Szigeti Gyula Péter. Homeosztázis



Hasonló dokumentumok
A szervezet folyadékterei, Homeostasis

Homeosztázis A szervezet folyadékterei

A vér élettana 1./12 Somogyi Magdolna. A vér élettana

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Tápoldatozás és a hozzá szükséges anyagok, eszközök. Beázási profil különböző talajtípusokon

A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (3)

VÍZKEZELÉS Kazántápvíz előkészítés ioncserés sómentesítéssel

Biofizika (molekuláris biofizika és biológiai anyagtan) 2014, tavaszi szemeszter

A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2)

A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (5)

6. A TALAJ KÉMIAI TULAJDONSÁGAI. Dr. Varga Csaba

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

A folyadék- és elektrolit-kezelés alapelvei csecsemő- és gyermekkorban. Tulassay Tivadar Semmelweis Egyetem I. sz. Gyermekklinika

ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK

Folyadék-elektrolyt háztartás

Klasszikus analitikai módszerek:

A kiválasztási rendszer felépítése, működése

zis Brown-mozg mozgás Makromolekula (DNS) fluktuáci Vámosi György

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL

ELEKTROLIT VIZSGÁLATOK 1. ELEKTROLITOK

m n 3. Elem, vegyület, keverék, koncentráció, hígítás m M = n Mértékegysége: g / mol elem: azonos rendszámú atomokból épül fel

A XVII. VegyÉSZtorna I. fordulójának feladatai és megoldásai

OZMÓZIS, MEMBRÁNTRANSZPORT

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018

A vér folyékony sejtközötti állományú kötőszövet. Egy átlagos embernek 5-5,5 liter vére van, amely két nagyobb részre osztható, a vérplazmára

A másodlagos biogén elemek a szerves vegyületekben kb. 1-2 %-ban jelen lévő elemek. Mint pl.: P, S, Fe, Mg, Na, K, Ca, Cl.

A kémiai egyensúlyi rendszerek

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p

Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése

Tápanyagfelvétel, tápelemek arányai. Szőriné Zielinska Alicja Rockwool B.V.

Akut pankreatitisz. mióta (év):. ha igen: mennyiség (cigaretta/nap): mióta (év): Drogfogyasztás: igen / nem ha igen: drog megnevezése: mennyiség:..

Mellékpajzsmirigy Hyperparathyreosis. 2006/2007 Prof. Dr. Uray Éva DE OEC AITT

Vizelet vizsgálat a gyakorlatban

7.4. Tömény szuszpenziók vizsgálata

4. sz. melléklete az OGYI-T-10363/01-03 sz. Forgalomba hozatali engedély módosításának BETEGTÁJÉKOZTATÓ

A gázcsere alapjai, a légzési gázok szállítása

XI./ Tisztelt Kollégák! Tartalom: Megint a folyadékterápiáról és az infúziós oldatok összetételérõl

Adatok: Δ k H (kj/mol) metán 74,4. butadién 110,0. szén-dioxid 393,5. víz 285,8

Speciálkollégium. Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP A/ Nemzeti Kiválóság Program Szeged 2014

A mustok összetételének változtatása

Elektrolitok nem elektrolitok, vezetőképesség mérése

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (7) a NAT /2012 nyilvántartási számú akkreditált státuszhoz

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2002.

A sav-bázis anyagcsere és legfontosabb zavarai. Prof. Dr. SzabóGyula tanszékvezető egyetemi tanár

Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája. Épületgépészeti kivitelezési ismeretek szeptember 6.

Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás

Biológia 3. zh. A gyenge sav típusú molekulák mozgása a szervezetben. Gyengesav transzport. A glükuronsavval konjugált molekulákat a vese kiválasztja.

M E G O L D Ó L A P. Egészségügyi Minisztérium

Sebészeti Műtéttani Intézet

Egy idegsejt működése

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.

Tubularis működések. A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) (Tanulási támpontok: 54-57)

Véralvadás. A véralvadás három fázisa. A véralvadás egyensúlyi folyamat. Harmati Gábor DE OEC Élettani Intézet

VÉRMENTŐ ELJÁRÁSOK, TRANSZFÚZIÓS IRÁNYELVEK. Dr. Szűcs Gabriella. DEOEC Aneszteziológiai és Intenzív Terápiás Tanszék

O k t a t á si Hivatal

Sejtek membránpotenciálja

Kémiai alapismeretek 11. hét

KONDUKTOMETRIÁS MÉRÉSEK

Ionszelektív elektródok A HANNA Instruments legújabb generációját képviselõ mérõmûszerekhez

Speciálkollégium. Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP A/ Nemzeti Kiválóság Program Szeged 2014

SZÛKÍTETT RÉSZLETEZÕ OKIRAT (2)

A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja. KÉMIÁBÓL I. kategóriában ÚTMUTATÓ

EMELT SZINTŰ ÍRÁSBELI VIZSGA

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY

Kémiai fizikai alapok I. Vízminőség, vízvédelem tavasz

SZÛKÍTETT RÉSZLETEZÕ OKIRAT (1)

KETOACIDOTICUS COMA KEZELÉSE

Állatkísérletek Elmélete és Gyakorlata A és B kurzus

4. sz. melléklete az OGYI-T-6602/01-02, OGYI-T-6603/01-02 sz. Forgalombahozatali engedély felújításának

Ro - Fordított ozmózis víztisztítók (használati utasítások, termékkatalógus, műszaki ismertető, beépítési segédlet)

4. SZERVES SAVAK. Az ecetsav biológiai előállítása SZERVES SAVAK. Ecetsav baktériumok. Az ecetsav baktériumok osztályozása ECETSAV. 04.

Eredmények (technikai) jóváhagyása Eredmények klinikai validálása Eredmények interpretálása Konzultáció További vizsgálatok Leletek küldése

MAGYAR RÉZPIACI KÖZPONT Budapest, Pf. 62 Telefon , Fax

A vér alakos elemei és azok funkciói

Előtétszó Jele Szorzó milli m 10-3 mikro 10-6 nano n 10-9 piko p femto f atto a 10-18

3.2 A vese mőködése Szőrımőködés Visszaszívó mőködés Glükóz visszaszívódása A víz és a sók visszaszívódása

Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai

A borok tisztulása (kolloid tulajdonságok)

ZÁRÓJELENTÉS. Fény hatására végbemenő folyamatok önszerveződő rendszerekben

Talajvédelem. Talajok átalakítása és elzárása Talajok beépítése Talajművelés Talajok víztelenítése és öntözése Erózió, defláció Talajok szennyezése

Tegyél többet az egészségedért!

b./ Hány gramm szénatomban van ugyanannyi proton, mint 8g oxigénatomban? Hogyan jelöljük ezeket az anyagokat? Egyforma-e minden atom a 8g szénben?

Javítókulcs (Kémia emelt szintű feladatsor)

A vese mőködése. Dr. Nánási Péter elıadásai alapján

A TESTFOLYADÉKOK SAV BÁZIS ÁLLAPOTA ÉS SZABÁLYOZÁSA

Generated by Unregistered Batch DOC TO PDF Converter , please register!

Szakmai ismeret A V Í Z

Válasz Tombácz Etelkának az MTA doktorának disszertációmról készített bírálatában feltett kérdéseire és megjegyzéseire

Biofizika szeminárium november 2.

feladatmegoldok rovata

Betegtájékoztató FURON 250 MG KONCENTRÁTUM OLDATOS INFÚZIÓHOZ. Furon 250 mg koncentrátum oldatos infúzióhoz furoszemid

Didaktikai feladat: frontális osztálymunka, egyéni munka, csoportmunka, ismétlés, tanár-diák párbeszéd, ellenőrzés, értékelés

A só- és vízháztartás zavarai és kezelési lehetőségei a neurointenzív gyakorlatban. Ezer Erzsébet PTE ÁOK AITI

Felszíni vizek oldott oxigéntartalmának és kémiai oxigénigényének vizsgálata

A javításhoz kb. az érettségi feladatok javítása az útmutató irányelv. Részpontszámok adhatók. Más, de helyes gondolatmenetet is el kell fogadni!

A kapilláris rendszer

Hidrogén előállítása tejcukor folyamatos erjesztésével

Átírás:

Szigeti Gyula Péter Homeosztázis

A szervezet egy nyitott rendszer, 1. rész 1. Homeosztázis. Azon folyamatok összessége, amelyek a szervezet belső állandóságát ( internal milieu ) biztosítják. (a testfolyadékok, hőmérséklet, vérnyomás, vércukor...) 2. Nyitott rendszer. A szervezet anyagot és energiát cserél a környezetével. 3. H 2 O Steady-State. Az egy nap alatt a szervezetbe kerülő folyadék mennyisége azonos kell hogy legyen a szervezetből eltávozó folyadék mennyiségével. Ha nem azonos, akkor a szervezetben található víz felszaporodása, vagy vesztése fordul elő. Vízfelvétel: a, folyadékfelvétel italok formájában b, a szilárd táplálék is tartalmaz vizet c, a sejtmetabolikus folyamatok CO 2 -t és H 2 O-t termelnek Vízvesztés: a, vizelettel b, széklettel c, inszenzibilis H 2 O vesztés. Pl. légzés d, izzadás. e, patológiás körülmények: vérzés, hányás, hasmenés

A szervezet egy nyitott rendszer, 2. rész 4. Elektrolit Steady-State. A vízhez hasonlóan az elektrolitok esetében is egyensúly kell, hogy legyen a felvett és a leadott mennyiség között (Na +, K +, Cl -, bikarbonát). Elektrolit felvétel: a, Na + és K + felvétel a megemésztett táplálékból. b, Klinikai körülmények között, elektrolit tartalmazó folyadékinfúzió parenterális (i.v., i.p.) alkalmazása. Elektrolit vesztés: a, kiválasztás a vesén keresztül b, veszteség a székletben c, izzadás d, abnormális úton: hányás, hasmenés. 5. Szöveti metabolitok 6. A különböző anyagok szervezeten belüli megoszlása NEM HOMOGÉN. 7. Kompartmentek.

A folyadékösszetétellel kapcsolatos fogalmak 1. rész 1. Molalitás. Mennyi mol oldott anyag van 1 kg oldószerben. 2. Molaritás (M). Mennyi mol oldott anyag van 1 l oldószerben. Note, M nem mol-t jelent, hanem mol/liter-t. Fiziológiás koncentrációk alacsonyak. millimol (mm) = 10-3 M, micromol (μm) = 10-6 M, nanomol (nm) = 10-9 M, vagy picomol (pm) = 10-12 M. 3. Elektrokémiai ekvivalencia (Eq). A sók, mint pl. a NaCl és a CaCl 2 pozitív (kation) és negatív (anion) ionokra disszociál. Az ekvivalens azt a gram-ban kifejezett monovalens H + tömeget jelenti, amivel helyettesíteni tudjuk az adott iont. A monovalens ionok, pl. Na +, K + és Cl - esetén 1 ekvivalens azonos az ion grammban kifejezett tömegével (GMW), míg divalens ionoknál (Ca, Mg és HPO 2-4 ) 1 ekvivalens egyenlő a GMW felével. A fiziológiás koncentrációk igen alacsonyak, gyakran meq/l = 10-3 Eq/L. Ez a mértékegység akkor használható igazán, ha arra vagyunk kiváncsiak, hogy mennyi anyag szükséges az elektroneutralitás létrehozásához.

A folyadékösszetétellel kapcsolatos fogalmak 2. rész 4. Komplikációk a plazmakoncentrációk meghatározásában. Az ionok, valamint a molekulák nagyon gyakran nem teljesen disszociált, nem teljesen oldott formában fordulnak elő. a, A legtöbb oldott anyag fehérjékhez kötődik. Pl. a kalcium, kb. 50%-ban albuminhoz és citráthoz kötődik a véráramban. b, A plazmavolumen csak 93%-a víz, a maradék 7% fehérje és lipid. Ezáltal a plazmavíz és a teljes plazma ionkoncentrációja különböző, ami azt jelenti, hogy a klinikai laboratóriumok által meghatározott ionkoncentációk alulértékelik a valódi ionkoncentrációkat. Ez általában nem okoz problémát, de figyelembe kell venni bizonyos betegségek esetén, pl. hyperlipidemia vagy hyperproteinemia.

A szervezet folyadékterei RBC CELL WATER 36% 25 L PLASMA WATER 4.5% 3 L INTERSTITIAL FLUID COMPARTMENT 11.5% 8 L TRANSCELLULAR WATER 1.5% 1 L BONE 3% 2 L ECF 24% 17 L DENSE CONNECTIVE 4.5% 3 L A szervezet összvíztere hozzávetőleg 55-60%-a szervezet össztömegének férfiakban és kb. 50 to 55%-a hölgyekben (ok a nagyobb zsírmennyiség). Mindkét nem esetén nagyfokú variabilitás mutatható ki a víztartalomban (fejlődés különböző szakaszain). Egy 70 Kg-os férfi esetében a szervezett összvíztere hozzávetőleg 42 L.

Intracelluláris és extracelluláris folyadék 1. rész 1. Intracelluláris folyadék. hozzávetőleg a testsúly 36%-a kb. 25 l (70 Kg ffi) 2. Extracelluláris folyadék. hozzávetőleg a testsúly 24%-a kb. 17 l (70 Kg ffi) plazma (vér minusz alakos elemek) hozzávetőleg a testsúly 4,5%-a kb. 3 l (70 Kg ffi) intersticiális folyadék (a szöveteket felépítő sejtek közötti tér) hozzávetőleg a testsúly 11,5%-a kb. 8 l (70 Kg ffi) minor kompartmentek (csont és a kötőszövetek, transzcelluláris folyadék, mint pl. a gyomor-, bél- és egyéb szekretoros nedvek, intraoculáris folyadék, cerebrospinális folyadék, izzadság, szinoviális folyadék) hozzávetőleg a testsúly 9%-a kb. 6 l (70 Kg ffi)

A kompartmenteket elválasztó határfelületek tulajdonságai i.c. e.c. Vér szövetek Máj, csontvelő Agy, here sejtmembrán erek, endothelium fenesztrált endothelium tight junction

Intracelluláris és extracelluláris folyadék, 2. rész 3. vér = alakos elemek + plazma Hematokrit (Hct). Az alakos elemek aránya a vérben. Plazma volumen = vérvolumen x (1-Hct). 4. Plazmavíz a felszívódott tápláléknak a szervezetbe való belépési pontja a megtermelt káros anyagcseretermékeknek a szervetből történő eltávozási pontja 5. Ionösszetétel az extracelluláris és az intracelluláris folyadék teljesen kölönböző, de a teljes osmotikus koncentráció hasonló a két folyadéktérben a, A fő extracelluláris kation a Na +,az anionok pedig a klorid és a bikarbonát. b, A fő intracelluláris kation ak +,azanionok pedig a foszfátok [mind az anorganikus (HPO 4 2-, H 2 PO 4- ) mind az organikus (ATP, etc.)] és a proteinek.

Kationok Na + K + Ca 2+ (össz) Az extracelluláris folyadéktér (vérplazma) összetétele 136-146 mmol/l 3,8-5,2 mmol/l 2,5 mmol/l Ca 2+ (ionizált) 1,15-1,25 mmol/l Mg 2+ Anionok Cl - HCO 3 - H 2 PO 4- + HPO 4 2-0,8-1,2 mmol/l 96-106 mmol/l 24-28 mmol/l 1-1,4 mmol/l Szerves összetevők Glükóz Urea Fehérjék 4-5,5 mmol/l 2,5-6,3 mmol/l 60-80 g/l ebből albumin 30-40 g/l Bilirubin <20 μmol/l

Intracelluláris ionkoncentrációk Kationok vvt vázizom Na + 19 mmol/l 12 mmol/l K + 136 mmol/l 150 mmol/l Ca 2+ 0,001 mmol/l 0,0001 mmol/l Mg 2+ 4 mmol/l 22 mmol/l Anionok vvt vázizom Cl - 78 mmol/l 4 mmol/l HCO - 3 18 mmol/l 12 mmol/l H 2 PO 4- + HPO 2-4 2 mmol/l 24 mmol/l

Valódi oldat és kolloid oldat jellemzői Valódi oldat: az oldott anyag mérete <1 nm pl.: fiziológás sóoldat Kolloid oldat: az oldott anyag mérete 1-500 nm pl.: fehérjék oldatai

Intracelluláris és extracelluláris folyadék, 3. rész 6. Patológiás folyadékfelszabadulás az E.C. térben: transzudátum és exszudátum magas vérnyomás pangás gyulladás - tiszta (vízszerű) folyadék - zavaros - nincs fehérje - van protein (- Rivalto reakció) (+ Rivalto reakció) - alacsony fajsúly - magas fajsúly

Ozmózis Initial Gl Gl Gl Gl 10 L 10 L Final Gl Gl Gl Gl 15 L 5 L 1. Ozmotikus erők. 2. Ozmotikus koncentrációk. Note, 1,0 M NaCl, ha teljesen disszociál a molekula, akkor egy 2,0 osmolos oldatot hoz létre, de 1 mol CaCl 2, ha teljesen disszociál akkor egy 3,0 osmol-os oldatot képez. (nem mindig teljes a disszociáció) (1 mosm = 10-3 osmol/l).

A DONNAN EQUILIBRIUM Initial Step 2 Final 50 K + 50 K + 50 Cl - 50 Pr - 100 Osmoles 100 Osmoles 33 K + 67 K+ 33 Cl - 17 Cl - 50 Pr - 66 Osmoles 134 Osmoles 33 K + 67 K+ 33 Cl - 17 Cl - 50 Pr - 33 ml 67 ml Total Volume 100 ml Ions Move H 2 O moves

A szervezet folyadéktereinek vizsgálata 1. A meghatározás alapja a folyadékhígításos módszer, aminek az alapja Koncentráció= Injektált anyagmennyiség/megoszlási tér 2. A szervezetbe bejuttatott anyagok esetén figyelembe kell venni, hogy bizonyos anyagmennyiségek altávoznak (kiválasztódnak) a szervezetből. V d =(Injektált anyagmennyiség - Kiválasztott anyagmennyiség)/egyensúlyi konc. 3. A különböző folyadékterek meghatározásához olyan anyagra van szükségünk, amelyek csak az adott térben oszlanak meg. Teljes víztér (TBW). D 2 O, THO és antipirin Extracelluláris víztér (ECFV). inulin, szukróz, mannitol és szulfát Plazmavolumen (PV). Radióaktívan jelölt albumin vagy Evans kék (albuminhoz kötődik) Intracellularáris víztér (ICFV). ICF=TBW-ECFV Intersticiális víztér (ISFV). ISFV=ECFV-PV

Klinikumban használatos megfontolások, 1. rész [Na + ] p közvetlenül kapcsolódik az E.C. ozmolaritáshoz és könnyen mérhető 1.Hipernatrémia (magas plazma Na koncentráció) -> csökkent E.C. és I.C. víztér (sejtzsugorodás). (Note hypoproteinemia és hypolipidemia) 2.Hiponatrémia (alacsony plazma Na koncentráció) -> emelkedett E.C. és I.C. víztér (sejtduzzadás). (Note hyperproteinemia és hyperlipidemia). 3.Hyperglycemia esetén a magas vércukorszint növeli az osmolaritást és hiponatremiát idéz elő, sejtzsugorodással. Ebben az esetben elsősorban a sejtzsugorodást kell korrigálni és nem a hiponatrémiát.

Ozmotikus erők hyponatraemia sejtduzzadás Na + H 2 O hypernatraemia sejtzsugorodás H 2 O

Klinikumban használatos megfontolások, 2. rész 1. Megnövekedett extracelluláris osmolaritás (pl. hipernatrémia), sejtzsugorodást okoz. Ha a vízfelvétel nem akadályozott, akkor a hipernatrémia kialakulása megelőzhető lehet. Azonban a hipernatrémia nagyon gyakran kialakul kómában lévő betegeknél, illetve újszülötteknél, ahol a vízfelvétel akadályozott. Valamint 1. Fokozott inszenzibilis vízvesztés. 2. Megnövekedett verejtékezés. Normális körülmények között a verejték kevés nátriumot tartalmaz. 3. Centrális, vagy nephrogén diabetes insipidus. Csökkent ADH szekréció vagy ADH érzéketlenség. 2. Csökkent extracelluláris ozmolaritás (pl. hiponatrémia) azonban a sejtek duzzadását okozza. 1. Fokozott vízivás. 2. Syndrome of Inappropriate ADH Secretion (SIADH). Túlságosan sok ADH víz visszatartáshoz vezet, ezáltal hiponatrémia, és koncentrált vizelet jön létre.

Klinikumban használatos megfontolások, 3. rész 1. Megnövekedett ECF volumen. Megnövekedett centrális vénás nyomás, ödema. Ha az ozmolaritás normális, akkor az intracelluláris volumen valószínüleg normális. 2. Csökkent ECF volumen. A hipovolémia legnagyobb veszélye az, hogy nagymértékben csökken a szöveti perfúzió. A klinikai kép: száraz nyálkahártyák, a vizelettermelés csökkenése, lassú kapilláris telődés. 3. Az extracelluláris folyadékvolumen isotóniás csökkenése, aminek gyakorlatilag nincs direkt hatása a sejtvolumenre. Note, az elveszített folyadék azonos ozmolaritású az E.C. folyadékkal. A folyadékvesztés szomjúságot okoz és fokozza az ADH szekréciót. Ennek következtében fokozódik a vízfelvétel és a vízvisszatartás és másodlagos hiponatrémiát hoz létre. 1. hányás 2. hasmenés 3. vérzés 4. égés

A klinikumban volumenpótlásra használt oldatok 1. A plazma ozmolaritásához viszonyítva 1. Izotóniás oldatok. Az ozmotikus koncentráció azonos a plazmájéval. Alkalmazása nem befolyásolja az intracelluláris volument. 2. Hipertóniás oldatok. Az ozmótikus koncentráció magasabb a plazmájénál. Alkalmazása csökkenti az intracelluláris volument. 3. Hipotóniás oldatok. Az ozmótikus koncentráció alacsonyabb a plazmájénál. Alkalmazása növeli az intracelluláris volument. 2. A leggyakrabban alkalmazott oldatok 1. Dextróz oldat. A glükóz gyorsan CO 2 + H 2 O re metabolizálódik. Mind az ECF-t, mind az ICF-t növeli. 2. Salina. Különböző koncentrációk: hipotóniás (pl. 0,2%), izotóniás (0,9%), és hipertóniás (pl. 5%). 3. Dextróz Salina. Különböző koncentrációk. Akkor használjuk, amikor kombinált volumenpótlás és kalória bevitel szükséges. 4. Plazma-expanderek. pl, dextrán, ami egy hosszú láncú polysacharid. Megnöveli az ECF-t az ICF rovására.