0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN



Hasonló dokumentumok
I. Egységtörtek. Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér.

közti kapcsolatok, Ellenőrzés, Játék 21. modul

MATEMATIKAI KOMPETENCIATERÜLET A

Vizsgálódás a szorzótáblákban Összefüggések keresése, indoklása

Matematika A 1. évfolyam. páros, páratlan. 22. modul. Készítették: Szabóné Vajna Kinga Harzáné Kälbli Éva Molnár Éva

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

148 feladat ) + ( > ) ( ) =?

Matematika tanmenet/4. osztály

A TANTÁRGYTÖMBÖSÍTETT OKTATÁS BEVEZETÉSÉNEK KIDOLGOZÁSA

6. évfolyam MATEMATIKA

MÛVELETEK TIZEDES TÖRTEKKEL

egyesítés, egyik rész szöveges feladatok

Szorzás, egyenlő részekre osztás 10-zel, 5-tel

ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul

KOVÁCS BÉLA, MATEMATIKA I.

Feladatok, játékok; Valószínűségi megfigyelések; Ellenőrzés, hiányok pótlása

Add meg az összeadásban szereplő számok elnevezéseit!

ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ ÖSSZEADÁSOK, TÖBBSZÖRÖZÉSEK. 37. modul

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

összeadás, kivonás 9-ig

Nyitott mondatok Bennfoglalás maradékkal

FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA. 5. modul

Tájékozódás egyenesen; a negatív szám fogalmának előkészítése irányított mennyiségekhez kapcsolva (út, hőmérséklet, idő)

Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika

Kétszemélyes négyes sor játék

Matematikai és matematikai statisztikai alapismeretek

Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály

A két csapatra osztás leggyakoribb megvalósításai: Lyukas teli (vagy sima vagy nem lyukas)

MATEMATIKA évfolyam

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

MATEMATIKA KOMPETENCIATERÜLET A

VALÓSZÍNŰSÉGI JÁTÉKOK. 44. modul

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

VI.7. RÁCSODÁLKOZÁS. A feladatsor jellemzői

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád

MATEMATIKA ÉVFOLYAM

ÍRÁSBELI KIVONÁS. 31. modul. Készítette: KONRÁD ÁGNES

Hossó Aranka Márta. Matematika. pontozófüzet. a speciális szakiskola osztálya számára összeállított. Felmérő feladatokhoz. Novitas Kft.

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május 7. MINISZTÉRIUMA május 7. 8:00 EMBERI ERFORRÁSOK

TÖRTSZÁMOK, MÉRÉSEK. 34. modul

4. modul Poliéderek felszíne, térfogata

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ OKTÓBER osztály

szka102_34 É N É S A V I L Á G Készítette: Ádám Ferencné (Szabó Anna Kornélia) SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2.

Kőszegi Irén MATEMATIKA. 9. évfolyam

TARTALOMJEGYZÉK ELŐSZÓ GONDOLKOZZ ÉS SZÁMOLJ! HOZZÁRENDELÉS, FÜGGVÉNY... 69

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

A szabályok ismerete nélkül játszanak.

Matematikaóra-tervezet

Tanári kézikönyv az Informatika az 1. és 2. évfolyam számára című munkafüzetekhez és a PC Peti oktatóprogramokhoz TANMENETJAVASLAT 2.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

TARTALOMJEGYZÉK Asztalos, Kárpitos, Faipari technikus... 2 Mechatronikai technikus... 3 Automatikai technikus... 4 Magasépítő technikus... 5 Ács...

Valószínűségszámítás feladatgyűjtemény

Lerakó 7. modul készítette: köves GaBrIeLLa

MATEMATIKA 6. Megoldások

Kombinatorika az általános iskolában Ábrahám Gábor, Szeged

Tanmenetjavaslat Matematika 3. évfolyam Készítette: Csekné Szabó Katalin, 2015

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

Tanmenetjavaslat 5. osztály

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i )

Eötvös Loránd Tudományegyetem Tanító- és Óvóképző Kar. Útmutató a szakdolgozat szerkesztéséhez

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap május 29.

0622. MODUL EGÉSZ SZÁMOK. Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA C 8. évfolyam 10. modul ÁTLAGOS?

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Mozaik Kiadó Szeged, 2013

Komplex számok szeptember Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek

MATEMATIKA 6. MUNKAFÜZET Megoldások

2. témakör: Számhalmazok

Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból

1996. évi CXIII. törvény. a lakástakarékpénztárakról. A törvény hatálya. Fogalmak

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

Játék 2-4 építőmester számára 10 éves kortól

Árvainé Libor Ildikó Murátiné Szél Edit. Tanítói kézikönyv. tanmenetjavaslattal. Sokszínû matematika. 4

OBJEKTUMORIENTÁLT TERVEZÉS ESETTANULMÁNYOK. 2.1 A feladat

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA C 9. évfolyam

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28.) NGM rendelet által módosítva) szakmai és vizsgakövetelménye alapján.

MATEMATIKA C 6. évfolyam 3. modul LERAKÓS, TOLOGATÓS JÁTÉKOK

Tájékozódás számvonalon, számtáblázatokon

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

7. évfolyam I. félév, 2. feladatsor 1/6

27/2005. (XII. 6.) KvVM rendelet. a használt és szennyvizek kibocsátásának ellenőrzésére vonatkozó részletes szabályokról. A rendelet hatálya

több időt ad a tanulónak: pl. egy hét. A tanár ezeket is minden esetben ellenőrzi.

Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!

MATEMATIKA A és B variáció

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.

A CIKLONOK SZEMLÉLETES TANÍTÁSA KÖZÉPISKOLÁBAN THE SUGGESTIVE TEACHING OF THE CYCLONES IN A SECONDARY SCHOOL

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

1. A testek csoportosítása: gúla, kúp

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória

Átírás:

06. MODUL TÖRTEK Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai Törtek szorzása és osztása törttel. 7 óra 6. osztály. osztályos törtek témakör Számlálás, számolás: Műveletek a pozitív és negatív törtek körében. Mennyiségi következtetés: Mennyiségek törtrészének számítása. Műveleti tulajdonságok megfigyelése. Szövegesfeladat-megoldás, problémamegoldás, metakogníció: Valós életből vett problémák megoldása, szöveges feladatok megoldása, ellenőrzés. Rendszerezés, kombinativitás: Több megoldás keresése, lehetséges megoldások száma. Számok felírása sokféle alakban. Adott feltételek mellett az összes megoldás keresése. Deduktív következtetés, induktív következtetés: Műveletek kiterjesztése a negatív törtek körére és analógiák keresése.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató AJÁNLÁS: Egyéni munka, csoport munka, kooperatív módszerek vegyes használata. A csoport munkák során a tanulók többnyire négyes csoportokban dolgoznak, de fontos, hogy egyéni feladattal is kipróbálhassák magukat. Nagyon fontos a csoportokon belül kialakuló vita, a gondolkodás szabadsága, a másik véleményének figyelembe vétele, egymás tisztelete, a játékok során a játékszabályok betartása. Az egyén szerepe fontosságának megtapasztalása a közösségben. A tanulói tapasztalatcsere hangsúlyozása mellett ugyanilyen fontosnak kell lennie a frontális tanári munkának, amelynek során a tanulók megerősítést kapnak a továbbhaladásuk szempontjából legfontosabb ismeretekben, tisztázódnak a meg nem értett anyagrészek. TÁMOGATÓ RENDSZER: Feladatlapok, feladatgyűjtemény, torta modell, színes rúdkészlet, törtkártyák, számkártyák, számegyenes. ÉRTÉKELÉS: Az eddig tanultak ellenőrzésére ellenőrző feladatlap kitöltését ajánljuk. Megfigyelés módszerét is ajánljuk, az egyéni és csoport-munkák során. Fontos az egyéni- és csoporteredmények szóbeli értékelése, a hiányosságok pótlására, hibák javíttatására is kiterjedően. Egyéni- és csoporteredmények pozitív értékelése. Ösztönözzünk arra, hogy a tanulók egymás munkáját is értékeljék, megbecsüljék.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULVÁZLAT Lépések, tevékenységek Kiemelt készségek, képességek Eszközök, Feladatok I. Törtek összehasonlítása. Ellenőrző feladatlap kitöltése Induktív, deduktív következtetés, számolás, alkalmazás. Ellenőrző feladatlap. Gyakorló feladatlap megoldása (. Különböző számlálójú és különböző nevezőjű törtek összehasonlítása.. Szöveges feladat megoldása problémafelvetéssel.) Induktív, deduktív következtetés, kombinatív gondolkodás, számolás, alkalmazás.. feladatlap II. Tört szorzása egész számmal, egész szám szorzása törttel, tört szorzása törttel. Pozitív tört szorzása, osztása pozitív egésszel Számolás, alkalmazás.. feladatlap. Ráhangolás: fős csoportok kialakítása Deduktív, induktív következtetés, alkalmazás. Számkártyák (. tanári melléklet). Kerekasztal Induktív, deduktív következtetés, kombinatív gondolkodás, számolás, alkalmazás.. Feladatküldés Induktív, deduktív következtetés, kombinatív gondolkodás, számolás, alkalmazás.. Tört szorzása törttel bevezetés Számolás, alkalmazás.. feladatlap 6. Problémafelvetés Induktív, deduktív következtetés. Területmodell 7. Az ellenőrző feladatlap javításának megbeszélése Induktív, deduktív következtetés, számolás, alkalmazás. Ellenőrző feladatlap

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató III. Tört szorzása törttel. Szorzat meghatározása színes rúdkészlet és területmodell segítségével Induktív, deduktív következtetés. Színes rúdkészlet, területmodell. Dominó játék Számolás, alkalmazás. Dominó kártyák (. tanári melléklet). Gyakorló feladatlap kitöltése Számolás, alkalmazás.. feladatlap IV. Reciprok fogalmának bevezetése. Dominó játék Számolás, alkalmazás. Dominó kártyák (. tanári melléklet.). Szorzat előállítása számkártyák segítségével. Egészek előállítása szorzat eredményeként Induktív, deduktív következtetés, kombinatív gondolkodás, számolás, alkalmazás. Számkártyák (06. modul. tanári melléklet,. tanári melléklet). Törtek előállítása szorzat alakban; reciprok Kombinatív gondolkodás, számolás, alkalmazás.. feladatlap fogalmának megsejtetése. Mondd a reciprokát! Induktív, deduktív következtetés, kombinatív gondolkodás. V. Tört osztása egész számmal és tört osztása törttel. Ismétlés: Tört osztása egész számmal Számolás, alkalmazás. Számkártyák (. tanári melléklet). Csoportverseny: Szétszorzás Kombinatív gondolkodás, számolás, alkalmazás.. Tört osztása törttel Induktív, deduktív következtetés, kombinatív gondolkodás.. Gyakorló feladatlap kitöltése Induktív, deduktív következtetés, kombinatív gondolkodás, számolás, alkalmazás. 6. feladatlap

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6 VI. Szorzat változásai, hányados változásai. Dobálózzunk a korongokkal! Induktív, deduktív következtetés, kombinatív gondolkodás. Korongok.. Szorzat és hányados változásainak vizsgálata Induktív, deduktív következtetés, kombinatív gondolkodás, Számkártyák (06. számkártyák segítségével számolás, alkalmazás. modul. tanári melléklet,. TOTÓ Logikus gondolkodás, kombinatív gondolkodás, számolás, alkalmazás.. tanári melléklet) 7. feladatlap VII. Törtek törttel való szorzásának és osztásának elmélyítése. Nyitott mondatok megoldása Logikus gondolkodás, kombinatív gondolkodás, számolás, 6. tanári melléklet alkalmazás.. Szöveges feladatok megoldása Logikus gondolkodás, kombinatív gondolkodás, számolás, alkalmazás. 8. feladatlap 7. tanári melléklet. Gyakorló feladatlap kitöltése Számolás, alkalmazás. 8. feladatlap

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 7 A FELDOLGOZÁS MENETE I. Törtek összehasonlítása. Ellenőrző feladatlap kitöltése Az eddig tanultak ellenőrzésére A és B csoport részére ellenőrző feladatlappal. Az ellenőrző feladatlap kitöltése nem kötelező, abban az esetben ajánljuk, ha a tanár fel szeretné mérni, hogy a tanulók közül ki hol tart a témakör megértésében.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 8 FELMÉRŐ A CSOPORT Név: Műveletek törtekkel, 6. évfolyam. Mindegyik rajz -et jelent. Mennyit ér a kiszínezett rész?....... Milyen tört számokat jelölnek a betűk az alábbi számegyenesen? a = b = c = d = e =. Végezd el a következő műveleteket! a) + 7 = 9 6 b) + = 8 7 c) = 6. Írd át a következő törteket tizedes tört alakba! 7 = 7 8 =. Egészítsd ki az alábbi nyitott mondatokat! a) + = b) + = 8 8 6. A háromszög oldalai dm, 7 dm és 0, m. Mekkora a háromszög kerülete?

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 9 FELMÉRŐ B CSOPORT Név: Műveletek törtekkel, 6. évfolyam. Mindegyik rajz -et jelent. Mennyit ér a kiszínezett rész?....... Milyen tört számokat jelölnek a betűk az alábbi számegyenesen? a = b = c = d = e =. Végezd el a következő műveleteket! a) + = b) + = 6 7 c) = 0. Írd át a következő törteket tizedes tört alakba! 7 = 8 =. Egészítsd ki az alábbi nyitott mondatokat! a) + = b) + = 6 6 6. A háromszög oldalai 7 dm, dm és 0, m. Mekkora a háromszög kerülete?

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 0 FELMÉRŐ A CSOPORT (MEGOLDÁS) Műveletek törtekkel, 6. évfolyam. Mindegyik rajz -et jelent. Mennyit ér a kiszínezett rész? 8. Milyen tört számokat jelölnek a betűk az alábbi számegyenesen? a = 6 b = c = d = e = 7. Végezd el a következő műveleteket! 7 0 a) + = + = = 9 6 8 8 8 8 7 b) + = + = 8 8 8 8 7 6 6 c) = = = = = 6. Írd át a következő törteket tizedes tört alakba! 7 = 0,87 7 8 = 0,87. Egészítsd ki az alábbi nyitott mondatokat! a) + = b) + = 8 8 6. A háromszög oldalai dm, 7 dm és 0, m. Mekkora a háromszög kerülete? K = a + b + c c = 0, m = dm 7 0 9 9 K = + + = + + = = =,9 (dm) 0 0 0 0 0

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató FELMÉRŐ B CSOPORT (MEGOLDÁS) Műveletek törtekkel, 6. évfolyam. Mindegyik rajz -et jelent. Mennyit ér a kiszínezett rész? 8 = 6. Milyen tört számokat jelölnek a betűk az alábbi számegyenesen? a = b = c = d = e = 6. Végezd el a következő műveleteket! 8 a) + = + = = 0 b) + = + = 6 6 6 6 7 9 c) = = = = 0 0 0 0 0 0 0. Írd át a következő törteket tizedes tört alakba! 7 = 0,87 8 =,7. Egészítsd ki az alábbi nyitott mondatokat! a) 7 + = b) 6 6 + = 6. A háromszög oldalai 7 dm, dm és 0, m. Mekkora a háromszög kerülete? K = a + b + c c = 0, m = dm 7 0 89 9 K = + + = + + = = 8 = 8,9 (dm) 0 0 0 0 0

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. Gyakorló feladatlap megoldása. FELADATLAP. Állítsd növekvő sorrendbe a következő törteket! a) ; ; b) ; ; 8 c) 9 ; 7 ; 8 < < < < 8 8 7 < < 9. Panni hétvégén kirándulni ment. Az I. túra 0 km-es volt a II. km-es volt a III. túra 6 km-es volt. Uzsonna előtt az I. túrán az út részét a II. túrán az út részét a III. túrán az út 8 részét tette meg. Melyik kiránduláson tette meg az aznapi út nagyobb részét uzsonna előtt? Melyik kiránduláson tette meg a legtöbb utat uzsonna előtt? I. túrán 6 km-t, a II. túrán 8 km-t, a III. túrán 0 km-t tett meg uzsonna előtt. A III. túrán tette meg a legtöbb utat, bár a II. túrán tette meg az aznapi út legnagyobb részét. II. Tört szorzása egész számmal, egész szám szorzása törttel, tört szorzása törttel. Pozitív tört szorzása, osztása pozitív egésszel A következő feladatokat közösen oldjuk meg és beszéljük meg a tanulókkal.. FELADATLAP. a) Mennyi az egész része? Színezd a szakasz részét! Megoldás:

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató b) Mennyi a egész része? Színezd a szakasz részét! Megoldás: + = = 6 c) Mennyi a egész része? Színezd a szakasz részét! Megoldás: + + = = 9. Pótold a hiányzó számokat! a) b) 0 8 : : c) d) 8 9 8 7 0 7 : :. Ráhangolás: fős csoportok kialakítása A tanár kioszt minden tanulónak egy-egy törtkártyát (. tanári melléklet), melyen ugyanannak a törtnek szerepel kéttényezős szorzatalakja többféleképpen. Feladat: Az azonos eredményű kártyák tulajdonosai megkeresik egymást, ezzel fős csoportokat alakítanak ki.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. tanári melléklet Lásd a modul végén és az eszközei közt! Megoldás: Az azonos sorban lévők egyenlőek.. Kerekasztal Minden csoportnak mondunk egy törtet. A csoport felírja a törtet egy papírra és kiteszik az asztal közepére. Feladat: A tanulóknak szorzat alakban kell felírniuk a törtet (egy tört és egy természetes szám szorzataként) a papírlap körbeadásával. Mindenki felír egy műveletet és adja tovább a következőnek. Ezt több körön keresztül is megismételhetik. Például: 6 6 = = 6 = = = =... 7 7 7 7 7 Az a csoport győz, aki a legtöbb szorzatot előállítja helyesen.. Feladatküldés Minden csoport kitalál egy törtet és átadja egy másik csoportnak. A feladat hasonló, mint a kerekasztal során volt. A csoportok közösen megpróbálják a kapott törtet minél többféle képen szorzat alakban felírni. A feladatot nehezíthetjük azzal, hogy megszabunk egy időkeretet, például percet adunk a feladat megoldására. Az eredményeket az osztály vagy a feladatot küldő csoport ellenőrzi. Az a csoport győz, aki a legtöbb szorzatot előállítja helyesen.. Tört szorzása törttel bevezetés A. feladatlap. feladatával átismételjük az egész számok szorzását. A tört szorzását és osztását egész számmal a. feladatlap. és. feladatával vezetjük be, a műveletek elvégzését segíthetjük számegyenessel.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. FELADATLAP. Számítsd ki a következő szorzatokat! a) ( ) = b) ( ) 6= 0 c) ( ) ( 7) = d) : ( 6) = 9 e) ( 0) : = EMLÉKEZTETŐ: Megállapodás szerint a negatív számmal való szorzás eredménye, a pozitív számmal való szorzás eredményének az ellentettje.. Számítsd ki a szorzatokat! a) 0 =6 b) ( ) = 8 c) 7 9 = 9 d) = 8 e) 0 = f) 8 = 9 g) = h) = 0 6. Számítsd ki! 7 7 : = 0 8 : = 7 7 : ( ) = : ( ) = 6 6 : =

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6. Melyik állítás igaz? Miért? a) része. igaz b) 7 háromszorosa ugyanannyi, mint 7 + 7 + 7. igaz c) ötszöröse ugyanannyi, mint az része. igaz Nézzük meg a tanulókkal, hogy egy tört mi mindent jelenthet. Például: A 7 a 7-nek az ötöd része, vagy -szerese; 7 db ; illetve + + + + + + azaz 7 vagy 7. TUDNIVALÓ: Törtek szorzása egész számmal Törtet egész számmal úgy is szorozhatunk, hogy a számlálót megszorozzuk az egész számmal, a nevezőt pedig változatlanul hagyjuk. Ha a nevező többszöröse a szorzónak, akkor törtet egész számmal úgy is szorozhatunk, hogy a számlálót változatlanul hagyjuk, és a nevezőt elosztjuk az egész számmal. Tört osztása egész számmal Törtet egész számmal úgy is oszthatunk, hogy a tört nevezőjét megszorozzuk a számmal, a számlálóját változatlanul hagyjuk. Ha a számláló többszöröse az osztónak, akkor törtet egész számmal úgy is oszthatunk, hogy a számlálót elosztjuk a számmal, a nevezőjét változatlanul hagyjuk.. Problémafelvetés A. feladatlap. és 6. feladatát a megoldás előtt olvastassuk fel egy tanulóval, majd értelmezzük a feladatot közösen az osztállyal.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 7. Hogyan számítjuk ki annak a téglalapnak a területét, melynek szélessége egység, hosszúsága egység! T = 0 területegység A megoldás során használjuk fel a négyzetrácsot! A tanár kérdéseket tesz fel a tanulóknak. Pl.: hogyan rajzoljunk ilyen téglalapot? (Többféle lehetséges válasz van, pl.: az egyik oldalnak kijelöljük a részét, a másik oldalon pedig az részét, vagy, Színezd ki az egységnégyzet felét, majd a felének a részét. Így is egy olyan téglalapot kaptunk, aminek oldalai fél és háromötöd.) Mekkora a téglalap területe? 0 területegység. Mit gondoltok, hogyan fordíthatnánk le a matematika nyelvére a színezéssel kapott műveletet? A téglalap területe: a és b a téglalap oldalainak mérőszámai. T = a b T = = 0. Az előző példában azt is tapasztaltuk, hogy ugyanezt a területet megkaphatjuk úgy is, hogy az -nek a részét vesszük. Tehát, hogy a fél háromötöd része egyenlő a fél háromötödszeresével!

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 8 Egy szám háromötöd részét úgy számítjuk ki, hogy a számot elosztjuk -tel, majd megszorozzuk -mal, tehát ez azt is jelenti, hogy = : = 0 Ebből a gondolatmenetből a vastagon kiemelt részeket miután a gyerekek megfogalmazták - érdemes a füzetükbe leíratni. 6. Az egységnyi oldalú négyzet oldalait feloszthatjuk az ábrákon jelzett módon. Írd fel a beszínezett téglalapok oldalainak hosszát és területét! a) b) a = b = 6 T = = 8 a = 6 b = T = = A következő feladatokon párokban dolgozzanak a tanulók, a pár egyik tagja az a), a pár másik tagja a b) feladaton dolgozzon. A következő feladatban cseréljenek! Hasonlítsák össze az eredményeket!

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 9 7. Határozd meg a következő szorzatok eredményét! A megoldás során színezd ki a megfelelő ábrát! Az ábra egy négyzet, egységnyi hosszú oldalakkal, melyeket egyenlő részekre osztottunk. Segíthet, a szorzat megállapításában, ha a szorzásnak megfelelően kiszínezed. A) a) 6 = 0 b) Mennyi az 6 -nak a része? 0 rész B) a) 7 = b) Mennyi az -nek a 7 része? rész C) a) 9 8 = b) Mennyi az 9 -nek a 8 része? rész

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 0 D) a) = b) Mennyi a -nek a része? rész Fontos, hogy a gyerekekben tudatosítsuk, hogy ha egy számot -dal megszorzunk, akkor az ugyanannyi, mint ha a részét vesszük. 6. Az ellenőrző feladatlap javításának megbeszélése Frontális megbeszélés, a hibák javítása. III. Tört szorzása törttel A szorzás elvégzését színes rudakkal is szemléltethetjük, ha van rá idő és igény.. Szorzat meghatározása színesrúd-készlet és területmodell segítségével A tanulók párosával dolgoznak, feladatuk, hogy a következő szorzás eredményét meghatározzák területmodellel és a színes rúdkészlet segítségével. Például:

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató Területmodell segítségével: 6 = = Színes rúdkészlettel: A bordó rúd értéke:. Mennyit ér a? Határozzuk meg a bordó rúd részét: (a bordó rúd része a lila rúd) Vegyük a lila rúd kétszeresét: (a lila rúd kétszerese zöld) Határozzuk meg a zöld rúd harmadát: (a zöld rúd harmada a piros rúd) Azt kell még megnézni, hogy az egységül választott bordó rúdnak mekkora része a piros rúd: A szorzás eredménye: rész.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató Röviden összefoglalva: = : = :=. Kétféle megoldást alkalmazva a következő feladatot adhatjuk: 6, ahol a zöld rúd az egy. Miután ezt végig számolták, még a párok feladata, hogy a kapott műveletet is elvégezzék.. Dominó játék Az előző órán tanultak felelevenítése dominó játékkal. A játékot fős csoportokban játsszák a tanulók. Minden csoport kap egy csomag dominó kártyát (. tanári melléklet). A dominókat lefordítva középre rakják. Felfordítanak egyet, és mindenki húz kettőt. Sorban elkezdik rakni, aki nem tud tenni, az húz egyet a lefordítottak közül. Az győz kinek, először fogynak el a dominói.. tanári melléklet Lásd a modul végén és az eszközei közt! Megoldás: Az egymás alatt lévő dominók kapcsolódhatnak egymáshoz. (A jobb oldalon lévő ábra a következő sorban lévő dominó bal oldalán lévő művelet eredményét szemlélteti.). Gyakorló feladatlap kitöltése. FELADATLAP. Határozd meg, hogy milyen szorzást szemléltetnek a következő ábrák, a szorzat eredményét számítsd ki! = 0 6 = 7

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. A következő feladatban a szorzóként szereplő törteket hányadosként írjuk föl. Pótold a hiányzó számokat, és határozd meg a szorzatok eredményét! = : 7 = 7 8 = := = : = 7 = 7: = 6 6 = : = 8 0 = = 0 8 7 = 6 6 0 = 7 7 Az egész számok témakörében tanultakat kiterjeszthetjük a törtek témakörére is. A negatív törtekkel való szorzást a következő példák kapcsán beszéljük meg. = 8 7 9 = 0 8 7 0 = 9. Keresd a kakukktojást! Figyeljük meg a következő műveleteket! Melyiknek az eredménye különbözik a többitől? a) 6 b) : 6 c) : d) ( : ) 6 6 e) ( : 6) ( : ) f) ( ) : (6 ) g) :: h) 6 6 A g) a kakukktojás, mert nem, hanem annak a negyedrésze, 9 6. A kakukktojás megtalálása után a következő feladatot adjuk a tanulóknak: Mindegyik műveletsor eredménye megegyezik egymással, egy kivételével. Keressetek olyan párokat, melyeknél meg tudjátok indokolni, miért adják ugyanazt az eredményt! Próbáljatok meg minél több ilyen párt találni! Megoldások: a) és c) egyenlő, mert az egyik az 6 -nak a -szorosa, a másik pedig a része.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató a) és d), valamint a) és e) egyenlők, csak a d)-ben és e)-ben egy vagy több törtet hányadosalakban írtunk fel. b) és c) egyenlő, csak bennük a -vel való szorzás és a -mal való szorzás sorrendje fel van cserélve b) és f) is ugyanaz, hiszen az -ot -vel úgy szorozzuk, hogy a számlálóját megszorozzuk, 6 majd az eredményt -mal úgy osztjuk, hogy a nevezőt -mal szorozzuk. f) és h) is egyenlő, mert az f) egy hányados, a h) ennek a törtalakja. Beszéljük meg a gyerekekkel, hogy a h) művelet azt mutatja, hogy két tört szorzata egy olyan tört melynek számlálója a tényezők számlálóinak szorzata, nevezője pedig a tényezők nevezőinek a szorzata!. Egészítsd ki a hiányzó számokat! = 8 6 7 = 9 7 8 = 6 8 = 9 9 = 7 6 8 7 =. a) Hány óra az óra része? = (óra) 8 b) Mekkora annak a téglalapnak a területe melynek oldalai cm és 6 cm? T= = = (cm) 6 9 9 6. Melyik állítás igaz? Miért? a) Az kétharmad része egyenlő az -szeresével. igaz b) Egy szám 7 részét úgy határozhatjuk meg, hogy a számot elosztjuk az -del. hamis 7 c) Egy szám 6 részét úgy kaphatjuk meg, hogy a számot megszorozzuk az -dal. igaz 6

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató d) Egy szám hamis e) Egy szám részét úgy kaphatjuk meg, hogy elosztjuk -mal és megszorozzuk -gyel. részét úgy kaphatjuk meg, hogy elosztjuk -gyel és megszorozzuk -mal. igaz f) Egy szám ötödét úgy kaphatjuk meg, hogy elosztjuk -tel. igaz g) Egy szám -szerese egyenlő a szám felével. igaz h) Az részét felírhatjuk így is: :. igaz i) Az 7 részét felírhatjuk így is: :. 7 igaz j) A részét felírhatjuk így is: :. hamis i) A részét felírhatjuk így is:. 9 9 igaz 7. Kösd össze az egyenlőket! fele része 0 része szerese negyede TUDNIVALÓ: Tört szorzása törttel Törtet törttel úgy is szorozhatunk, hogy a számlálók szorzatát osztjuk a nevezők szorzatával. Ezt a szabályt természetesen az egész számmal való szorzásnál is alkalmazhatjuk, hiszen minden egész szám felírható tört alakban. Például: = = = = 8

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6 IV. Reciprok fogalmának bevezetése. Dominó játék Az előző órán tanultak felelevenítése dominó játékkal. A játékot fős csoportokban játsszák a tanulók. Minden csoport kap egy csomag dominó kártyát (. tanári melléklet). A dominókat lefordítva középre rakják. Felfordítanak egyet, és mindenki húz kettőt. Sorban elkezdik rakni, aki nem tud tenni, az húz egyet a lefordítottak közül. Az győz kinek, először fogynak el a dominói.. tanári melléklet Lásd a modul végén és az eszközei közt! Megoldás: Az egymás alatt lévő dominók kapcsolódhatnak egymáshoz. (A jobb oldalon lévő művelet eredménye a következő sorban lévő dominó bal oldalán lévő művelet eredményével egyezik meg.). Szorzat előállítása számkártyák segítségével Az osztály közösen játszik a tanár irányításával. A játék menete: Számkártyák: 0,,,,,, 6, 7, 8, 9. (Az 06. modul. tanári mellékletéből kiválaszthatjuk -9-ig a számkártyákat, a 0 és az az. tanári mellékletben megtalálható.)

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 7 06 -. tanári melléklet Lásd a 06. modul végén és az eszközei közt! 0 9 8 7 6 6 7 8 9 0. tanári melléklet Lásd a modul végén és az eszközei közt! 0 A kártyákat összekeverjük, majd egy-egy tanuló négyet kihúz közülük. A tanulóknak minden egyes húzás után a fenti üres négyzetekbe kell beírniuk a számokat úgy, hogy a szorzás eredménye a lehető legkisebb legyen. Például: Ha a,,, 7 kártyákat húzzuk ki, akkor a legkisebb szorzat eredménye 8, amit 7 vagy alakban írhatunk fel. A legnagyobb szorzat eredménye pedig a 7 8, azaz a 7 vagy a 7. A számkártyák közül a legnagyobb eredményt a 8 9 vagy a 8 9, ami 6. A legkisebb eredményt pedig akkor kapjuk, ha a húzott kártyák között szerepel a 0 és azt a számlálóba rakjuk, ekkor az eredmény 0. Ebben az esetben az is kiderül, hogy 0-t nem írhatunk a nevezőbe.. Egészek előállítása szorzat eredményeként Ezután úgy folytatjuk, hogy a számkártyák közül a 0-át kivesszük. Ebben a játékban az nyer, aki úgy rakja ki a számokat, hogy a szorzat eredményére egész számot kap.. Törtek előállítása szorzat alakban. Reciprok fogalmának megsejtetése Az osztály ismét közösen dolgozik. A tanár felír néhány törtet a táblára. Feladat: Írjuk fel szorzat alakban minél többféle képen a következő törteket:,, 7, 8,! Az -et vizsgáljuk meg először. Például: 8 = = = = =... Az -et szorzat alakban a következő képen írhatjuk fel:

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 8 tört szorozva egész számmal, illetve egész szám szorozva törttel: = = = = = 0 = 0 =... tört szorozva törttel: = = = = = = = = = =... 6 6 6 6 Így az egész számokat felírhatjuk tört alakban is például az szorzat helyet ezt is írhatjuk: = = =... Az egész számokat is felírhatjuk szorzat alakban, így háromtényezős szorzatokat kapunk: = =... Természetesen így nagyon sokféle képen felírható szorzat alakban egy tört ezért több kört is lehet játszani. Persze egy-egy kör után meg kell beszélni milyen szorzatokat találtak, hogy csak helyes maradjon a füzetekben! A játék után a. feladatlap kitöltését ajánljuk.. FELADATLAP. Végezd el a következő szorzásokat! = = 6 7 = 7 6 7 = 7. Oldd meg az alábbi nyitott mondatokat! = = 7 8 = 8 7 6 = 6

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 9. Milyen számot írhatsz az üres helyekre? 7 7 = 8 8 9 = 7 9 7 6 = 6 8 8 = = 79 = 79 Beszéljünk a tanulókkal arról, hogy ha van egy számunk, akkor hogyan lehet hozzá olyan számot találni, amivel megszorozva -et kapunk! Ennek érdemes nevet is adni. Ők is javasolhatnak elnevezéseket, majd azután mi elárulhatjuk a hivatalos nevét ennek a számnak. TUDNIVALÓ: Számok reciproka Egy szám reciproka az a szám, amellyel a számot megszorozva a szorzat értéke. Ha egy tört számlálóját és nevezőjét felcseréljük, akkor a szám reciprokát kapjuk. Ez az egész számokra is igaz, ha tört alakban írjuk fel őket. Például: 9 reciproka a 9, mert 9 9 = 7 reciproka 7, mert 7 = 7. Mondd a reciprokát! A játék menete: A tanár mond egy törtet és az egyik tanulónak dob egy babzsákot vagy egy labdát. A tanuló megmondja a tört reciprokát, és válaszát indokolja. Ezután a tanuló mond egy törtet, tovább dobja a babzsákot/labdát. És így haladnak tovább

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 0 V. Tört osztása egész számmal és tört osztása törttel. Ismétlés: Tört osztása egész számmal A tanár minden tanulónak kioszt egy kártyát a. tanári melléklet kártyáiból. Feladat: keressék meg egymást azok a tanulók, akik kártyáján ugyanaz a művelet van kijelölve. Így fős csoportokat alakítunk ki.. tanári melléklet Lásd a modul végén és az eszközei közt! Megoldás: Az egymással azonos műveletet tartalmazó kártyák minden oldalon ugyanazon a helyen helyezkednek el.. Csoportverseny: szétszorzás A tört osztása törttel előkészítésére használhatjuk a szétszorzást, melyhez csapatversenyt szervezhetünk, de a csoportversenyek előtt egy-két példát közösen beszéljen át az osztály. Szétszorzással oldjuk meg a következő feladatot: : 7 Az győz, aki az utolsó tényezőt mondja! Megoldás: a : : = alakban is felírható. Az : az szétszorzásával 7 : -dé 7 7 7 7 7 alakítható. Mivel az : 7 7 =, így az 7 : 7 =, ezért a : = 7 = 8. 7 Így a tanulók maguk jöhetnek rá arra, hogy vezethetjük vissza az osztást a szorzásra. Gyakorlásként más osztást is adhatunk. Például: Szétszorzással oldjuk meg a következő feladatot: : 7 Az győz, aki az utolsó tényezőt mondja.. Tört osztása törttel A tört osztását törttel a korábbi órák ismereti alapján vezetjük be. Az eddig használt szabályt megfordíthatjuk: Törtet törttel úgy osztunk, hogy számlálót a számlálóval, nevezőt a nevezővel osztjuk. Ez persze csak akkor működik, ha mind a számláló, mind a nevező osztható a megfelelő számokkal. Az osztály közösen dolgozik. A tanár felír néhány osztást a táblára, például: 6 : 0 =

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató : 7 = 0 : 9 = : = A tanulók megfogalmazzák, hogy az osztás során milyen szabályt vettek észre. Ezután például a következőket írhatjuk fel: : = 7 : = : = 0 : = 7 : = 7 Ezeket a feladatokat kétféleképpen is oldassuk meg a gyerekekkel, szétszorzással és bővítéssel is. Megoldás: Bővítéssel: : = : = 7 8 7 9 9 : = : = 6 8 8 : = : = : = 0 0 0 0 0 6 0 6 : = : = : = 7 0 8 0 8 : = : = : = 7 7 0 7 Szétszorzással: : = : = : = = 7 7 7 7 7... Megfigyelhetjük, hogy a szétszorzásos megoldás során az eredményt mindig úgy kapjuk, hogy az osztandót az osztó reciprokával szorozzuk.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. Gyakorló feladatlap kitöltése 6. FELADATLAP. Egészítsd ki! a) 6 b) c) 0 8 : 6 : : Vagy 6 d) e) 7 6 f) 6 7 8 : 7 : 6 : Vagy: 6 7 Mindegyik feladatnak két megoldása is lehet, az egyik az, amikor osztunk ugyanazzal, amivel szoroztunk, a másik az, amikor a szorzó reciprokával szorzunk.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. Végezd el a következő osztásokat kétféleképpen, bővítéssel, és reciprokkal való szorzással is! :6 = 6 6 6 6: = 6 7 0 : = 77 : = 9 7 7 8 7 8 : = 6. Végezd el a következő osztásokat kétféleképpen, bővítéssel, és reciprokkal való szorzással is! 89 9 : : = = 8 7 9 0 0 7 6 : : = 9 7 : : = 6 9 8. Végezd el a kijelölt műveleteket! 8 7 8 7 8 + : = + = + = 9 99 99 99 7 9 + : = + = 6 7 7 9 7 7 + : = : = 6 0 6 7 7 70 + : = : = = 9 0 0 7 7 7 70 : + = : = 9 0 9 0 99 TUDNIVALÓ: Tört törttel való osztása Törtet törttel oszthatunk úgy, hogy az osztandót szorozzuk az osztó reciprokával. Pl.: : = = 8

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató VI. Szorzat változásai, hányados változásai. Dobálózzunk a korongokkal! A tört törttel való szorzásának és osztásának gyakorlására, valamint a reciprok fogalmának elmélyítésére alkalmas feladat. Minden tanuló elkészíti piros-kék korongokra az alább látható készletet. Egy korong egyik felén egy racionális szám található, míg a másik felén a reciproka. Például: Ha a piros oldalon az található, akkor ennek a korongnak a kék oldalára a kerüljön. Fontos, hogy a színek is mindenkinél megegyezzenek, tehát például a a korong kék oldalán legyen és a reciproka az pedig ennek a hátoldalán, a piros oldalon szerepeljen! A kék szín az osztást, a piros a szorzást jelöli. Tehát, ha az itt látható sorrendben tesszük egymás mellé a korongokat, és egy -es szorzót a legelejére képzelünk, akkor azok egy csak szorzásból és osztásból álló műveletsort határoznak meg. Például: Ezt így írhatjuk fel: : :. Kiszámolva azt kapjuk, hogy. Mindenki feldobja a korongjait és leírja a dobott műveleti sort, majd kiszámolja. Párokban vagy csoportokban számolhatnak a tanulók. Még mielőtt számolnának beszélgethetünk arról, vajon lesznek-e egyforma végeredmények, hány különféle végeredményre tippelnek, stb. A számolás után frontálisan kérdezzük végig az eredményeket! Feltehetőleg lesznek különböző eredmények, de egy idő után kiderül, hogy aki nem -et kapott, az valahol hibázott a számolásban. Beszéljük meg, hogy annak, hogy mindenki egyforma eredményt kap, az az oka, hogy: Már ötödikből tudják, hogy az olyan műveletsorokban, ahol csak szorzás és osztás szerepel a műveletek sorrendje felcserélhető, csak arra kell figyelni, hogy a művelet szorosan hozzátartozik ahhoz a számhoz, ami előtt áll! Ha a kártyának a kék oldala van felül, akkor a rajta szereplő számmal osztani kell, ha ugyannak a kártyának a piros oldala kerül felülre, akkor az azt jelenti, hogy az előbbi osztónak a reciproka lesz a szorzó. Erről a két műveletről pedig tudjuk, hogy megegyeznek.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. Szorzat és hányados változásainak vizsgálata számkártyák segítségével Számkártyák: 0, 9, 8, 7, 6,,,,,, 0,,,,,, 6, 7, 8, 9, 0 A feladat menete: A feladat az, hogy a lehető legnagyobb szorzatot vagy hányadost, illetve a lehető legkisebb szorzatot vagy hányadost állítsák elő a gyerekek. A feltételt, hogy mit kell előállítani, előre elmondja a tanár. Kihív egy tanulót, aki a számkártyák (06. modul. tanári melléklet és a. tanári melléklet számkártyái) közül húzni fogja a számokat. 06 -. tanári melléklet Lásd a 06. modul végén és az eszközei közt! 0 9 8 7 6 6 7 8 9 0. tanári melléklet Lásd a modul végén és az eszközei közt! 0 A kihúzott számot mindenkinek el kell helyeznie az ábrán valahol, majd újra húz egy lapot a kihívott tanuló. Miután a tanuló kihúzta a számkártyákat, mindenki elvégzi az általa kijelölt műveletet. Összehasonlítják a kapott eredményeket az alapján, hogy a legkisebb vagy legnagyobb szorzatot illetve hányadost keresték. Közösen megkeressük a legnagyobb vagy legkisebb szorzatot, illetve hányadost, ami a kihúzott számkártyákból előállítható. Az első estben a legnagyobb eredmény a 00, a legkisebb eredmény pedig a 00. A második esetben a legnagyobb eredmény a 00, a legkisebb eredmény a 0. A harmadik esetben a legnagyobb eredmény a 0, a legkisebb eredmény a 0. A negyedik esetben a legnagyobb eredmény a 00, a legkisebb eredmény a 0.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6. TOTÓ 7. FELADATLAP Tölts ki a TOTÓ-t! Egy szám -ad szorosa azonos a harmad részével. Ha egy törtet pozitív egész számmal szorzunk, akkor pozitív eredményt kapunk. Ha egy negatív törtet pozitív egész számmal szorzunk, akkor az eredmény X néhány igen nem számra igaz néhány igen nem számra igaz pozitív mindig mindig negatív vagy pozitív negatív A 6 tört tizedes tört alakja véges végtelen és szakaszos Melyik nagyobb? A -nak a szerese vagy - nek a szerese egyenlőek az első nagyobb végtelen, de nem szakaszos a második nagyobb X 6 Melyik nagyobb? A + és a 6 egyenlőek az első nagyobb a második nagyobb 7 A 7 -nek a része vagy -nek a 7 része egyenlőek az első nagyobb a második nagyobb 8 Ha egy törtet egy pozitív egész számmal szorzunk, akkor az eredmény -nél nagyobb igen nem néhány számra igaz X 9 A : és az + Melyik nagyobb? egyenlőek az első nagyobb a második nagyobb X 0 A -nek a 7 6 része vagy a 6 7 - nek a szerese egyenlőek az első nagyobb a második nagyobb

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 7 Az a turista gyalogolt többet aki km-es túrának a részét tette meg vagy az, aki a 0 km- részét tette meg. az első a második egyenlő hosszú utat tettek meg. es túrának a Mekkora a háromszög kerülete, ha oldalai 6 cm, cm és cm? Melyik szám 7 szerese a? 7 Hány tanulónak lett ötös a Ezekkel az adatokkal nem szerkeszthető háromszög. 9 8 7 + matematika dolgozata, ha részüknek négyes lett, részüknek hármas lett, részüknek kettes lett és egyes nem lett senkinek. nem lehet eldönteni, mert hibás a feladat. 0 legalább

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 8 VII. Törtek törttel való szorzásának és osztásának elmélyítése. Nyitott mondatok megoldása Minden tanuló kap egy kártyát, melyen egy nyitott mondat szerepel. (6. tanári melléklet) Első feladata az a tanulóknak, hogy megoldják a nyitott mondatot. A második feladat az, hogy az azonos eredményű nyitott mondatok megkeressék egymást. Így ha egy gyengébb tanuló nem tudja megoldani a nyitott mondatot, amit kapott a többiek eredményét behelyettesítve megtalálhatja azt a törtet, ami az ő nyitott mondatát igazzá teszi. 6. tanári melléklet Lásd a modul végén és az eszközei közt! Ezeknek a megoldása. Ezeknek a megoldása. Ezeknek a megoldása. Ezeknek a megoldása 6. Ezeknek a megoldása 9. Ezeknek a megoldása 8. Ezeknek a megoldása 7. Szöveges feladatok megoldása. Ezeknek a megoldása 7 0. A tanulók továbbra is fős csoportokban dolgoznak. A 8. feladatlap. feladatát a csoportok közösen megoldják. Majd az osztály közösen ellenőrzi a szöveges feladatok megoldását.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 9 8. FELADATLAP. Oldd meg a következő szöveges feladatokat! a) Melyik számra gondoltam, ha a reciprokának a 6 7 -szerese a 9? Visszafelé gondolkodva: 6 : =, melynek a reciproka 7 9 7 7. b) Mekkora a területe annak a téglalapnak melynek oldalai és egység hosszúak? T = =. c) Gondoltam egy számot hozzáadtam -ot az eredményt megszoroztam 9 eredményül -et kaptam. Melyik számra gondoltam? 7 Visszafelé gondolkodva: : = = 7 9 6 A gondolt szám az. -del és d) Mekkora része maradt meg Peti születésnapi tortájának? A zsúrjára meghívott fiúk a torta részét ették meg, a lányok pedig harmad annyit, mint a fiúk. + = Peti születésnapi tortájának az része maradt meg. A tanár ezután minden csoportnak ad egy borítékot melyben egy műveleti sor található (7. tanári melléklet). A csoport feladata, hogy a műveleti sort megoldja, és egy szöveges feladatot találjon ki, melyet ezzel a műveleti sorral lehet megoldani. A szöveges feladatot leírják egy lapra, és azt továbbadják egy másik csoportnak. A csoporttagok a kapott szöveges feladat megoldják és ellenőrzik. A szöveges feladatokat közösen ellenőrzik, hogy illik-e a megadott műveletsorra illetve azt, hogy mind a két csoport helyesen oldotta meg a feladatot. 7. tanári melléklet Lásd a modul végén és az eszközei közt! Megoldás:. + 9 6 = 9. 7 : = 6. 6 = 9 9

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 0. 6 + : 6 = 6 8. + = 8 6. + = 0. Gyakorló feladatlap kitöltése Az egyéni munkát megbeszélés, magyarázat, ellenőrzés követi.. Számítsd ki! 67 + = + = 7 7 8 9 9 + = = 7 8 8 6 7 + = + = = 7 7 0 = = 6 8 8 6 8 + = + = 7 7 8 8 + = = 7 7 7 7 7 0 = = 9 7 = = 9. Tölts ki az alábbi táblázatot! szám reciproka 7 7 8 8 8 7 8 7 7 7 6 6 6 6 7. Végezd el a kijelölt műveleteket! 6 8 + : = 6 6 8 + : = 6 0 : = 7 7 0 : = 7 7 08 Az emeletes tört csak egy kijelölt osztást jelent. Ezt a feladatot csak jó csoportokban érdemes megoldani.

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 8 : = = 9 = = 7 7 FELADATGYŰJTEMÉNY. A megoldás során használd a színes rúdkészletet! a) Legyen a piros rúd! Mennyit ér: három rózsaszín? + + = = négy kék? + + + = = két citromsárga? + = = három fehér? b) Legyen a lila rúd! Mennyit ér: négy fehér? két citromsárga? két rózsaszín? két fekete? c) Legyen a bordó rúd! Mennyit ér: a fehér? négy fehér? a lila rúd fele? a piros rúd? a zöld rúd fele? a zöld rúd negyede? + + = = + + + = = 6 6 6 6 6 + = = 6 6 6 + = = 7 7 7 7 + = = 6 6 6 8 8 8

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. Keresd a párját! A=E= 0 C=D= B=F=. Az egységnyi oldalú négyzet oldalait feloszthatjuk az ábrákon látható módon. Írd fel a beszínezett téglalapok oldalainak hosszát, területét és kerületét! a) a = T = 6 b = K = b) a = T = 8 b = 7 K = c) a = 9 T = 9 b = K = 9 d) a= T= 6 b= K= 8

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató. A lehetséges egyszerűsítések után végezd el a szorzásokat! a) = 7 9 0 b) = 9 9 c) = 7 9 d) = 6 e) = 7 f) 7 = 7 6 0. Szerkeszd meg a háromszöget, ha egyik oldala cm és ezen az oldalon fekvő szögei a derékszög 9 részével, illetve az egyenesszög részével egyenlőek. 9 Az oldalon fekvő szögek: 90 9 =0, illetve 80 9 = 0. A szerkesztést szögmérővel tudjuk elvégezni! 6. Ági az öccse hatodik születésnapján ezt mondta: Te most -szer olyan idős vagy, mint 7 én. Hány éves most Ági? Azt a számot keressük, amelynek a -szerese a 6. Ez a szám a. Tehát Ági éves. 7 Ellenőrzés: = 6 7 7. Mekkora annak a háromszögnek a területe, melynek egyik oldala 6 7 cm, a hozzá tartozó magasság pedig 0 mm? T= (a m a )/= 6 := = 6 cm 7 8. Csaba a következőt mesélte el a házukról: A házunk téglalap alakú. Az egyik oldala 9 m, a területe 6 m. Mekkora a házuk másik oldala? b = T : a = 6 : 9 0 9 = 6: = 6 = = m 9 7 7

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 9. Egészítsd ki! a) b) : 8 : 8 9 8 0 c) 7 7 : 7 ( ) d) : 7 7 7 ( ) 0. Töltsd ki a táblázatot, ha a szabály a következő: a) y = x x 7 0 y 7 0 b) y= x + 6 x 6 y 7 6 0 6 c) y = x : 0 6 8 6 6 6 8 0 x y 9 8 7 8 9 0 0 9

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató d) y = x + : 0 x y 60 0 0 6 0 6 6 7 9 0. Melyik számot osztottuk el 7 -del, ha a hányados lett? = 7 7. Melyik számra gondoltam, ha elosztottam 7 -del és hozzáadtam -ot akkor -et kaptam? 7 7 8 7 Visszafelé gondolkodva: = = =

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6 06.. tanári melléklet: számkártyák ( db) Kartonlapra nyomva, osztályonként készlet ebben a méretben. A fekete vonalak mentén szétvágandó. 6 6 8 8 6 7 6 7 7 7 8 8 8 8

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 7 0 0 6 9 9 6 8 8

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 8 06.. tanári melléklet: Dominókártyák ( db) Kartonlapra nyomva, osztályonként 8 (csoportonként ) készlet ebben a méretben. A dupla vonalak mentén szétvágandó. 7 8 7 9 6

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 9 7 9 7 9 8 7

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 0 6 7

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 06.. Tanári melléklet: Dominókártyák ( db) Kartonlapra nyomva, osztályonként 8 (csoportonként ) készlet ebben a méretben. A dupla vonalak mentén szétvágandó. 8 6 :6 7 8 7 6 9 6

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató : :

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 7 : 7 8 8 8 :8

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 06.. tanári melléklet: számkártyák ( db) Kartonlapra nyomva, osztályonként készlet ebben a méretben. A fekete vonalak mentén szétvágandó. 0

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 06.. Tanári melléklet: Számkártyák ( x 8 = db) Kartonlapra nyomva, osztályonként készlet ebben a méretben. A fekete vonalak mentén szétvágandó. : 7 : : 8 : 9 : : : :

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6 7 -nek a fele 8 -nak a negyede 9 -nek az ötöde -nek a fele -nek a harmada -nek a negyede -nek a harmada -nek az ötöde

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 7 7 8 9

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 8 7 7 fele ötöde negyede 8 9 8 9 fele harmada negyede harmada ötöde

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 9 06. 6. tanári melléklet ( db) Kartonlapra nyomva, osztályonként készlet ebben a méretben. A fekete vonalak mentén szétvágandó. 9 + = 7 = 7 + : = 0 7 6 7 = = 9 : + = 6 7 6 : = 0 =

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 60 7 = 7 7 : = 6 7 + = 0 7 9 7 = 6 6 = + : = 0 7 = 7 0 + = 0

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6 9 7 = 7 7 + = 6 8 + = 8 = 7 8 = 6 + = 6 + = 7 8 6 = 9 0

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6 = + = = 7 7 : = 0 + : = 7 = 60 7 = 6 0 + = 6

06. Törtek Szorzás törttel, osztás törttel Tanári útmutató 6 06. 7. tanári melléklet: Műveleti sorok Kartonlapra nyomva, osztályonként készlet (6 kártya) ebben a méretben. A fekete vonalak mentén szétvágandó. 9 + 6 6 9 + 7 : 6 + : 6 +