Szálas erősítőszerkezetek és tervezésük I.

Hasonló dokumentumok
Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék T. ép. III. emelet

Textilmechanikai technológia

POLIMERTECHNIKA TANSZÉK SZÁLAK. Természetes szálas agyagok

MŐSZAKI TEXTÍLIÁK ÉS TERVEZÉSÜK c. tantárgy leírása Kód: BMEGEPT 6292 Tárgyfelelıs: Dr. Vas László Mihály docens. A Tantárgy legfontosabb adatai:

POLIMERTECHNIKA TANSZÉK SZÁLAK

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Társított és összetett rendszerek

Fogorvosi anyagtan fizikai alapjai 6.

Anyagok az energetikában

Anyagvizsgálati módszerek a bűnüldözésben (természettudományok és bűnüldözés) Dr. Gál Tamás i.ü. vegyészszakértő

Anyagvizsgálatok. Mechanikai vizsgálatok

Szilárd testek rugalmassága

Nem fémes szerkezeti anyagok. Kompozitok

A feladatsor első részében található 1 20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

17. előadás: Vektorok a térben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

A MÛANYAGOK ALKALMAZÁSA

Szálas szerkezetű polimer anyagok

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Hajder Levente 2017/2018. II. félév

Anyagismeret. Polimer habok. Hab:

MECHANIKA I. rész: Szilárd testek mechanikája

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok. Határfelület-kohézió-adhézió

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

Kárpitos Kárpitos

Matematika A1a Analízis

Osztályozóvizsga-tematika 8. évfolyam Matematika

VII. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE

Valószínűségszámítás összefoglaló

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata

Gyakorlati példák Dr. Gönczi Dávid

Lineáris algebra mérnököknek

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

Anyagok az energetikában

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

PhD DISSZERTÁCIÓ TÉZISEI

Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC

A 27/2012 (VIII. 27.) NGM rendelet (12/2013. (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Szerkezetvizsgálat II. c. gyakorlat

Összeállította: dr. Leitold Adrien egyetemi docens

Építőanyagok 2. Anyagjellemzők 1.

Polimerek alkalmazástechnikája BMEGEPTAGA4

EGYIRÁNYBAN ER SÍTETT KOMPOZIT RUDAK HAJLÍTÓ KARAKTERISZTIKÁJÁNAK ÉS TÖNKREMENETELI FOLYAMATÁNAK ELEMZÉSE

II. POLIMEREK MORFOLÓGIAI SZERKEZETE

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

Pro/ENGINEER Advanced Mechanica

A szerkezeti anyagok tulajdonságai és azok vizsgálata

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

A feladatsor első részében található 1 20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

Vektorok, mátrixok, lineáris egyenletrendszerek

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

A talajok összenyomódásának vizsgálata

[Biomatematika 2] Orvosi biometria

Polimer nanoszálak előállítására alkalmas elektro szálképző berendezés fejlesztése

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés

Statisztikai módszerek a skálafüggetlen hálózatok

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Anyagválasztás Dr. Tábi Tamás

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Funkcionálisan gradiens anyagszerkezetű kompozit görgő végeselemes vizsgálata

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Az ipari komputer tomográfia vizsgálati lehetőségei

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

T-M 5. Kompozitok BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE NEM LÁGYULÓ POLIMER MÁTRIXÚ KOMPOZITOK

Használhatósági határállapotok. Alakváltozások ellenőrzése

A szerkezeti anyagok tulajdonságai és azok vizsgálata

3. modul 1 lecke: Kompozit definíció, jellemző mátrix anyagok és tipikus erősítőszálak

KOMPOZITLEMEZ ORTOTRÓP

a NAT /2012 nyilvántartási számú akkreditált státuszhoz

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

Összeállította: dr. Leitold Adrien egyetemi docens

Sztochasztikus folyamatok alapfogalmak

Gyakorló feladatok I.

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

kompozit profilok FORGALMAZÓ: Personal Visitor Kereskedelmi és Szolgáltató Bt Szeged, Délceg utca 32/B Magyarország

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

Osztályozó, javító és különbözeti vizsgatematika Anyagismeret és textiltörténet tantárgyakból. Technikus képzés

Szakítás BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK POLIMEREK SZAKÍTÓVIZSGÁLATA

Ortotróp kompozit erősítőanyagok húzó és nyírási tulajdonságainak vizsgálata és elemzése. Diplomaterv

Ejtési teszt modellezése a tervezés fázisában

Lemez- és gerendaalapok méretezése

Tudományos Diákköri Konferencia POLIMERTECHNIKA SZEKCIÓ

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerek. Üreges testek gyártása

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

Matematika (mesterképzés)

Átírás:

Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék T. ép. III. emelet Szálas erősítőszerkezetek és tervezésük I. BMEGEPTMG32, 2+0+0v, 3 krp I. SZÁLAS SZERKEZETEK ÁLTALÁNOS TULAJDONSÁGAI Vas László Mihály 1 Követelményrendszer Előadások: Minden oktatási héten: Hétfő 16:15-18:00 Előadások helye: MT épület, PT-előadóterem Az előadások letölthetők: http://pt.bme.hu/~vas Vizsgára bocsátás feltétele: Részvétel az előadásokon 2 1

Felhasznált források Irodalom 1. Chou T.-W. and Ko F.K. (edited by): Textile Structural Composites. CompositeMaterials Series 3. Elsevier, New York, 1989. 2. Vas L.M.: Textiltermékek tervezése. Szerkezeti és makrotulajdonságok. BME PT Tanszék, Bp. 2000. 3. Stoyan D. und Mecke J. Stochastische Geometrie eine Einführung. Akademie-Verlag, Berlin, 1983. 4. Zurek W.: The Structure of Yarn. Warsaw (Poland), Springfield (USA), 1975. 5. Hearle J.W.S, Thwaites J.J., and Amirbayat J. (editors): Mechanics of Flexible Fiber Assemblies. Sijthoff&Noordhoff, (NATO ASI Series) Alphen a.d. Rijn (Ned.), Germantown (USA), 1980. Ajánlott irodalom 6. Vas L.M.: Idealizált statisztikus szálkötegcellák és alkalmazásuk szálas szerkezetek, kompozitok modellezésére. MTA Doktori disszertáció. Bp. 2007. (http://pt.bme.hu/~vas/has_dsc_thesis/) 7. Bolotin V.V.: Statisztikai módszerek a szerkezetek mechanikájában. Műszaki Könyvkiadó Bp. 1970. 8. Álló G., Főglein J., Hegedűs Gy.Cs., Szabó J.: Bevezetés a számítógépes képfeldolgozásba. Kézirat. BME MTKI. Bp. 1993. 9. Neckar B. and Ibrahim S.: Structural Theory of Fibrous Assemblies and Yarns. TU of Liberec, 2003. 10. Vetier A.: Szemléletes mérték- és valószínűségelmélet. Tankönyvkiadó Bp. 1991. 11. Gibson R.F.: Principles of Composite Material Mechanics. McGraw-Hill, New York, 1994. 12. Wulfhorst B.: Textile Fertigungsverfahren. Eine Einführung. Carl Hanser Verlag, München, 1998. 3 Kompozit szerkezetek Többfázisú, összetett szerkezetek fázismorfológiája - két komponens esetén Többfázisú, társított anyagszerkezetek: Polimer keverékek, ötvözetek Töltött polimerek Kompozitok: erősített, szálerősített szerkezetek 4 2

Kompozit szerkezet Kompozitok*: Többfázisú (alkatrészeiben fázishatárokkal elválasztott), összetett (több anyagból álló) szerkezeti anyag, amelynek összetevői: - erősítőanyag (tipikusan szálas erősítés), illetve - befoglaló (beágyazó) anyagból, az ún. mátrixból áll, és az jellemzi, hogy a nagy szilárdságú és általában nagy rugalmasságú (szálas) erősítőanyag és a rendszerint kisebb szilárdságú, de szívós (nagy ütésállóságú) mátrix között kitűnő kapcsolat (adhézió, tapadás) van, amely a deformáció, az igénybevétel magas szintjén is fennmarad. *Czvikovszky T., Nagy P., Gaál J.: A polimertechnika alapjai. Műegyetemi Kiadó, Budapest, 2000. 368. old. 5 Kompozitok Kompozit anyagok származtatása Fémek (M) Kerámiák (C) Polimerek (szerves) (P) A fentiek kompozitjai M M: acélszál Al (MMC Al-hab kompozit); C C: üvegszál cement (CMC üvegbeton); P P: PES-szál PVC (PMC tetőponyva) Kompozit: X(szál) Y(mátrix) M C: acél beton (vasbeton); C M: kerámia Al (kerámiahab komp.); C P: üvegszál UP (UP gyanta komp.); P C: cellulózrost agyag (vályog) M P: acél gumi (acélradiál abroncs) P M:??? (szénszál/pbo+fémhab???) 6 3

Anyag kombináció: Kompozit szerkezet Szál Üvegszál Szénszál Aramid (Kevlar ), PBO (Zylon TM ) szál Bór szál Kerámia szál Természetes szál Mátrix Hőre lágyuló Duromer Elasztomer Kerámia Fém Szálirány kombináció: Rövidszál rendezett Végtelenszál rendezett rendezetlen rendezetlen *Czigány T.: Polimer kompozitok. Előadások. BME Polimertechnika Tanszék, Budapest, 2009. 7 Erősítőanyagok/szerkezetek/ gyártás Direkt szálerősítés (szabálytalan erősítőszerkezet): Szál Mátrix Kompozit gyártás (Keverés) Kompozit Indirekt szálerősítés (szabályos vagy szabálytalan textília erősítőszerkezet): Szál Textília gyártás Erősítő textília Kompozit gyártás (Beágyazás) Kompozit Mátrix 8 4

Szál- és rostipari ágazatok Szálas-rostos nyersanyagok és termékek rendszere 9 Textilgyártás és textíliák Textíliák: A textilipar elsődleges kimenő termékei, amelyek szálasanyagokból textiltechnológiai eljárásokkal fonási (bontás, rendezés, egyesítés, nyújtás, sodrás), illetve kelmegyártási (szövedék-képzés, szövés, kötés, fonatolás) műveletekkel előállított szálas szerkezetek. 10 5

Humán- és műszaki textíliák Humán textíliák Ruházati textíliák (munka-, szabadidő- és divattextíliák); Lakástextíliák (szőnyeg, függöny, terítő, takaró, ágynemű, stb.); Műszaki textíliák Kompozitok erősítőanyagai; Közlekedési eszközök (burkolatok, kárpitok), szállítás; Ipari textíliák (szűrőszövetek); Építőipari textíliák (magasépítés, belsőterek burkolóanyagai); Geotextíliák (mély- és útépítés); Mezőgazdasági textíliák; Ökotextíliák (környezetvédelem), stb. Űrkutatás, repülőeszközök; Katonai eszközök, álcázás; Személy-, objektum- és tűzvédelem; Sporteszközök; Csomagolástechnika; Gyógyászati textíliák; 11 Textíliák szerkezeti gráfja Szál Fonal Lap 12 6

Szálas erősítőszerkezetek és tervezésük I-II. tárgy felépítése Szálas szerkezetek általános tulajdonságai; osztályozás, szerkezet; szálak jellemzői; dimenzió, váztér, sűrűség- és porozitás-jellemzők. Szálfolyamok és szálkötegek, szálfolyam-típusok; száldiagram, keresztmetszeti diagram és szakálldiagram. SSTM szálfolyam és a Martindale egyenlőtlenség. Szabálytalan szerkezetű erősítő lapok, Poisson szálpaplan modell. Lineáris I. környezet. Vakfolt és pórus mérete. Konvex mintát metsző szálak jellemzői. Területi sűrűség. Mechanikai jellemzők, szálak deformációi, energiaegyenletek. Erősítő minta kötegszerkezete, a befogási hossz hatása, idealizált szálkötegek és várható húzóerő folyamatuk. A szilárdság becslése Peirce szerint. Sodrott szerkezetek, sodrat, helix modell, sodrat tömörítő hatása. Font és filament fonalak, cérnák, kötelek. Szakadás valószínűsége, adott terhelésnek megfelelőbb fonal. Szabályos szerkezetű erősítő lapok Kötéscella, kötéselemek. Szőtt, kötött és fonatolt szerkezet. A szabályosság leírása síkmintázatokkal. Szövetek szerkezete és geometriája, alapkötések és kapcsolatuk. Levezetett kötések és különleges műszaki szövetek. Kötött szerkezetek és geometriájuk, speciális kötéselemek, vetülék- és láncrendszerű, illetve befektetéssel erősített kötött lapok. Relaxált kelme jellemzői. Erősítő lapok, műszaki ponyvák szilárdsági tulajdonságai. Húzóvizsgálati eredmények értékelése. Lineáris ortotróp, monotróp és izotróp lapmodellek. Műszaki textíliák tervezési alapjai, réteg- és cellamodellek. Speciális mechanikai vizsgálatok. Nemlineáris lapmodellek. Kawabata szövet és kötött kelme modellje. Szövetminta kötegmodellje. 3D-s erősítő szerkezetek. Alkalmazások. 13 Jelenleg polimerek erősítésére alkalmazott száltípusok TERMÉSZETES SZÁLAK: Növényi eredetű: Háncsrostok: len, kender, juta Állati eredetű: Mirigyváladékok: hernyóselyem (kord); (pókselyem) Ásványi eredetű: Azbeszt!!! MESTERSÉGES (VEGYI) SZÁLAK: Természetes alapú: Növényi eredetű: viszkóz (kord); (kitin, fehérje) Ásványi eredetű: bazalt Mesterséges alapú (szintetikus): Szerves polimer: HPPE, poliészter, poliamid, aramid (Kevlár), PBO (Zylon) Szervetlen polimer: üvegszál, szénszál, kerámiaszál 14 7

Szálak alapjellemzői és típusai Szálas szerkezetek: 1D, 2D, 3D Lineáris sűrűség: q=m(l)/l, 1 tex=1 g/km =1 mg/m Karcsúsági index: λ=l/d Textilszál definíciója: 1D, λ=1000 5000, textiltechnológiákkal feldolgozható Szálak szilárdsági jellemzői: fajlagos szilárdság [N/tex], szakítóhossz [km] Textilszálak típusai: Filament mono- és multifilament Műszál vágott-, vagy rövidszál 15 Szálforma geometriai jellemzői 1. Szálak keresztmetszete Konvex alakúak Konkáv alakúak Üregesek Szálak sűrűségjellemzői Térfogati és lineáris sűrűség Szálhossz jellemzői Ív-, húrhossz, vetületi hossz Szálhossz statisztikai jellemzői (átlag, szórás, szakálldiagram, szakállhossz, rövid- és hosszúszál tartalom) Szálalak típusok Egyenes, hullámos, hurkos, göngyölődött hullámos szálalakok, hullámosság Szálfelületi jellemzők Sima, érdes, barázdált, hornyolt, gödrö(cské)s, tagolt felület 16 8

Szálforma geometriai jellemzői 2. Szálak keresztmetszete Homogén anyagú szálak: Konvex, konkáv, üreges Társított szálak: Bilaterális (a), mag/köpeny (b), szál/mátrix (c) Természetes szálak Mesterséges szálak Újabban: üreges üvegszálak alkalmazása öngyógyító kompozitokhoz 17 Szálforma geometriai jellemzői 3. Szálak sűrűségjellemzői: Térfogati sűrűség, porozitás Lineáris sűrűség Szálfinomság Lin.sűr. Átmérő Ultradurva: > 10 dtex > 100 µm Durva: 5 10 dtex 22 100 µm Normál, középfinom 2 5 dtex 15 22 µm Finom: 1 2 dtex 10 15 µm Mikroszálak: 0,1 1 dtex 3 10 µm Ultrafinom: < 0,1 dtex 0,5 3 µm Nanoszálak < 0,01 dtex < 500 nm Szálfajta Pamut Rami Gyapjú Hernyóselyem Viszkóz Acetát Poliamid Pórusok relatív térfogata % 2 7 5 6 2 Átlagos Pórus méret [nm] 8 13,5 6 5 5 6 18 9

Szálak és lineáris textíliák lineáris sűrűsége 19 Mechanikai tulajdonságok 1. Textilszálak számított szakítószilárdsági jellemzői Sűrűségre vetített fajlagos erő (Q) Fajlagos szakítóerő (Q s ) Húzófeszültség (σ) Húzó- (σ B ) és szakítószilárdság (σ S ) Kezdeti húzómerevség (K) K=AE[N] Sűrűségre vetített kezdeti fajlagos húzómerevség (κ) Kezdeti rugalmassági modulus (E) Egytengelyű húzásra a Hooke törvény alakjai (kis nyúlásoknál) F =Kε Q = κε σ = Eε Szakítóhossz (R) 20 10

Mechanikai tulajdonságok 2. Műszaki szálak szakítóhossza Gyenge PE fólia Szuperszilárd HPPE: 400 km Aramid (Kevlar): 235 km Zylon (PBO): 450 km (E=270 GPa; σ B =5,8 GPa T b =650 o C; LOI=68) Acél: 25-35 km (E=210 GPa, σ B =1,9 Gpa; T o =1425 o C) www.dsm.com 21 Mechanikai tulajdonságok 3. Szálparadoxonok (1) Szilárdtest paradoxona: Az anyagok σ B szakítószilárdsága szálformában nagyobb, mint a szokásos, terjedelmesebb, tömbalakban, de kisebb az elméletileg elérhetőnél: Anyag Alumínium (Al) Vas, acél (Fe) Polietilén (HDPE) Polietilén (HPPE) Poliamid (PA) Aramid (Kevlar) Szén Grafit Üveg Kerámia (Al 2 O 3 ) Szakítószilárdság, σ B [MPa] Tömbforma Szálforma Elméleti max. 600 1400 30 30 80 - (100) (100) (100) 200 800 4100 1000 2000-3500 850 3000 3000 20000 4000 1600 3800 11200 25000 25000 25000 25000 35000 35000 11000 26000 22 11

Mechanikai tulajdonságok 4. Szálparadoxonok (2) Szálforma paradoxona: Miközben az F B szakítóerő nő, a szálak szakítószilárdsága csökken a d szálátmérő növekedésével, azaz ha d 1 <d 2 szálátmérők, akkor: (3) Szálhossz paradoxona: A szálak FB szakítóereje csökken az l o terhelt, vagy szabad befogási hossz növekedésével, azaz ha l o1 <l o2 befogási hosszak, úgy: 23 Mechanikai tulajdonságok 5. Szálparadoxonok (4) Kétfázisú szálrendszerek paradoxona: A szálkeverékek, vagy hibrid szálerősített kompozitok egyes szilárdsági jellemzői (X=S) jobbak lehetnek a komponensekénél, azaz, ha S i az i-edik (i=1;2) komponens, S(α) a keverék tekintett szilárdsági jellemzője, ahol α 1 =α, illetve α 2 =1-α a komponensek térfogat-, vagy tömeg-részaránya, akkor bizonyos 0<α<1 keverékarányok mellett fennállhat: (Szinergetikus hatás, hibridhatás) 24 12

Mechanikai tulajdonságok 6. Szálparadoxonok (5) Szálköteg-paradoxon: Az n szálú kötegben keletkező szakadások egymásutánisága miatt a tapasztalt Fn,max maximális köteghúzóerővel értelmezhető kötegszakítóerő, 1 szálra eső része kisebb az egyedi szálszakítások révén kapott F S átlagos szakítóerő értéknél. Ennek megfelelően definiálható az n szálú köteg szálszilárdság kihasználási tényezője (η n ): 25 Szálak, szálmodellek 1. Szálak alaki jellemzői l 1 =l l 1 >l Egyenes (a), hullámos (b), horgas (c) és göngyölődött (d) szálformák Különböző alakú szálak ív- (l o ) és húrhossza (l), húrközéppontja (C) és vetületi hossza (l 1 ) Hullámossági tényező: Hullámosság (mértéke): 26 13

Szálak, szálmodellek 2. Szálgörbe, szálfelület leírása Szál, mint ponthalmaz: S = {P(x,y,z) R 3 : r(s)=(x(s),y(s),z(s)) C k, s [s o,s o +l o ]} Szál középgörbe vektorfüggvénye: r(s) = r(s;ω), ω Ω, s o =s o (ω), l o = l o (ω) Szál felületi pontjának vektora: r(s,ϕ) = r o (s) + R(s,ϕ)[n o (s)cosϕ + b o (s)sinϕ] Véletlen változó lehet (ω): a szál kezdeti pontja (s o ) a szál hossza (l o ) a szál alakja (r) Szál húrhossza: Szál tömege (q lineáris sűrűsége) Középgörbéje körül véges térkiterjedésű szál és a középgörbe kísérő triédere (érintő, normális, binormális) 27 Szálorientáció Szálak, szálmodellek 3. Orientáció értelmezése I: Láncelemekhez rendelt egység-irányvektorokkal A szálgörbét közelítő vektorpoligon (a szálgörbét közelítő poligon) Az e i láncelem-egységvektorok végpontjai az egységgömbön: Izotróp Uniaxiális Biaxiális (planáris) a i egységvektora e i Bodor G.-Vas L.M. Polimer anyagszerkezettan Műegyetemi K. Bp. 2000. 28 14

Szálak, szálmodellek 3a. Szálorientáció Orientáció értelmezése I: Síkvetületi görbeelem-vektorok irányszög eloszlása (Laplace-Gauss) Vetületi szálgörbeelemek irányszögeloszlásának mérése digitális képen gradiens módszerrel. Pl. üvegszálpaplan felületén az üvegszálaké (láncirány: 90 o ) Vas, L.M., Balogh, K.: Investigating Damage Processes of Glass Fiber Reinforced Composites Using Image Processing, Journal of Macromolecular Sciences Part B Physics, Vol. B 41(4-6), 977-989 (2002) 29 Szálorientáció Szálak, szálmodellek 4. Orientáció értelmezése II: húrvektorral Két független szögkoordinátával adható meg, amelyek együttes sűrűségfüggvénye: A G o =G(0,1) egységgömb G o felületén a da=sinv dudv kis felületelem egy ún. tér-, vagy testszöget definiál, így annak valószínűsége, hogy egy egység-húrvektor ezen infinitezimálisan kicsiny térszögbe esik q (φ,θ) (u,v)da-val arányos, és ezzel a szálorientáció eloszlásfüggvény: 30 15

Szálak, szálmodellek 5. Szálorientáció orientációs tenzor Orientáció értelmezése II: húrvektorral A szál irányvektora egy p=(p i ) egységvektor: A szálorientációnak az irányszögek együttes eloszlásánál egyszerűbb, paraméteres jellemzésére szokás alkalmazni az orientációs tenzor várható értékét (ld. kovariancia mátrix). A P orientációs tenzor a p irányvektor önmagával vett tenzor- vagy diadikus szorzatával kapható. A P tenzor várható értékét a tenzorelemek várható értékeivel adhatjuk meg: (E(p)=0 T a teljes gömbön) [E(P)=D 2 (p) és E(p i p j )=cov(p i,p j ) a teljes gömbön] 31 Szálak, szálmodellek 6. Szálorientáció orientációs tenzor Orientáció mérése: fröccsöntött lapminta keresztmetszeti csiszolatából Képfeldolgozó szoftverrel mérve: A szálmetszeti ellipszis kistengelyének d=2b és nagytengelyének 2a d mérete, ill. az y tengelyhez mért α hajlásszöge. Ebből számítva: A z tengelyhez mért β hajlásszög : Csiszolat-pozíciók Lapminta: 80x80x2 mm Csiszolat: 3 szélen, 3 középen Kép: 10 felvétel/csiszolat Feltehető, hogy a szál azonos valószínűséggel veszi fel a β, vagy -β szöghelyzetet. Így a mért β [0, π/2] szögek a [0, π] vagy [-π/2, π/2] értelmezési tartományra tükrözéssel terjeszthetők ki. A mért α szögértékek a [0, π] intervallumba esnek, amelyek kiterjesztése [0, 2π]-re, a π -periódusnak megfelelően, eltolással történhet. α φ, β θ (x 1, y 2, z 3) 32 16

Szálak, szálmodellek 7. Szálorientáció orientációs tenzor Orientáció mérése: keresztmetszeti csiszolatból képfeldolgozó szoftverrel Csiszolat: 3. pozíció (középen (z); szélen (x)) Együttes szögeloszlás (fröccsöntött kompozit): α φ, β θ 33 Szálak, szálmodellek 8. Szálorientáció orientációs tenzor Orientáció mérése: keresztmetszeti csiszolatból képfeldolgozó szoftverrel Peremeloszlások: Orientációs tenzor (x 1, y 2, z 3): Főátló elemek a vastagság (y) mentén Köpenyben: p 33 nagy, p 11 kicsi, p 22 pici Magban: p 33 kicsi, p 11 nagy, p 22 pici 34 17

Szálhalmazok, szálfolyamok 1. Szálhalmaz: azonos tulajdonságú szálak sokasága Száltér: térben elhelyezkedő szálak alkotta struktúra Irányítatlan és irányított szálhalmazok, szálterek Izotróp (a) és egytengelyűen (b), illetve kéttengelyűen (c) irányított anizotróp szálhalmazok, szálterek 35 Szálhalmazok, szálfolyamok 2. Szálfolyam-típusok Szálfolyam: olyan irányított (orientált) száltér, amelyben a szálak húrvektorai statisztikus áramteret alkotnak, azaz valamilyen térbeli iránygörbéket (áramvonalakat) érintőlegesen követő, esetleg irányuk szerint azok körül ingadozó helyzetűek. Szál: általában a szálhúrral modellezzük Egytengelyű szálfolyamok (a) típusai: lineáris (b) és elemi lineáris (c), egyszerű lineáris (d), egyenletesen folytonos lineáris (e), elemi folytonos lineáris (f), reguláris (g) és Zotyikov-féle (h) szálfolyam jellegvázlata 36 18

Szálhalmazok, szálfolyamok 3. Szálkötegek: egymással valamilyen kapcsolatban álló szálak halmaza Szálköteg fajták értelmezése: Érintkező (a, b) és egy adott keresztmetszetet metsző (c, d) szálak halmaza 37 Szálhalmazok, szálfolyamok 4. Sodratorientált szálfolyamok Fonal (a) és szolenoid (b) mint sodratorientált (cirkuláris) száltér 38 19

Konvex tartomány jellemzői 1. Átlagos átmérő Egy A R k konvex tartomány átlagos átmérője a minden lehetséges irányban tolómérce módra mért átmérők átlaga (k=1,2,3): Konvex halmaz adott irányban mért átmérője a síkban (k=2) p a A = A tartomány projekciója az a-irányú egyenesre G o = egységgömb G o = egységgömb felülete λ k =k-dimenziós térfogat (k=1,2,3) 39 Konvex tartomány jellemzői 2. Átlagos átmérő LUCIA képelemző program alkalmazása a kijelöltekre Konkáv tartomány átlagos átmérő? Konvexizálás pl.: burkoló ellipszissel, területekvivalens körrel/ellipszissel PETP szálkeresztmetszetek 40 20

Konvex tartomány jellemzői 3. Gömbi környezet (G) ρ(p,q)= a P és Q pontok távolsága (itt euklideszi távolság) Pont (a) és konvex tartomány (b) gömbi környezete egy-, kétdimenziós térben 41 Konvex tartomány jellemzői 4. Irányított, lineáris, vagy szálkörnyezet A P pont e o (α,β)-irányítású, r-sugarú H(r,α,β,P) R k lineáris környezete: Pont (a) és tartomány (b) irányított környezete a síkban Az A tartományé: Kétdimenziós tartomány (A) irányított környezetének (B) komponensei: A o =szálmag (gyakran üres) B\intA o =H(r,α,β, A)=peremkörnyezet ( A az A pereme) 42 21

Textília dimenziója 1. Konvex burok: a legszűkebb konvex halmaz, amely tartalmazza a Γ textíliát. Textília konvex burka (a), ε-törzse (b) és értelmezésük fonal esetén (c) ε-törzs szerkesztés: konvex burkolóból, adott alakzatból [0.01 mm] 43 Textília dimenziója 2. Konvex burok ε-törzs mérési módszerei Átlátszatlan szál, vagy fonal átmérője ε-törzs : koaxiális henger Átlátszó szál átmérője (üvegszál): 44 22

Dimenzió Textília dimenziója 3. A Γ textília dimenziója 1 k 2, ha éppen k-dimenziós ama legszűkebb W R 3 valós altér a textília váztere, amelyre a Γ textília Γ W vetületének konvex burka a W-ben W Γ és teljesülnek az alábbi feltételek (Γ W W Γ W): (1) A Γ termék a W váztérre felvágás nélkül rásimítható. Ez alatt azt értjük, hogy a Γ termék felvágás nélkül olyan helyzetbe hozható, hogy W a Γ-nak egyfajta középfelületét (vázterét) alkotva található olyan (minimális) δ>0 valós szám, melyre a W Γ δ/2-sugarú G-környezete lefedi a Γ textilterméket: Γ G(δ/2, W Γ ) (2) A Γ textília W váztér köré sűrűsödik, azaz a besimított Γ termék d i (Γ) (i=1,...,k) altérbeli méreteihez képest a δ elhanyagolhatóan kicsi legalább 1 (szokásosan 2-3) nagyságrenddel kisebb azaz véges Γ termék esetében: min {d 1 (Γ),...,d k (Γ)} >> δ A textília háromdimenziós, azaz k=3, ha nem található ilyen W valódi altere R 3 -nak. Ekkor W=R 3. 45 Textília dimenziója 4. Textília sűrűségjellemzői λ k = a k-dimenziós térfogat (k=1, 2, 3) A textília sűrűsége (látszólagos sűrűség) K Γ = Γ konvex burka Karakterisztikus sűrűség W Γ = Γ W konvex burka ε-törzssűrűség K Γε = Γ ε-törzse 46 23

Textília dimenziója 5. Textília porozitás-jellemzői A textília porozitása ε-törzs-porozitás ρ o = a szálanyag térfogati sűrűsége 47 Textília dimenziója 6. Minta értelmezése Textíliából kivágott konvex (valós, ill. modell) minta értelmezése Valós minta: Modell minta: 48 24

Textília dimenziója 7. Egydimenziós textíliák, textiltermékek 49 Textília dimenziója 8. Egydimenziós textíliák, textiltermékek 3.8-micron diameter carbon nanotube yarn that functions as a torsional muscle when filled with an ionically conducting liquid and electrochemically charged 50 25

Textília dimenziója 9. 1D-s textíliák lineáris sűrűség tartományai 51 Textília dimenziója 10. Kétdimenziós textíliák, textiltermékek 52 26

Textília dimenziója 11. Kétdimenziós textíliák, textiltermékek 53 Textília dimenziója 12. 2D-s textíliák területi sűrűségi tartományai 54 27

Textília dimenziója 13. Háromdimenziós textiltermékek Szabással (konfekcionált) (a) és szabás nélkül (b) készült háromdimenziós textiltermékek 55 Textília dimenziója 14. 3D-ós textíliák és kompozit termékek 56 28

Textília dimenziója 15. 1-3D textíliák térfogati sűrűség tartományai 57 Textília dimenziója 16. Termék-jellemzők Geometriai jellemzők Tégla-alakú térfogat méretei (l x) x-re váztérbeli keresztmetszet (A k ) Textiltermék dimenziója k = 1 k = 2 k = 3 l=hossz l=hossz b=szélesség l=hossz b=szélesség h=vastagság A 1 =0 A 2 =b A 3 =A=bh Váztérbeli térfogat (V k ) V 1 =l V 2 =bl V 3 =V=bhl Geometriai és mechanikai mutatószámok 1D, 2D és 3D esetén (Sűrűség és szakítóhossz gyakorlati váltószáma: 10 3 ) Termék jellemző sűrűsége (ρ k ) és mértékegysége Szilárdsági jellemzők Jellemző fajlagos erő x- irányban és mértékegysége Sűrűségre vetített fajlagos erő (Q x ) és mértékegysége Egytengelyű, x- irányú húzásra a Hooke törvény alakja Jellemző húzó-merevség (K k ) és mértékegysége Sűrűségre vetített fajlagos húzómerevség (κ k ) Szakítóhossz x-irányban (R x ) F x =F [N] F x =K 1 ε x f x =K 2 ε x σ x =K 3 ε x K 1 = bhe =AE [N] K 2 =he [N/m] K 3 =E [N/m 2 ] 58 29