bizonytalanság (k=2) 2*(% rec SD): 7,2 % 0,072 Visszanyerési arány kit. bizonytalansága (k=2) 2*(% rec SD)/100): 0,072 Kiterjesztett mérési bizonytalanság intervalluma: MU=lg c ± k*[(% rec SD)/100]*lg c c= 150 CFU/g k= 2 lg c = 2,1761 k*[(% rec SD)/100] * lg c = 0,1570 lg c - k*[(% rec SD)/100]*lg c= 2,0191 Amely megfelel 10 (lg c - k*[(% rec SD)/100]*lg c) = 104,5 CFU/g lg c + k*[(% rec SD)/100]*lg c= 2,3331 Amely megfelel 10 (lg c + k*[(% rec SD)/100]*lg c) = 215,3 CFU/g Tehát a 150 CFU/g kiterjesztett mérési bizonytalanság intervalluma: 104 --- 215 CFU/g CFU/g Bizonytalansági intarvallum 250,000 200,000 150,000 100,000 50,000 0,000 0 1 2 Mikrobiológiai mérés

Összefoglalás (1) A laboratóriumi gyakorlatban - különösen ha az akkreditált - nagyon sok adat létezik, amelyek segítségével különösebb erőfeszítés nélkül becsülhetjük a vizsgálataink bizonytalanságait (kombinált bizonytalanságok): Szabványokban szereplő bizonytalanságok Validálásiadataink (ha vannak házi módszereink, akkor reprodukálhatósági és visszanyerési eredmények születtek) Körvizsgálati adatok Kontrol kártyáink adatai Szakértői becslések (Horwitz) CRM minta mérési eredménye Ha szükség van a bizonytalanságok saját becslésére, akkor fel kell mérnünk a független bizonytalanság forrásokat és meg kell határoznunk azt, hogy statisztikai módszerekkel leírható A- típusú bizonytalanságokkal, vagy statisztikai módszerekkel nem számolható B- típusú bizonytalanságokkal van-e dolgunk. Ezek figyelembevételével ki kell számolnunk az elemi standard bizonytalanságokat.

Összefoglalás (2) Az elemi standard bizonytalanságokból a kombinált bizonytalanságot határozzuk meg, amelynek számolása attól függ, hogy a mérés végeredményét hogyan számoljuk (összeadással és kivonással, vagy szorzással és osztással). A kombinált bizonytalanság ismeretében az un. kiterjesztési tényezővel való szorzás után kapjuk az un. kiterjesztett bizonytalanságot.a kiterjesztési tényező értéke leggyakrabban 2, amely azt mutatja, hogy a valódi érték 95 %-os valószínűséggel megtalálható a mérési eredményünk ±kiterjesztett bizonytalanság tartományában. --------- A mérési bizonytalanság koncentráció függő Néhány Minőségirányítási Kézikönyvben csak egy ±értéket adnak meg, ami nem helyes, mert koncentráció tartományokra kellene szerepeltetni a kiterjesztett bizonytalanság értékeket.

Fontos a józan ész! Gyakran több módszer alkalmazásával célszerű a becsléstvégezni és ha nincs nagy eltérés az eredmények között, akkor feltehetően jól határoztuk meg a mérésünk bizonytalanságát

Köszönöm a megtisztelő figyelmet! Kérdések?????