GEOTERMIKUS ENERGIA. Hőszivattyú



Hasonló dokumentumok
Hőszivattyúk. Hőszivattyúk csoportosítása hőforrás szerint. Talaj

Dióhéjban a hőszivattyúkról

Előadó: Varga Péter Varga Péter

2009/2010. Mérnöktanár

Hőszivattyú hőszivattyú kérdései

Hőszivattyús rendszerek

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház

Belső energia, hőmennyiség, munka Hőtan főtételei

Geotermikus Energiahasznosítás. Készítette: Pajor Zsófia

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

CDP 75/125/165 légcsatornázható légszárítók

Geotermikus energiahasznosítás - hőszivattyú


Hőszivattyú. A hőszivattyú működési elve

A geotermia ágazatai. forrás: Dr. Jobbik Anita

Válassza a PZP hőszivattyút, a célravezető megoldást az energia megtakarításához!

Gépészmérnök. Budapest

Földgáztüzelésű abszorpciós hőszivattyú. Gas HP 35A

Ruda Erzsébet Fotó: Figuli Judit

A geotermikus energiában rejlő potenciál használhatóságának kérdései. II. Észak-Alföldi Önkormányzati Energia Nap

Hőenergiát (elsősorban napenergiát) közvetlenül hasznosító szorpcióskompressziós ÉMOP PUBLIKÁCIÓ

Megújuló energiaforrások épület léptékű alkalmazása. Prof. Dr. Zöld András Budapest, október 9.

Készítette: Csernóczki Zsuzsa Témavezető: Zsemle Ferenc Konzulensek: Tóth László, Dr. Lenkey László

TDK DOLGOZAT. Duhony Anita. Konzulens: Dr. Kiss Endre, főiskolai tanár. Műszaki Intézet Természettudományi Tanszék

Munka- és energiatermelés. Bányai István

A GEOTERMIKUS ENERGIA

Éjjel-nappal, télen-nyáron

ENERGIA- MEGTAKARÍTÁS HŐVISSZANYERÉS A FÜRDŐVÍZBŐL RÉZCSÖVEK SEGÍTSÉGÉVEL RÉZZEL SOROZAT/ 1

HŐSZIVATTYÚK AEROGOR ECO INVERTER

5. előadás. Földhő, kőzethő hasznosítás.

MI AZ A HÕSZIVATTYÚ?

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

Hőtan I. főtétele tesztek

Fűtési célú hőszivattyúk. Hőszivattyúk Buderus Fűtéstechnika Kft. Minden jog fenntartva!

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

HKVSZ Konferencia. Kompakt méretű ipari hőszivattyúk ammónia hűtőközeggel Előadó: Tasnádi Gábor

Kaméleonok hőháztartása. Hősugárzás. A fizikában három különböző hőszállítási módot különböztetünk meg: Hővezetés, hőátadás és a hősugárzás.

A fűtési rendszer kiválasztása a hőközlő közeg gőz vagy folyadék legyen?

Hőtechnikai berendezések 2015/16. II. félév Minimum kérdéssor.

BETON A fenntartható építés alapja. Hatékony energiagazdálkodás

PLASSON ELEKTROFÚZIÓS GEOTERMIKUS RENDSZER vigyázunk a környezetünkre

Működési elv. Hőszivattyú eladási statisztika (Ausztria) Németországi hőszivattyú értékesítés. Hőszivattyú eladási statisztika (Svédország)

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

NILAN JVP HŐSZIVATTYÚ. (földhő/víz) M E G Ú J U L Ó H Ő E L L Á T Á S K Ö R N Y E Z E T T E R H E L É S N É L K Ü L


Buderus: A kombináció szabadsága

ÜZEMBEHELYEZÉSI ÚTMUTATÓ CPC U-Pipe vákuumcsöves kollektorhoz

Tüzelőanyagok fejlődése

Termodinamika. Belső energia

Hogyan mûködik? Mi a hõcsõ?

Energia hatékonyság, energiahatékony épületgépészeti rendszerek

HŰTÉSTECHNIKA ALAPJAI 0. ELŐADÁS

Termodinamikai bevezető

óra C

Hütökészülékek. Oktatás - II. rész. BUDAPEST - Attila Kovács. ESSE - Wilhelm Nießen

Hőszivattyúk, Fűtési rendszerek

TELJESÍTMÈNY, AMIKOR ARRA A LEGNAGYOBB SZÜKSÉG VAN

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

1. Feladatok a termodinamika tárgyköréből

AZ ORSZÁGHÁZ ENERGIAKONCEPCIÓJÁNAK TERVE A REICHSTAG RENDSZERÉNEK MINTÁJÁRA

Feladatlap X. osztály

Hőszivattyús rendszerek. HKVSZ, Keszthely november 4.

Két szóból kihoztuk a legjobbat... Altherma hibrid

Talajhő-víz és levegő-víz hőszivattyúk Gazdaságos fűtés a föld vagy a levegő energiájával

Hőtan főtételei. (vázlat)

CDP 35/45/65 falra szerelhetõ légszárítók

A különböző megoldások rövid ismertetése: Egyedi hőszivattyús fűtési módok

ALKALMAZOTT MŰSZAKI HŐTAN

Geotermikus hőszivattyú túlfűtő funkcióval Geopro SH. Élvezze a Föld melegét Geopro-val

GEOTERMIKUS ENERGIA HASZNOSÍTÁSA

Általános iskolások és tanáraik környezettudatos szemléletformálása és a megújuló energiaforrások használatának ösztönzése

A magyar geotermikus energia szektor hozzájárulása a hazai fűtés-hűtési szektor fejlődéséhez, legjobb hazai gyakorlatok

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás

HÁZTARTÁSI MELEGVÍZ ELLÁTÁS ÉS FŰTÉSRÁSEGÍTÉS BIZTOSÍTÁSA

Energiatakarékos épületgépész rendszer megoldások

A hőszivattyú alapvetően a légkondicionálókkal azonos alapelvű, csak ellenkező irányú folyamat szerint működik. Kompresszor.

A légkondicionáló működése a benne használt hűtőközeg elpárolgására és kondenzációjára vonatkozó fizikai törvényeken alapul.

III GENERÁCIÓS SZOLÁR HASZNÁLATI MELEGVÍZ RENDSZEREK

Vágóhídi tisztított szennyvíz hőhasznosítása. Fodor Zoltán Magyar Épületgépészek Szövetsége Geotermikus Hőszivattyú tagozat elnök

Komfort hűtések egyes műszaki, tervezési kérdései I. Klímaberendezések, folyadékhűtők hűtéstechnikai jellemzői

Megoldás házaink fűtésére és hűtésére egy rendszerrel

7. Hőszivattyú-rendszerek

Fűtő / HMV hőszivattyúk

CDP 35T/45T/65T falon át szerelhetõ légszárítók

Termodinamika (Hőtan)

MMK Auditori vizsga felkészítő előadás Hő és Áramlástan 2.

ENERGIA- MEGTAKARÍTÁS

Épületgépészeti csőhálózat- és berendezés-szerelő Energiahasznosító berendezés szerelője É 1/5

PASSZÍV HÁZ. Készítette: Lengyel Máté és Szegedi Gábor a Puskás Tivadar Távközlési Technikum 11/A osztályos tanulói

Halmazállapot-változások

A geotermikus hőtartalom maximális hasznosításának lehetőségei hazai és nemzetközi példák alapján

Tervezési segédlet. Fűtési hőszivattyúk. 1. kiadás. 1 / 264. oldal Másolni, sokszorosítani a tulajdonos engedélye nélkül tilos!

A légkör víztartalmának 99%- a troposzféra földközeli részében található.

MŰSZAKI ISMERETEK, VEGYIPARI GÉPEK II.

GÁZÁTADÓ ÁLLOMÁSOK GEOTERMIKUS FŰTÉSE Dr. Zsuga János PhD FGSZ ZRt.

Magyar Fejlesztési Intézet Korcsmáros Attila

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

P I A C V E Z E T Ő I P A R I H Ő V I S S Z A N Y E R Ő S S Z E L L Ő Z T E T É S. NILAN VPM Aktív hővisszanyerés és hűtés (levegő/levegő)

Átírás:

GEOTERMIKUS ENERGIA A geotermikus energia a Föld belső hőjéből származó energia. A Föld belsejében lefelé haladva kilométerenként átlag 30 C-kal emelkedik a hőmérséklet. Magyarországon a geotermikus energiafelhasználás 1992-es adat szerint 80-90 ezer tonna kőolaj energiájával volt egyenértékű. A geotermikus energia korlátlan és folytonos energia nyereséget jelent. Termálvíz formájában nem kiapadhatatlan forrás. Kitermelése viszonylag olcsó, a levegőt nem szennyezi. A geotermikus energia egy megújuló energiaforrás, ami a legolcsóbb energiák közé tartozik. Mára Spanyolország a legnagyobb zöldenergia felhasználó. Magyarországon sok geotermikus energiát használnak fel, sok híres termálfürdő van. A geotermikus fűtés kb. 5 év alatt térül meg. Magyarországon a termálvíz 2 km-nél 120 fok is lehet. A termálkútból feltörő vizet gáztalanítják, ülepítik, és sótartalmát részben eltávolítják, majd a felhasználás helyére szivattyúzzák, a lehűlt vizet pedig valamilyen vízáramba, vízgyűjtőbe vezetik. Amennyiben nincs vízutánpótlás - a rétegenergia csökkenése következtében idővel kevesebb vizet adnak. A csökkenő víznyomást kompresszorral, búvárszivattyúval lehet növelni, de nem gazdaságos ez az eljárás. A legjobb megoldást a kitermelt és már lehűlt víz visszasajtolása jelenti, mely mérsékli a mély rétegekben található vízszint csökkenését. Hőszivattyú A hőszivattyú olyan berendezés, mely arra szolgál, hogy az alacsonyabb hőmérsékletű környezetből hőt vonjon ki és azt magasabb hőmérsékletű helyre szállítsa. A hőszivattyú elvileg olyan hűtőgép, melynél nem a hideg oldalon elvont, hanem a meleg oldalon leadott hőt hasznosítják. Minden olyan fizikai elv alapján készülnek hőszivattyúk, melyeket a hűtőgépeknél is használnak. Leggyakoribbak a gőzkompressziós elven működő berendezések, de léteznek abszorpciós hőszivattyúk is. A hőszivattyúk fordított üzemmódban is működnek, ekkor a melegebb hely hűtésére is használhatók. A hőszivattyúk fordított üzemmódban működtetett hőerőgépnek is felfoghatók. A gőzkompressziós hőszivattyúkban alkalmasan választott hűtőfolyadék gőze áramlik zárt csővezetékben. A gőz a fűteni kívánt oldalon elhelyezett kondenzátorban lecsapódik, miközben hőjét a kondenzátor csőfalán keresztül átadja vagy a helyiség levegőjének, vagy a központi fűtés vizének. Ezután a cseppfolyós hűtőközeg fojtószelepen keresztül expandál, eközben hirtelen elpárolog és hőmérséklete lecsökken. A kisnyomású, hideg gőzt a hideg oldali hőcserélőben a külső környezet felmelegíti, majd a kompresszor összesűríti és visszajuttatja a kondenzátorba, és a folyamat megismétlődik. Megfelelően kialakított hőszivattyúban az áramlás iránya megfordítható, ekkor a berendezés fűtés helyett hűti a helyiséget. A legtöbb esetben a hőszivattyúk hőforrásul a külső levegőt, vagy a talajt, esetleg természetes vizeket (Tenger, tó, folyó, talajvíz) használnak.

A termodinamika második főtétele szerint a hő nem áramlik hidegebb helyről melegebbre spontán módon, külső munkát kell befektetni ahhoz, hogy ez a folyamat végbemenjen. A hőszivattyúk abban különböznek egymástól, hogy ezt a külső munkát milyen módon juttatják a rendszerbe, de alapvetően úgy fogható fel, hogy a hőszivattyúk fordított működésű hőerőgépek. A hőerőgépekben a meleg tartályból a hideg felé áramlik a hő, miközben a gép a hőenergia különbséget mechanikai munkává alakítja. Hasonlóképpen a hőszivattyú mechanikai munka bevitelét igényli ahhoz, hogy hőt áramoltasson hidegebbről melegebb helyre. Mivel a hőszivattyú bizonyos mennyiségű munkát fektet be a hő szállításához, a hűtőközeg meleg oldalon mérhető energiája a befektetett mechanikai munkával nagyobb, mint a hideg oldalon mérhető. Ez hőerőgépnél fordítva igaz: a munkaközeg hőenergiája itt a hideg oldalon a termelt mechanikai munkával kisebb, mint a meleg oldalon. Gőzkompressziós hűtőgép körfolyamata a hőmérséklet-entrópia diagramban. R134a hűtofolyadékkal üzemelő gőzkompressziós hőszivattyú körfolyamata a log(p)-i diagramban. 1-2 kompresszió, 2-3 hűtés-lecsapódás, 3-4 fojtás, 4-1 elpárolgás A leggyakrabban használt hőszivattyú a szokás szerint hűtőközegnek nevezett munkaközeg elpárolgása és lecsapódása (lekondenzálódása) közben fellépő termodinamikai változásokat hasznosítja. A gőz állapotú munkaközeget egy kompresszor összesűríti és keringeti a rendszerben, ennek folyamán felmelegszik a munkaközeg, mely ezután egy kondenzátornak hívott hőcserélőben lehűl és lecsapódik. A kondenzátorban hőjét átadja a fűtendő helyiségnek, majd a folyékony halmazállapotú, mérsékelt hőmérsékletű csapadék nyomáscsökkentő berendezésen áramlik át, mely fojtószelep, kapilláris, esetleg hőhasznosító

szerkezet, például turbina lehet. A nyomáscsökkentő berendezésen átáramló nagyrészt folyékony munkaközeg egy másik hőcserélőbe, az elpárologtatóba jut, ahol a hűtőközeg elpárolog, miközben hőt vesz fel a környezetből. Ezután a hűtőközeg visszajut a kompresszorba és a folyamat ismétlődik. Megjegyzendő, hogy a munkaközeget a hőszivattyúknál is általában hűtőközegnek nevezik, noha a helyesebb elnevezés inkább fűtőközeg lenne, de a szokás onnan származik, hogy a hűtőgépek és a hőszivattyúk munkaközege megegyezik, és a korábban csak hűtőgépekkel foglalkozó szakemberek kezdtek később hőszivattyúkkal is foglalkozni. A termodinamikai körfolyamat jól követhető az entrópia-hőmérséklet (T-s) diagramban. A folyamat az 1 pontból indul, ahol a közeg a p o nyomáson telített gőz állapotban van. Az 1-2 folyamat adiabatikus kompresszió, mely a kompresszorban játszódik le. Ideális esetben ennek az állapotváltozásnak a képe a diagramban függőleges egyenes (izentropikus kompresszió), valóságban azonban az állapotváltozás irreverzibilis, az entrópia mindig növekszik, ezért a görbe jobb felé kissé elhajlik. A 2-5 folyamatok a kondenzátorban zajlódnak le: a 2-3 folyamat a túlhevítési hő elvonása, a 3. pontban a gőz eléri a telítettségi állapotot a p nyomáson. A 3-4 folyamat során a hőmérséklet nem változik, egyre több gőz csapódik le, a 4. pontban folyadék állapot alakul ki. A 4-5 szakasz a kondenzátorban a folyékony hűtőközeg esetleges utóhűtése, majd az 5-6 folyamat a fojtásos állapotváltozás, ez hirtelen nyomásesést jelent, melynek végén a közeg p o nyomásra expandál, a folyadék egy része (mintegy a fele) hirtelen elpárolog és a közeg nedves gőz állapotba kerül, ez a folyamat izentalpikus, vagyis a folyamat közben az entalpia nem változik. Végül a 6-1 folyamat során az elpárologtatóban hőt vesz fel a közeg a hűtendő térből állandó hőmérsékleten és nyomáson, miközben a gőz nedvességtartalma állandóan csökken. Ekkor a közeg a körfolyamat kiindulási pontjára, az 1. állapotba jut vissza és a folyamat kezdődik elölről. Természetesen a fent leírtak ideális közegre vonatkoznak, a valóságos folyamatok kismértékben eltérnek ettől. Az ilyen rendszereknél alapvetően fontos, hogy a hűtőközeg elegendően magas hőmérsékletet érjen el a kompresszor után a kondenzátorban, mivel a termodinamika második főtétele értelmében csak melegebb helyről áramlik hő a hidegebb felé. Hasonlóképpen a folyadék kellően alacsony hőmérsékletre kell lehűljön a fojtásos expanzió után, mivel az elpárologtatóban sem áramlik hidegebb helyről a melegebb felé hő. Ezen kívül a nyomáskülönbségnek kellően nagynak kell lennie, hogy a közeg lecsapódjék a meleg oldalon és elpárologjon a kisnyomású részen a hideg oldalon. Minél nagyobb a hőmérsékletkülönbség, annál nagyobb nyomáskülönbség szükséges és következésképpen annál nagyobb energia szükséges a közeg komprimálására. Ennél fogva minden hőszivattyúra igaz, hogy a fajlagos fűtőteljesítmény (egységnyi befektetett munka által átvitt hő) csökken a hőmérsékletkülönbség növekedésével. A különböző hőmérsékleti és nyomáskövetelményeknek megfelelően igen sokféle hűtőközeg áll rendelkezésre. A hűtőgépek, klímaberendezések és néhány fűtési rendszer is hasonló követelményeket támaszt a munkaközeggel szemben, így ezek a gépek hasonló technológiákra épülnek. Az épületgépészetben alkalmazott hőszivattyúk általában gőzkompressziós elven működnek. Legtöbbször felszerelik egy olyan szeleppel és optimalizált hőcserélőkkel, melyek lehetővé

teszik a hőáramlás megfordítását. A szelep átkapcsolásával a hűtőfolyadék áramlási iránya megfordítható, ilyenformán a hőszivattyú egyaránt képes fűteni és hűteni is az épületet. Hűvösebb éghajlaton a fűtés az alapállapot. A folyamat megfordíthatósága miatt a kondenzátor és elpárologtató működése időnként felcserélődik, ezért mindkettő olyan kialakítású, hogy mindkét üzemmódban betöltse funkcióját. Emiatt a fűtő-hűtő hőszivattyúk fajlagos fűtőteljesítménye mindig kicsit kisebb, mint a csak fűtésre vagy csak hűtésre tervezett hőszivattyúké. Hőszivattyút használnak esetenként úszómedencék vizének előmelegítésére vagy háztartási melegvíz előállítására is. Néhány esetben egyetlen hőszivattyú képes ellátni a fűtési és melegvíz igényt is, azonban a két feladat eltérő követelményei miatt ez csak igen ritkán oldható meg. Épület fűrésére szolgáló külső levegő hőjét hasznosító hőszivattyú fajlagos fűtőteljesítménye enyhe időben 3-4 körüli értéket mutat, elektromos fűtésre ugyanez az érték 1.0. Ez azt jelenti, hogy 1 joule elektromos energiát használó ellenállásfűtés 1 joule hőt termel, míg 1 joule energiát felhasználó hőszivattyú 3-4 joule hőt termel. A fajlagos fűtőteljesítmény erősen függ a levegőből nyert hő esetén a külső hőmérséklettől. Igen hideg külső hőmérséklet esetén több munkát kell befektetni az eredményes fűtéshez, mint enyhe időben. A levegő hőjét hasznosító hőszivattyúk ezért kisegítő hagyományos fűtést is igényelnek, mert nagy hideg esetén gazdaságosabb azt alkalmazni. Geotermikus hőszivattyúknál ez nem áll fenn, mert a talaj, talajvíz hőmérséklete gyakorlatilag állandó az egész év folyamán. A diagramból az is látható, hogy a fajlagos fűtőteljesítmény annál jobb, minél kisebb a meleg oldali hőmérséklet. Ez azt mutatja, hogy hatékonyabban lehet a hőszivattyút padlófűtésre és falfűtésre használni, mint hagyományos radiátorokra, melyeknél a kisebb fűtőfelület miatt magasabb hőmérsékletre van szükség ugyanannyi hő leadására. Fontos tudatosítani, hogy a fajlagos fűtőteljesítmény nem elsősorban a hőszivattyú konstrukciójától függ, hanem az üzemi körülményektől. Ugyanannak a hőszivattyúnak másmás hőmérsékleti viszonyok mellett más a fajlagos fűtőteljesítménye. A fűtés gazdaságosságát ezért a fajlagos fűtőteljesítményből nem lehet megítélni. Talajkollektoros rendszer esetében több száz méter hosszú speciális kemény PVC köpennyel ellátott rézcsöveket, vagy polietilén csöveket fektetnek le 1-2 méter mélyen. Hátránya, hogy nagy felületen (a fűtött alapterület 1,5-3-szorosán) kell megbontani a telket a csövek lefektetésekor, ezért leginkább új építésű házak esetén jöhet szóba. Segítségével négyzetméterenként 20-30 Wattnyi energiát nyerhetünk. Ennek nagysága függ a talaj hővezetésétől, nedvességtartalmától, és az esetleges talajvíztől. Talajszondás rendszer esetén kb. 15 cm átmérőjű, 50 200 méter hosszú lyukat fúrnak a földbe leginkább függőlegesen. Ebbe helyezik az U alakú szondát, amiben zárt rendszerben cirkulál a hűtőközeg. 200 méteres mélység esetén kb. 17 C-os a Föld. Lehet két- vagy háromkörös rendszer, attól függően, hogy a szondában közvetlenül a hűtőközeg áramlik, vagy fagyálló folyadék adja át közvetetten hőjét a hűtőközegnek. A szondák speciális esete az energiakaró: több szondát egymás mellé helyezve nyáron

eltárolják a hőenergiát a földben, amit télen hasznosítanak. Különösen nyári hűtési igény esetén, ill. ipari méretekben gazdaságos. Nagyságrendekkel mélyebb szondák esetén (1000-2000 méter) már nem a talajrétegekben eltárolt napenergia kerül közvetetten hasznosításra, hanem elsősorban a geotermikus energia. A Föld középpontjában lejátszódó reakciók hője a felszín felé áramlik, ezért mennél mélyebb a fúrt kút, annál nagyobb a kúttalp körüli réteg hőmérséklete. Ez a hőmérséklet a geotermikus gradienstől függ. (egy kilométerrel mélyebben mennyivel melegebb a földkéreg) Ez hazánkban 60 C/km körüli érték, szemben a 30 /km-es európai átlaggal. Masszív abszorber (beton építmény) Föld alatti vagy föld feletti beton vagy téglafalban betonlemezben műanyag csőkígyót helyeznek el. Külön e célra épített szoborszerű elemek, vagy támfalak, homlokzati betonfelületek is felhasználhatóak. A működés elve hasonló a talajkollektorokhoz: A beton jól vezeti a hőt, tömege alkalmas a hő tárolására. Segít a levegő, talaj, esővíz hőjének átvételében, a napsugárzást közvetlen is hasznosíthatja. Talajvíz. A talajvíz-kútból búvárszivattyúval nyert víz hőjének elvonása után a vizet vagy egy másik kútba, vagy felszíni vízbe (patak, tó, folyó) vezetik, vagy elszivárogtatják földbe fektetett dréncsöveken át. A talajvíz állandó hőmérséklete (7 C-12 C) és jó hővezető-képessége révén ideális hőforrás. További speciális alkalmazás, amikor hőforrásként egy tó szolgál. Ebbe helyezik el körkörösen a kollektorként szolgáló csöveket. Levegő. A külső levegőt ventilátorok szívják be, és a hőszivattyú hűti le. Hátránya, hogy a levegő hőmérséklete nem állandó, így a rendszer hatékonysága is változó, illetve a ventilátorok által keltett zaj is problémát jelenthet. Felhasználásra kerülhet még a ház pincéjének levegője is. Központi szellőztető rendszerrel ellátott, légmentesen szigetelt ház esetén a kifúvásra kerülő elhasznált levegő is használható hőforrásként, vagy a befúvásra kerülő levegőt melegítve, vagy a fűtési rendszerre rásegítve. (Ennél egyszerűbb megoldás a hőcserélők alkalmazása, ahol a kifúvott meleg és a beszívott hideg levegő egy nagy felületű berendezésen át adja át a hőt, anélkül, hogy keveredne.) Hulladékhő. Számításba jöhet hőforrásként a szennyvíz, az elhasznált termálvíz. Előbbire magyarországi példa a szekszárdi húskombinát, ahol a 22 C-os szennyvíz a hőforrás, míg utóbbira a harkányi gyógyfürdő, melynek 32-35 C-os elfolyó vizét használják fel két egyenként 1100 kw-os hőszivattyúval.