Jármû-elektronika ELEKTRONIKAI-INFORMATIKAI SZAKFOLYÓIRAT. 2003. november. 890 Ft. XII. évfolyam 7. szám



Hasonló dokumentumok
Fázishasításos elven működő vezérlő elektronika két rezgőadagoló működtetéséhez, max. 2 x 8A. TS35 sínre szerelhető kivitel (IP 20)

V02.2 vízszintvezérlő.

Vigilec Mono. Egyfázisú szivattyú vezérlő és védelmi doboz. I. A csavarok eltávolítása után csúsztassuk felfelé az előlapot a felső állásba (A ábra)

ELEKTROMECHANIKUS és ELEKTROMOS VEZÉRLŐPANELEK

VHR-23 Regisztráló műszer Felhasználói leírás

STEADYPRES frekvenciaváltó ismertető

V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS

FEDÉLZETI INERCIÁLIS ADATGYŰJTŐ RENDSZER ALKALMAZÁSA PILÓTA NÉLKÜLI REPÜLŐGÉPEKBEN BEVEZETÉS

DIGITAL LUX

Használati utasítás V1.4

UPS Műszaki Adatlap S-5300X kva

Sentry-G3 intelligens gépvédelmi rendszer

DC TÁPEGYSÉG AX-3003L-3 AX-3005L-3. Használati utasítás

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása Akkumulátor típusok

KÜLTÉRI FÉNY- ÉS HANGJELZŐ SZIRÉNA SP-4002

JUMO. Beépíthetõ ház DIN szerint. Rövid leírás. Blokkvázlat. Sajátságok. JUMO dtron 16.1

MICROCHIP PIC DEMO PANEL

DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók

Logoprint 500. Sajátosságok határérték figyelés eseményjelzés terjedelmes szövegkijelzés statisztika (jelentés) min- / max- és középértékkel

Paraméter csoport. Alapbeállítások

Használati utasítás MCC-10

G TAC Forta M MŰSZAKI ADATOK 1 (8) Szelepmozgató motor

Meddő teljesítmény szabályzó termékcsalád

A rendszerbe foglalt reléprogram, 1954 óta. Szilárdtest relék optocsatolóval, bekapcsolás a feszültség nullátmeneténél vagy nem szinkronizált módon

Quantometer 2.0 Fogyasztásmérő program és illesztőkészülék

DT1100 xx xx. Galvanikus leválasztó / tápegység. Kezelési útmutató

Telepítési utasítás ORU-30

PQRM Ux Ix xx xx (PS) Háromfázisú multifunkciós teljesítmény távadó. Kezelési útmutató

Használati útmutató. Automatikus TrueRMS multiméter USB interfésszel AX-176

Profi2A Axis Driver (telepítés)

Mérési útmutató. A/D konverteres mérés. // Első lépésként tanulmányozzuk a digitális jelfeldolgozás előnyeit és határait.

NMT (D) MAX (C) Beépítési és kezelési kézikönyv. változat a v6 dokumentum alapján. 1 / 15 Tel.: 1/ Fax: 1/

KIT-ASTER1 és KIT-ASTER2

J1000 Frekvenciaváltó sorozat

Kanadai DOC közlemény Fontos biztonsági utasítások fejezet Üzembehelyezés A monitor kicsomagolása... 4

Szabályozható DC tápegység. AX-3005DBL-egycsatornás AX-3005DBL-3-háromcsatornás. Használati útmutató

MagFlux ELEKTROMÁGNESES ÁRAMLÁSMÉRŐK BROCHURE HU 3.05 MAGFLUX BROCHURE 1401

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

TÁVVEZÉRLŐ KÉSZÜLÉK RE-4K

LPT illesztőkártya. Beüzemelési útmutató

Termékismertető BRE2-SG típusú kombikészülék egyszerű bináris ki- és bemenettel

Üzembe helyezési és telepítési kézikönyv. S Sorozat Duplasugár

TRIMx-EP DIGITÁLIS SZINKRON KAPCSOLÁS TRANSZFORMÁTOROK. Alkalmazási terület

T E R M É K I S M E R T E T Ő

Yale CORNI Szerelési útmutató az 570-es elektromos zárhoz

R2T2. Műszaki leírás 1.0. Készítette: Forrai Attila. Jóváhagyta: Rubin Informatikai Zrt.

HIBAMENTES MUNKAVÉGZÉS - FÁRADSÁG NÉLKÜL

DT920 Fordulatszámmérő

THNG IBMSZ Beltéri műszerszekrény Típusdokumentáció kiterjesztés

MS-DH-01 Horogba akasztható Darumérleg család Gépkönyv

Katalógus. BUDAPEST 1064 RÓZSA UTCA 90. TEL. (06-1) FAX. (06-1) Web:

72-es sorozat - Folyadékszintfigyelõ relék 16 A

K_EITS8, Multichannel Impedance Meter K_EITS8, nyolc csatornás elektromos impedancia mérő berendezés

ProCOM GPRS ADAPTER TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ. v1.0 és újabb modul verziókhoz Rev

Merlin Gerin. Katalógus. Védelem, automatika és irányítástechnika Sepam készülékcsalád Sepam 2000 Sepam Sepam 100

G É P K Ö N Y V ENVIRO 600 FOLYAMATOS MŐKÖDÉSŐ FÜSTGÁZ EMISSZIÓ MÉRİ BERENDEZÉS. Gyártó: STIEBER LEVEGİTISZTASÁG-VÉDELEM

CBTE - UNI 10 MOSÁSVEZÉRLŐ készülék

3 Tápegységek. 3.1 Lineáris tápegységek Felépítés

S8VK-G (15/30/60/120/240/480 W-os típusok)

Használati útmutató. 1.0 verzió október

Szakmai ajánlás. az egységes villamos energia feszültség minőség monitoring rendszer kialakítására

M-LINE 80.2 M-LINE M-LINE Kezelési utasítás..autoradiokeret.

2-VEZETÉKES KAPUTELEFON RENDSZER. Memória egység VDT SC6V. VDT-SC6V Leírás v1.2.pdf

Gépjármű fekete doboz az útvonalrekonstrukció új eszközei

TC3XY NT/MT Beléptető rendszer 1.0 verzió Telepítési Útmutató

DREHMO i-matic elektromechanikus hajtások

KFUV1 és a KFUV1A típusú

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. (51) Int. Cl.: B41J 2/175 ( )

CALL FPI CALL FCRI CALL FS CALL FCRS

Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére

SOROMPÓ. Beninca VE.650 sorompó DA.24V vezérléssel 1. oldal. Használati útmutató és alkatrészlista

GC1C / GC2C Zár, kapu és sorompó vezérlő. Használati utasítás Magyar

Automatikus számtárcsa impulzus mérőberendezés

Üzemeltetési utasítás

Programozható logikai vezérlõk

LOGSYS LOGSYS ECP2 FPGA KÁRTYA FELHASZNÁLÓI ÚTMUTATÓ szeptember 18. Verzió

Generátor harmadik harmonikus testzárlatvédelem funkcióblokk leírása

Xenta Szabadon programozható LonWorks alapú szabályozókészülék-család

ACNSEM2 Forgalom irányító lámpa vezérlés 2 lámpához

Wilarm 2 és 3 távjelző GSM modulok felhasználói leírása

DGSZV-EP DIGITÁLIS GALVANIKUS SZAKASZVÉDELEM. Alkalmazási terület

Az Ön kézikönyve OMRON E5 R

Inverteres hegesztőgép MMA (elektródás) hegesztéshez CW-BL130MMA CW-BL145MMA CW-BL160MMA CW-BL200MMA CW-BL160G CW-BL200G KEZELÉSI UTASÍTÁS

Felhasználói kézikönyv

Conrad Szaküzlet 1067 Budapest, Teréz krt. 23. Tel: (061) Conrad Vevőszolgálat 1124 Budapest, Jagelló út 30. Tel: (061)

SMD Kiforrasztó Állomás. Hőmérséklet kontroll, Digitális kijelző, Antisztatikus kivitel SP-HA800D

"MD 3060" digitális hőmérő

SZABÁLYOZHATÓ DC TÁPEGYSÉG DPD SOROZAT

Hagyományos tűzjelző rendszer

Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 3. FEJEZET

Szerelési, üzemeltetési útmutató

1. Kombinációs hálózatok mérési gyakorlatai

Kézikönyv. Terepibusz-interfészek, terepi elosztók MOVI-SWITCH vezérlésére. Kiadás: / HU

UEP 01/1. Unicontact Embedded PSTN modem. Kezelési és karbantartási útmutató. Dok. No. UEP M 2007/08

Telemetrikus (távmérő) meteorológiai állomás

A biztonságos használatra vonatkozó megjegyzések

KÉPZETT VILLANYSZERELŐ SZAKEMBER

S324 vezérlőmodul szennyvízátemelők villamosításhoz.

IDAXA-PiroSTOP HI1 Hurokkezelő 1 intelligens hurokhoz 2004/0177/063 Terméklap

VIBROCONTROL Nagy érzékenységű rezgésvédelem maximális üzembiztonságért. C1344e

Átírás:

XII. évfolyam 7. szám ELEKTRONIKAI-INFORMATIKAI SZAKFOLYÓIRAT 890 Ft 2003. november Jármû-elektronika

Gyorsulásszenzorok az autóiparban (2. rész) SZEGEDI ANDRÁS Az elôzô részben bemutatásra került az autóiparban használt gyorsulásszenzorok öt különbözô fajtája, a felületi és tömbi mikromechanikai eljárással készült, a piezoelektromos és piezorezisztív, valamint a termodinamikai elven mûködô. Ezek közül az elsô négy a hagyományos erô-rúgó-elmozdulás elvet használja, míg az utolsó (újdonságként) a szabad hôáramlást kihasználva mûködik. Ebben a részben három szenzort szeretnék bemutatni az általam önálló laboratórium és késôbb diplomamunka keretein belül tervezett mérôrendszer segítségével, valamint ismertetném ezek felhasználási területeit az autóiparon belül. Munkámhoz használt szenzorok kiválasztásánál a kritériumok a következôk voltak: méréshatár: ±1... ± 2 g DC-mérési lehetôség maximális mérési frekvencia min. 50 Hz (lineáris tartomány) áramkörbe építhetô (furat- vagy felületszerelt) tokozás V cc <12 V mûködési hômérséklet-tartomány legalább: 20 +80 ºC A kiválasztásnál fontos szempont volt továbbá, hogy a szenzorok különbözô mûködési elvûek legyenek. Az összeállításba bekerült a VTI szenzora, amely bár a legrégebbi technológiával készült, az autóipar ezt a típust mégis már évek óta sikeresen használja különbözô ESP-rendszerekben (lásd késôbb). Ezt a szenzort építi be pl. a PSA konszern (Peugeot, Citroën) és a Volkswagen-csoport is a rendszereibe. Ennek egyik legnagyobb elônye, hogy az érzékenysége 1.200 V/g, ami nagyon egyszerû és könnyû feldolgozást tesz lehetôvé. A másik két szenzor analóg érzékenysége ennek kb. negyede, viszont azok ellentétben a VTI-vel rendelkeznek egy digitális, PWM (impulzusszélesség-modulált) kimenettel, ami már számítógéppel közvetlenül feldolgozható, feleslegessé téve az analóg/digitális átalakítást, megspórolva ezzel jó pár hibalehetôséget. Természetesen, ha analóg kimenetre van szükség, egy egyszerû, megfelelôen méretezett RC-integrátorral elôállíthatjuk a kívánt analóg jelet (I. táblázat). A kiválasztott szenzorok közül az ADXL és a MEMSIC rendelkezik PWM kimenettel is, tehát a mérôrendszert mindenképpen úgy kellett megtervezni, hogy ilyen típusú jelek mérésére is alkalmas legyen. Természetesen ezenkívül megvan a lehetôség az analóg feszültségszintû mérésre is integrátorok használatával (a VTI szenzor csak analóg kimenettel rendelkezik). Mivel többek között a szenzorok különbözô hômérsékletfüggéseit is vizsgálni szeretnénk, ezért szükség volt egy pontos hômérsékletszenzor beépítésére is. A tervezésnél fontos szempont volt, hogy a panel ne legyen nagyobb, mint a tanszéken mûködô hôkamrák belsô tere. Ezt sikerült elérni, a panel mérete kb. I. táblázat. A gyorsulásérzékelôk legfontosabb tulajdonságainak összefoglaló táblázata MXD 2125NW ADXL 202 VTI C28H1A [egység] Mûködési elv termodinamikus kapacitív kapacitív [ ] (felületi) (tömbi) Mérési tartomány ±2 ±2 ±1,7 [g] Mérési irányok X és Y X és Y Csak X [ ] Mûködési feszültség 3... 5,25 3... 5,25 4,75... 5,25 [V] Áramfelvétel 2,5 3,9 0,6... 1 4 [ma] Kimenet digitális (PWM) analóg/digitális analóg [ ] (PWM) Mûködési 40 +105 55... +125 55... +125 [ºC] hômérséklet tartomány Tárolási 65 +150 65... 150 n.a. [ºC] hômérséklet tartomány Túlterhelhetôség 50 000 1000 20 000 [g] (bekapcsolt állapotban) Tokozás (QC14)LCC8 LCC8 DIP8 SMD [ ] Maximális felbontás <1 5 n.a. [mg] Analóg érzékenység n.a. 310 1200 [mv/g] PWM érzékenység 12,5 12,5 n.a. [% of d-cycle] Sávszélesség 17 analóg: 5000 50 [Hz] (Lin. tart. -3 db, -5%) digitális: 500 Nemlinearitás 0,5 0,2 max. 40 mg [% of FS] Nullpont eltolódás n.a. 2 max 125 mg [mg/ºc] [Ttot] Keresztirányú érzékenység n.a. +/-2 5 [%] Zajsûrûség 200 500 max. 5 V/rms ug/(hz) Bekapcsolódási idô <0,1 0,1 n.a. [sec] Önteszt van van van [ ] 70 x 120 mm. A rögzítôfuratok segítségével állványra felerôsíthetô a panel, így kényelmesen és egyszerûen mérhetünk statikus gyorsulásokat a 1 0 1 g tartományban. Minden szenzor analóg jele és a hômérsékletszenzor jele, azaz összesen 6 jel BNC csatlakozókon van kivezetve. A rendszer tápellátása egy darab 9 V-os elemrôl történik, a hômérséklet mérését pedig egy Analog Devices TMP36 szenzor biztosítja. A mérôrendszer lelke egy PIC16F877-es mikrokontroller, ami minden szükséges perifériával rendelkezik (megfelelô számú A/D átalakító, PWM bemenet, USART kommunikációs busz). A tervezés minden folyamata OrCAD 9.1-es tervezôrendszerben készült (1., 2. ábra). A mérôrendszer programjai A megtervezett mérôrendszer egyik legfontosabb eleme a PC-n futó mérôprogram. Ennek fejlesztése C++ Builderben történt. A program a PC soros (RS 232) portján keresztül kommunikál a mérôpanelen lévô PIC mikrokontrollerrel. Az adatkommunikáció paraméterei a programból változtathatók (soros port kiválasztása, adatsebesség, adatátviteli mód). A programmal az aktuális mérést grafikus, vagy egyszerûbb, numerikus módon is figyelemmel kísérhetjük (3. ábra). 6 JÁRMÛ-ELEKTRONIKA E-mail: info@elektro-net.hu

1. ábra. A mérôrendszer elvi rajza 2. ábra. A megvalósított mérôpanel 4. ábra. Mérési állományok utólagos megnyitása (táblázatos forma) 3. ábra. A PC-program adatrögzítés közben A mért eredmények rögzíthetôk (táblázatos formában), késôbb behívhatók, feldolgozhatók, menthetôk. A mérések rögzítésének formátumát úgy határoztuk meg, hogy azt a késôbbiekben a Microsoft Excel táblázatkezelô programmal könnyedén feldolgozhassuk. A mérési fájlban, táblázatos formában, soronként egy mérési sorozatot tárolunk, azokat vesszôvel vagy pontosvesszôvel elválasztva, V- ban megadva. Ezek utána különbözô makrók segítségével pillanatok alatt táblázatos formába alakíthatók, továbbértékelhetôk. A PIC analóg/digitális átalakítója 10 bites, a soros adatkommunikáció alapja pedig 8 bit, tehát minden mérési eredményt, (feszültségérték) 2 bájton küldhetô fel. Ezért elôször a felsô, majd az alsó bájt kerül a soros buszra, a kapott értékeket a PC fûzi össze és tárolja le. A program végleges változata már képes az Excel használata nélkül is kiértékelést végezni. Ehhez utólag megnyithatók a korábban már rögzített mérési állományok, az adatok megjeleníthetôk táblázatos és grafikus formában is (4., 5., ábra). A választott mikrokontrollerhez a gyártó (MicroChip, Inc.) egy saját fejlesztôkörnyezetet készített, aminek segítségével annak programjai megírhatók, lefordíthatók, tesztelhetôk. A PIC programja adatfeldolgozást az analóg mérések esetében nem tartalmaz, ott csupán a mérési eredmények soros buszon való kiküldése történik. Mivel csak egy darab A/D átalakító van, a nyolc bemenet ezeket csak multiplexelve használhatja, emiatt a mérések nem pontosan egy idôben történnek (az elsô és a hatodik mérés között az A/D átalakító átkonfi- Honlap: www.elektro-net.hu JÁRMÛ-ELEKTRONIKA 7

Biztonsági felhasználások 5. ábra. Mérési állományok utólagos megnyitása (grafikus forma) gurálása és a kapott értékek rögzítése miatt kb. 8 µs telik el), mivel a mérôrendszert statikus, illetve idôben lassan változó mozgások érzékelésére szeretném használni, ez nem okoz problémát. A program részletes bemutatásától a szûk terjedelmi lehetôségek miatt eltekintek. Légzsák Az elsô és talán legalapvetôbb felhasználási terület az úgynevezett passzív biztonság területén a légzsák. Az autóiparban megkülönböztetjük az úgynevezett aktív és a passzív biztonságért felelôs berendezéseket. Aktív biztonsági berendezések alatt azokat a rendszereket értjük, amelyek az esetleges baleset elkerülését, illetve megelôzését segítik. Ilyen rendszer például a blokkolásgátló vagy a menetstabilizáló rendszer. Az aktív biztonsági berendezések csoportjába azokat a felszereléseket soroljuk, amelyek már a baleset bekövetkezése után lépnek mûködésbe, csökkentve annak káros hatásait. Ide sorolhatjuk a légzsákokat, illetve az övfeszítô rendszereket is. A légzsákok indítórendszerében felhasznált gyorsulásérzékelôk általában kapacitív vagy piezorezisztív elven mûködnek. Ezen érzékelôk mérési tartománya általában 5 50 g, a mérési frekvenciájuk szintén magas, hiszen a balesetkor bekövetkezett lassulás (hátulról történt baleset, úgynevezett ráfutás esetén gyorsulás) általában tüskeszerûen jelentkezik. Ebbôl következôen statikus (DC) mérési képességre nincs szükség. Ezeknél a szenzoroknál különösen nagy hangsúlyt kell fektetni a megbízhatóságra és a hosszú élettartamra. A gyorsulásérzékelôk különbözô felhasználási területei az autóiparban A gyorsulásérzékelôk felhasználási területét alapvetôen két nagy csoportra oszthatjuk: vannak, amelyek biztonsági berendezésekben, mások kényelmi kiegészítõkben használatosak. Persze a határvonalak nem túl élesek, vannak átmenetek és természetesen ezeken a csoportokon belül rengeteg felhasználási lehetôség. A szenzorok és általában a biztonságtechnikai rendszerek egyéb berendezéseivel szemben támasztott egyéb követelmények a következôk: hômérsékleti tartomány a motortérben: 40 +95 ºC hômérsékleti sokkok: 40 120 ºC, minimum 800 ciklus páratartalom: 10 100% vibráció: 50 2000 Hz (általában min. 10 g) egyéb feltételek: víz, olajok, sók, savak, alkoholok, glikolok, mosószerek, agresszív gázok szennyezése illetve jelenléte, esetenként túlnyomás 6. ábra. Gyorsulásérzékelôk néhány felhasználási lehetôsége az autóban 7. ábra. A vezetôoldali légzsák szétszedett állapotban ESP Az elektronikus menetstabilizáló rendszerek (ESP electronic stability program) ezzel szemben teljesen más követelményeket támasztanak a szenzorokkal szemben. Ezen rendszerek feladata vészhelyzetben a gépjármû stabilitásának fenntartása, a kitörés megakadályozása. A rendszer bemenetei általában: keresztilletve hosszirányú gyorsulás, az autó függôleges tengely körüli szöggyorsulása, a kormányszögállás, fék-, illetve gázpedálállás, motorfordulatszám, illetve a kerekek forgási sebessége (ezt az információt a rendszer a blokkolásgátló elektronikájától kapja). Ezen adatok alapján, ha a rendszer veszélyhelyzetet érzékel, azaz az autó elkezd kicsúszni valamelyik irányba, akkor a kerekek külön-külön való fékezésével, illetve esetlegesen gázadással stabilizálja és a megfelelô kanyaríven tartja a gépkocsit. A rendszer 8 JÁRMÛ-ELEKTRONIKA E-mail: info@elektro-net.hu

nagyon bonyolult szabályozást igényel, hiszen elôfordulhat, hogy például az ívkülsô kerékre nyomatékot kell adni, miközben az ívbelsôt túlpörgés miatt fékezni kell. Az itt használt szenzorok mérési tartománya általában nem nagyobb, mint ±0,8 2 g, a felbontásuk nagyon nagy és pontos, a mérési frekvenciájuk alacsony, max. 200 Hz körüli. Természetesen szükség van a statikus mérési képességre is, ezért ilyen célra általában piezorezisztív, legújabban kapacitív szenzorokat használnak. A nagy megbízhatóság és a hosszú élettartam természetesen biztonságtechnikai berendezésrôl lévén szó itt is követelmény. Fekete doboz Nem feltétlenül passzív biztonsági berendezés, de talán ide sorolhatóak a baleseti adatrögzítô rendszerek, az úgynevezett fekete dobozok. Ezek feladata, hogy egy esetleges baleset megtörténtekor az autó legfontosabb adatait rögzítse (keresztirányú, ill. hosszirányú gyorsulás, szögsebesség, kormányszög és fékpedálállás stb.). Az itt használt gyorsulásérzékelôk mérési tartománya és frekvenciája általában megegyezik a légzsákoknál használt szenzorokéval, míg a szöggyorsulásadó majdnem azonos az ESP-nél használttal. Nagyon fontos, hogy az ilyen rendszereknek teljesen önállóan, autonóm módon, mindentôl függetlenül kell mûködniük, hogy egy baleset bekövetkezése esetén biztosan mûködjenek (például saját akkumulátorral kell rendelkezzenek, a baleset bekövetkeztét magától kell érzékelniük stb.) Ezt a rendszert autókban sajnos még nem igazán használják, de rengeteg kutatási, illetve fejlesztési projekt foglalkozik ezzel a témával. elôbb felsorolt adatok és nincs szükség a régi módszerekre ( piros vonal, kréta, mérôszalag, bohóckerék ). Ebbôl az összeállításból is látszik, hogy manapság a gyorsulásérzékelôk felhasználási lehetôségei szinte kimeríthetetlenek. Az említett dolgokon kívül persze még rengeteg felhasználási terület létezik, és az autógyártók mindig újabb és újabb lehetôségeket találnak ki. A cikk következô, egyben befejezô részében a rendszerrel elvégzett mérések eredményeit mutatom be. (folytatjuk) 9. ábra Az Inventure Autóelektronika által fejlesztett XL-Meter képei 8. ábra. Az Inventure Autóelektronika által kifejlesztett Crash Meter baleseti adatrögzítô Gyorsulás- és rugalmasságvizsgálat Az autók menettulajdonságainak összehasonlítására szabványos gyorsulás-, illetve lassulásméréseket vezettek be. Ezek általában: Gyorsulásvizsgálatok: 0-ról 50, 100 és 130 (esetenként 160) km/h sebességre Rugalmasságvizsgálatok: 60-ról 100 km/h-ra utolsó elôtti fokozatban 80-ról 120 km/h-ra legmagasabb fokozatban Fékhatásvizsgálatok: 100 km/h-ról, teljes terheléssel, elsô fékezés ( hideg fékek ) 100 km/h-ról, teljes terheléssel, további 9 fékezés ( meleg fékek ) A vizsgálatokat nagyon megkönnyíti egy gyorsulásmérôvel mûködô rendszer, mint amilyen az Inventure Kft. által kifejlesztett XL-Meter. Ezzel a mûszerrel egyszerûen, pontosan és gyorsan meghatározhatók az Honlap: www.elektro-net.hu JÁRMÛ-ELEKTRONIKA 9