BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ OKTÓBER osztály
|
|
- Márta Péterné
- 9 évvel ezelőtt
- Látták:
Átírás
1 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet vihet át magával. Ha ő nincs jelen, a farkas felfalja a kecskét, illetve a kecske felfalja a káposztát. Átjuttathatja-e a farkast, a kecskét és a káposztát a túlsó partra úgy, hogy mindhárom megmaradjon? Ha igen, hogyan? Ha nem, miért nem? Hány különböző alakú téglalapot lehet összeállítani 72 darab egyforma négyzetlapból, ha egy-egy téglalaphoz mindegyik négyzetlapot fel kell használni?
2 6. osztály Ha egy háromjegyű számból elveszünk 7-et, akkor 7-tel osztható, ha 8-at, akkor 8-cal osztható, ha pedig 9-et, akkor 9-cel osztható számot kapunk. Melyik ez a háromjegyű szám? Hogyan lehet 7 egyforma kenyeret igazságosan elosztani 12 éhes vándor között úgy, hogy egyik kenyeret se kelljen 12 vagy annál több részre vágni? Próbáljuk minél kevesebb vágással megoldani a feladatot!
3 7. osztály Számítsuk ki az ábrán látható négy, egymásba rajzolt szabályos háromszög területének összegét, ha a legbelső kis háromszög területe db korongra felírtuk 1-től 19-ig az egész számokat. Szét lehet-e osztani a korongokat két csoportba úgy, hogy az egyik csoportba kerülő korongokra írt számok összege 40-nel nagyobb legyen a másik csoportba kerülő korongokra írt számok összegénél?
4 8. osztály Egy hagyományos dobókockával háromszor dobunk egymás után, majd a dobott számjegyeket egymás mellé írjuk. Hányféle háromjegyű számot kaphatunk így? Ezek közül hány osztható 9-cel? A 15 cm oldalú szabályos háromszög egy belső P pontjára a háromszög oldalaival párhuzamos egyeneseket fektetünk. Mely P pont(ok) választása esetén lesz a párhuzamosok háromszögbe eső szakaszainak összege a legnagyobb? Mekkora ez az összeg?
5 5. osztály Villámkérdés Adjunk meg néhány (legalább kettő), nem feltétlenül különböző egész számot úgy, hogy a számok összege egyenlő legyen a szorzatukkal! BOLYAI MATEMATIKA CSAPATVERSENY 6. osztály Villámkérdés Adott a síkon 4 pont. Kössük össze a pontokat egyenesekkel az összes lehetséges módon. Hány különböző egyenest kaphatunk?
6 7. osztály Villámkérdés Adott a 2 cm oldalhosszú ABCD négyzet. Keressük meg a négyzet síkjában azokat a P pontokat, amelyekre az ABP, BCP, CDP és DAP háromszögek mindegyike egyenlő szárú! BOLYAI MATEMATIKA CSAPATVERSENY 8. osztály Villámkérdés Hány jegyű a szorzat?
BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály
5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet
Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások
148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?
148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei
MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
I. rész 1. Egy gyümölcsjoghurt árát egy akció során 20%-kal csökkentették, így 100 Ft-ért adták. Mi volt a joghurt eredeti ára?
Középszintű érettségi feladatsorok és megoldásaik Összeállította: Hraskó András 1. feladatsor (Tanulói példány) I. rész 1. Egy gyümölcsjoghurt árát egy akció során 20%-kal csökkentették, így 100 Ft-ért
Fazekas nyílt verseny matematikából 8. osztály, speciális kategória
Fazekas nyílt verseny matematikából 8. osztály, speciális kategória 2005. január 12. feladatok kidolgozására két óra áll rendelkezésre. Számológép nem használható. példák tetszőleges sorrendben megoldhatók.
1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik
1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van
0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN
06. MODUL TÖRTEK Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott
Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
Valószínűség számítási feladatok és megoldásaik
Valószínűség számítási feladatok és megoldásaik Egy szabályos dobókockával egyszer dobunk Milyen esemény valószínűsége lehet az illetve az érték? P(a dobott szám prím) = P(a dobott szám -mal nem osztható)
3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy
1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot
1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik
PRÓBAÉRETTSÉGI VIZSGA
STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím SG-s csoport Pontszám 2016. január 16. II. Időtartam: 135 perc STUDIUM
ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul
Matematika A 4. évfolyam ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN 9. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 9. modul ÍRÁSBELI
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Kombinatorika az általános iskolában Ábrahám Gábor, Szeged
Kombinatorika az általános iskolában Ábrahám Gábor, Szeged A kombinatorika másfajta gondolkodást és így a tanár részéről a többi témakörtől eltérő óravezetést igényel. Sok esetben tapasztalhatjuk, hogy
MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
2. témakör: Számhalmazok
2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:
Minta 2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.
1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x
FELADATOK ÉS MEGOLDÁSOK
3. osztály Anna, Béla és Csaba összesen 36 diót talált a kertben. Annának és Bélának együtt 27, Bélának és Csabának együtt 19 diója van. Mennyi diót találtak külön-külön a gyerekek? A 36 dióból 27 Annáé
VI.7. RÁCSODÁLKOZÁS. A feladatsor jellemzői
VI.7. RÁSOÁLKOZÁS Tárgy, téma feladatsor jellemzői háromszögek, négyszögek területe rácssokszögek segítségével. Előzmények él terület fogalma. már ismert terület fogalom (főképp a háromszög és a négyszögek
Nyitott mondatok Bennfoglalás maradékkal
Matematika A 2. évfolyam Nyitott mondatok Bennfoglalás maradékkal 35. modul Készítette: Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2007. NOVEMBER 24.) 3. osztály
3. osztály Anna, Béla és Csaba összesen 36 diót talált a kertben. Annának és Bélának együtt 27, Bélának és Csabának együtt 19 diója van. Mennyi diót találtak külön-külön a gyerekek? Gondoltam egy kétjegyű
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3
KATEGÓRIA P 3 1. Misi két csomag rágógumiért 4 eurót fizetne. Írjátok le, hogy hány eurót fog Misi fizetni, ha mindhárom testvérének egy-egy csomag, saját magának pedig két csomag rágógumit vett! 2. Írjátok
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
Összetett hálózat számítása_1
Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria 1) Egy gömb alakú labda belső sugara 13 cm. Hány liter levegő van benne? Válaszát indokolja! 2) Egy forgáskúp alapkörének átmérője egyenlő a
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika
KOMBINATORIKA Permutáció
Permutáció 1) Három tanuló, András, Gábor és Miklós együtt megy iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a lehetséges sorrendeket! 2) Hány különböző négyjegyű számot alkothatunk
Valószínűségszámítás
1. Kombinatorika Valószínűségszámítás 2004.03.01. Készítette: Dr. Toledo Rodolfo 1.1. Tétel. Ha n darab különböző elemet az összes lehetséges módon sorba rendezünk, akkor ezt n! := n (n 1) (n 2) 2 1-féle
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT
Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát
KockaKobak Országos Matematikaverseny 5. osztály
KockaKobak Országos Matematikaverseny 5. osztály 2012. november 12. Feladatok: IZSÁK DÁVID, általános iskolai tanár SZÉP JÁNOS, középiskolai tanár Lektorok: BALOG MARIANNA, általános iskolai tanár SZITTYAI
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Matematika tanmenet 2. osztály részére
2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
10. Valószínűségszámítás
. Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás
Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.
Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,
23. Kombinatorika, gráfok
I Elméleti összefoglaló Leszámlálási alapfeladatok 23 Kombinatorika, gráfok A kombinatorikai alapfeladatok esetek, lehetőségek összeszámlálásával foglalkoznak Általában n jelöli a rendelkezésre álló különbözőfajta
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Alfa tanár úr 5 tanulót vizsgáztatott matematikából. Az elért pontszámokat véletlen sorrendben írta
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 00/0-es tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Gyakorló feladatok kombinatorikából. 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be?
A megoldásokat a lista végén találod meg. Gyakorló feladatok kombinatorikából 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be? 2. Réka 3 szelet süteményt szeretne
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
Az alap kockajáték kellékei
Egy játék Dirk Henn-től 2-6 játékos számára Ez a játék két játszási lehetőséget is kínál! Az Alap Kockajáték, és az Alcazaba Variáns. Az alapjáték az Alhambra családba tartozó, teljesen önálló játék, amely
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK
IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;
6. évfolyam MATEMATIKA
28 6. évfolyam MATEMATIKA Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Budapest, 29 6. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal
LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK
Írta: LEITOLD ADRIEN LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Egyetemi tananyag COPYRIGHT: Dr. Leitold Adrien Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék LEKTORÁLTA: Dr. Buzáné
Twister - Egy modern ügyességi játék, ami fejleszti az egyensúlyérzéket és a mozgáskoordinációt.
Twister Egy modern ügyességi játék, ami fejleszti az egyensúlyérzéket és a mozgáskoordinációt. Készítettem két új társasjátékot eská a családnak. Leírom a játékokat, a megvalósításukat. Az egyik a Twister.
4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Az igazat érteni, a szépet érezni, a jót gyakorolni kell!
Az igazat érteni, a szépet érezni, a jót gyakorolni kell! Szakkör időbeosztása HF megbeszélés kb. 15 perc Írás 1 csapat egy közös megoldást nyújt be 25 perc Sorsolás a bemutatásról 3 perc Felkészülési
Valószínűség-számítás II.
Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az
Matematika C 3. évfolyam. Melyikhez tartozom? 4. modul. Készítette: Abonyi Tünde
Matematika C 3. évfolyam Melyikhez tartozom? 4. modul Készítette: Abonyi Tünde Matematika C 3. évfolyam 4. modul Melyikhez tartozom? MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. május 7. MINISZTÉRIUMA. 2013. május 7. 8:00 EMBERI ERFORRÁSOK
I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 13 51 3. 13 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám
I. rész. x 100. Melyik a legkisebb egész szám,
Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos
Felszín- és térfogatszámítás (emelt szint)
Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza
PRÓBAÉRETTSÉGI VIZSGA 2016. január 16.
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím SG-s
Matematika tanmenet/4. osztály
Comenius Angol-Magyar Két Tanítási Nyelvű Iskola 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Fürné Kiss Zsuzsanna és Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti
MATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
Feladatok és megoldások a 4. hétre
Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint
Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások
Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások 1. Ismétlés 10-ig számolunk 0, 2, 4, 6, 8, 10 páros 1, 3, 5, 7, 9, 11 páratlan 1-nél nagyobb páros számok 10-nél kisebb páratlan számok
Szent István Tanulmányi Verseny Matematika 3.osztály
SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
Kvízverseny. SimpleX Tehetségnap, 2015
Kvízverseny SimpleX Tehetségnap, 2015 GEOMETRI 1. mellékelt ábrán négyzet, F, E és [E] [F ]. Mekkora az α szög mértéke? E α F 2. α =? 3. mellékelt ábrán négyzet, F és [F ] []. Mekkora a ĈF szög mértéke?
Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
Körmozgás és forgómozgás (Vázlat)
Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen
VALÓSZÍNŰSÉGI JÁTÉKOK. 44. modul
Matematika A 3. évfolyam VALÓSZÍNŰSÉGI JÁTÉKOK 44. modul Készítette: SZITÁNYI JUDIT matematika A 3. ÉVFOLYAM 44. modul VALÓSZÍNŰSÉGI JÁTÉKOK MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
MATEMATIKA C 6. évfolyam 3. modul LERAKÓS, TOLOGATÓS JÁTÉKOK
MATEMATIKA C 6. évfolyam 3. modul LERAKÓS, TOLOGATÓS JÁTÉKOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 3. MODUL: LERAKÓS, TOLOGATÓS JÁTÉKOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott
A bemutató órák feladatai
A bemutató órák feladatai 1, A dobozban van 7 narancsos, 4 epres, 3 szilvás, 2 banános cukorka. Becsukott szemmel hányat kell kivenned ahhoz, hogy biztosan legyen a) 1 db epres ízű b) 1 db narancsos ízű
Általános tudnivalók. Ha az eredmény negatív szám, vagy a feladatnak nincs megoldása, akkor 0000-t írjatok.
Általános tudnivalók Emlékeztetünk arra, hogy a válaszlapon minden feladat megoldását egész számként kell feltüntetni (0000-tól 9999-ig). Ha a kapott eredmény nem egész szám, akkor annak alsó egész részét
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2010. október 28. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 28. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest)
NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre bontása csak ott lehetséges,
4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3
1. Az alái feladatok egyszerűek, akár fejen is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonan erre a papírra írja! a.) Írja fel egy olyan egész együtthatós másodfokú egyenlet
Valószínűségszámítás
Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................
O 1.1 A fény egyenes irányú terjedése
O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk
ISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12
2. OSZTÁLY 1. Mennyi az alábbi kifejezés értéke: 0 2 + 4 6 + 8 10 + 12 14 + 16 18 + 20 A) 6 B) 8 C) 10 D) 12 2. Egy szabályos dobókockával kétszer dobok. Mennyi nem lehet a dobott számok összege? A) 1
FAIPARI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2006. február 20. FAIPARI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 20. 14:00 I. Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM
Kocsis Szilveszter: FPI tehetséggondozó szakkör 5. évf
5-es tehetséggondozó szakkör, 2011. február 21. HF 15.1.c Be lehet-e járni egy szabályos oktaéder, éleit egy-egy csúcsukból kiindulva úgy, hogy minden élen pontosan egyszer haladjunk végig és a végén visszatérjünk
Név:. Dátum: 2013... 01a-1
Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..
Próba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
Valószínűségszámítás feladatgyűjtemény
Valószínűségszámítás feladatgyűjtemény Összeállította: Kucsinka Katalin Tartalomjegyzék Előszó 4 1. Kombinatorika 5 2. Eseményalgebra 14 3. Valószínűségszámítás 21 3.1. Klasszikus valószínűség.....................
Kőszegi Irén MATEMATIKA. 9. évfolyam
-- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...
Bolyai János Matematikai Társulat
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.
Kismedve Szeged 2015
Kismedve Szeged 2015 Főfeladatok 1. Micimackó, Malacka és Tigris töprengenek. Micimackó azt mondja: Hármunk közül csak Malacka hazudós. Malacka azt mondja: Hármunk közül egyedül Tigris hazudós. Tigris
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: