IX. előadás. 2010. április 1.



Hasonló dokumentumok
Bevezetés a lézeres anyagmegmunkálásba

Termodinamika (Hőtan)

Korszerű -e a hő h tá ro s? T th ó Zsolt

Belső energia, hőmennyiség, munka Hőtan főtételei

Termodinamika. Belső energia

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

1. Feladatok a termodinamika tárgyköréből

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

Termodinamika. 1. rész

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

Művelettan 3 fejezete

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

Fogorvosi anyagtan fizikai alapjai 6.

Hőtan I. főtétele tesztek

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Digitális tananyag a fizika tanításához

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)

Diffúzió 2003 március 28

Fizika minta feladatsor

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Légköri termodinamika


Feladatlap X. osztály

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Polimerek fizikai, mechanikai, termikus tulajdonságai

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Tömeg (2) kg/darab NYLATRON MC 901 NYLATRON GSM NYLATRON NSM Átmérő tűrései (1) mm. Átmérő mm.

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

Reológia Mérési technikák

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

Elektromos áramerősség

Beszéljünk egy nyelvet (fogalmak a hőszigetelésben)

Transzportfolyamatok. Alapfogalmak. Lokális mérlegegyenlet. Transzportfolyamatok 15/11/2015

Osztályozó vizsga anyagok. Fizika

A kémiai és az elektrokémiai potenciál

MŰANYAGOK TULAJDONSÁGAI

TestLine - Fizika hőjelenségek Minta feladatsor

Polimerek vizsgálatai

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok

Méréstechnika. Hőmérséklet mérése

Fázisátalakulások vizsgálata

Mérésadatgyűjtés, jelfeldolgozás.

dinamikai tulajdonságai

Szilárd testek rugalmassága

XT - termékadatlap. az Ön megbízható partnere

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Polimerek vizsgálatai 1.

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

Hőtágulás - szilárd és folyékony anyagoknál

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

Termokémia. Termokémia Dia 1 /55

tervezési szempontok (igénybevétel, feszültségeloszlás,

Termoelektromos hűtőelemek vizsgálata

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév

Az elektromágneses tér energiája

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Fázisátalakulások vizsgálata

Ellenáramú hőcserélő

ÜVEG FIZIKAI TULAJDONSÁGAI,

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Kovács Viktória Barbara Laza Tamás Ván Péter. Hőközlés.

1. SI mértékegységrendszer

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből december 8. Hővezetés, hőterjedés sugárzással

Fázisátalakulások vizsgálata

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

FIZIKA FELMÉRŐ tanulmányaikat kezdőknek

A gyakorlat célja az időben állandósult hővezetési folyamatok analitikus számítási módszereinek megismerése;

Munka, energia, teljesítmény

POLIMERTECHNIKA Laboratóriumi gyakorlat

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

ÁLTALÁNOS METEOROLÓGIA

(2006. október) Megoldás:

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

Rugalmas állandók mérése

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1

Átírás:

Bevezetés s az anyagtudományba nyba IX. előadás 00. április. Bemetsz metszéses ses ütőpróba A törés természetét vizsgáló szilárdsági vizsgálat: egyszerűen megvalósítható, de kvalitatív ( összehasonlításra jó) az anyag számára legelőnytelenebb körülmények között hajtjuk végre ) alacsony hőmérséklet, ) nagy deformációs sebesség (ütésszerű igénybevétel), 3) 3-tengelyű feszültség (bemetszés (V-notch) mentén)) Charpy-féle elrendezés (USA) Izod-féle elrendezés végső magasság kezdeti magasság ütési energia ~ (h-h ) IX/

Képlékeny-rideg átmeneti hőmérséklet Növekvő hőmérséklettel nő a duktilitás (pl. %E) és ezzel együtt a képlékeny-rideg átmenethez tartozó kritikus hőmérséklet, T c (DBTT, ductile-to-brittle transition temperature) FCC fémek (pl. Cu, Ni) Ütési energia Rideg BCC fémek (pl. Fe T < 94 C-on) műanyagok Képlékeny(ebb) Magas szakítószilárdságú anyagok (σy> E/50) T c Hőmérséklet pl. A34 acél -59-4 6 4 79 o C pontos helyzete, azaz hogy T c az átmeneti tartományon belül hol van, megállapodás kérdése; minél konzervatívabb egy szabvány, annál magasabb hőmérsékletre helyezi T c -t IX/3 Ne használd az anyagot átmeneti hőmérséklete alatt! A II. világháború iberty sorozatú hajói olyan acélból készültek, melynek T c 0 o C. A 4 o C körüli hőmérsékletű vízekben ezek rendszeresen derékba törtek. IX/4

Kifárad radás / Kifáradás ciklikus (dinamikus, fluktuáló) feszültség hatására bekövetkező szakadás. Csípő protézis ciklikus terhelés (járás). Hajó ciklikus hullámterhelés. Számítógép chip ciklikus hőterhelés. IX/5 Kifárad radás / S S A feszültség időben változik - kulcs paraméterek S, σ m, és a frekvencia A kifáradás... - akkor is szakadáshoz vezethet, ha σ max < σ c. - a mechanical balesetek 90%-át okozza. IX/6

Kúszás, hidegfolyás / A minta magasabb hőmérsékleten, állandóσfeszültség hatására bekövetkező deformációjának időfüggését írja le. σ,ε σ ε& állandósult ε t 0 t A pillanatszerű deformációt követően a kúszásgörbe a következő szakaszokra bontható: Elsődleges kúszás: a meredekség, vagy kúszási sebesség idővel csökken. (oka def. keményedés) Másodlagos kúszás: állandósult, azaz állandó meredekségű/sebességű szakasz. (a def. keményedés és a megújulás kiegyenlített) Harmadlagos kúszás: a meredekség, vagy kúszási sebesség idővel nő. A kúszás jellemzői: a másodlagos, vagy állandósult kúszási sebesség (ε állandósult ) és a kúszási élettartam, vagy szakadási idő (t r ). IX/7 Kúszás / Fémek esetén akkor jelentős, ha T > 0.4 T op. feszültség és/vagy hőmérséklet nő harmadlagos elsődleges másodlagos rugalmas feszültség kitevő (anyagi jellemző) Qc n RT állandós. K e & ε σ a kúszás aktivációs energiája (anyagi jellemző) kúszási seb. konst. alkalmazott feszültség IX/8

Hőtani alapok Termikus tulajdonságok: hogyan válaszol az anyag a hőközlésre. Viselkedés különböző hőmérsékleteken, illetve kölcsönhatás hőátadás/melegedés. Mennyi hő szükséges egy adott válaszhoz: hőkapacitás Hogyan (milyen gyorsan) reagál az anyag: hővezetőképesség Milyen hatása van a hőközlésnek a méretre: hőtágulás IX/9 Hőkapacitás Általánosan: Az anyag hőfelvevő/hőelnyelő képességének mértéke. Számértéke: A hőmérséklet K-nel történő emeléséhez szükséges hőmennyiség. Hőkapacitás (J/K) C dq dt (Hő)energia bevitel (J) Hőmérsékletváltozás (K) A hőközlés két módja: V vagy p állandó C v : Állandó térfogaton mért hőkapacitás belső energia C p : Állandó nyomáson mért hőkapacitás belső energia + térfogati munka C p > C v Tökéletes gázok esetében a kétféle moláris hőkapacitás közötti különbség az egyetemes gázállandó, c p -c v R (8,34 J/mol K) értékével egyenlő, szilárdtestek esetén (szobahőmérsékleten) az eltérés elhanyagolható. IX/0

Fajlagos hőkapacith kapacitás A fajlagos hőkapacitás (régi nevén fajhő), megadja, hogy mennyi hőt kell közölni egységnyi tömegű anyaggal ahhoz, hogy hőmérséklete egy fokkal megemelkedjék. Jele: c, mértékegysége: J/(kg K). c dq m dt ahol m a rendszer tömege. A moláris hőkapacitás (régi nevén mólhő), megadja, hogy mennyi hőt kell közölni egységnyi anyagmennyiségű anyaggal ahhoz, hogy hőmérséklete egy fokkal megemelkedjék. Jele: c m, mértékegysége: J/(mol K). c n dq n dt ahol n a rendszer anyagmennyisége. IX/ Rácsrezgések sek Fononok (Hogyan raktároz rozódik a hőenergia h az anyagban?) A rácsrezgések rugalmas hullámok, amelyek az adott anyagbeli hangsebességgel terjednek. Fonon: a rácsrezgések kvantuma (néha maga a hullám) saját rezgések λ csökken ν nő Nem csak az energia tárolásában, hanem annak szállításában is szerepet játszanak. 0 3 4 6... http://en.wikipedia.org/wiki/phonon E tárolódhat még pl. szabad elekronok révén is (fémek, félvezetők) IX/

A hőkapacitás hőmérsékletfüggése A(z állandó térfogaton mért) hőkapacitás a hőmérséklet növekedésével 3R-ig nő. 3R c v állandó gázállandó 8,34 J/mol K c v c v AT 3 0 0 θ D T (K) Debye hőmérséklet (általában kisebb mint T szoba ) a legtöbb szilárd anyagra: J ( T 98K) 5 mol K Az atomi kép: Az energia rácsrezgések formájában tárolódik. A T növekedésével a rezgések átlagos energiája nő. c V IX/3 Néhány anyag fajlagos hőkapacitása növekvőc p Polimerek Polipropilén Polietilén Polisztirén Teflon Kerámiák Magnézium-oxid (MgO) Korund (Al O 3 ) Üveg Fémek Alumínium Acél Volfrám Arany c p (J/kg K) (szobahőmérsékleten) 95 850 70 050 940 775 840 900 486 38 8 IX/4

Hővezetőképesség T T >T Hőfluxus A hővezetőképesség (λ) azt mondja meg, hogy az anyag két, egymással párhuzamos, egymástól távolságban levő sík rétege között, egységnyi A felületen másodpercenként mekkora Q hőmennyiség áramlik át K hőmérsékletkülönbség ( T) hatására. hővezetőképesség hőmennyiség távolság / (felület hőmérséklet különbség) λ Q A T q dt dx [Q]W A hővezetőképesség mértékegysége: [λ]j/(m K s), azaz W m - K -, v. W/(m K). Szokásos: hőfluxus, q (J/m s) - hővezetőképesség (J/m K s) hőmérsékletgradiens (K/m) q -λ( T/ x) (angol irodalom: λ k) IX/5 Feladat: Mekkora a lyukacsos tégla és az expandált polisztirol (EPS) λ-ja? Miként viselkedik egy olyan fal, melynél 38cm-es téglát 8cm vastag EPS sel szigetelünk? Építőipari anyagok adatlapjai szerint a hővezetőképességek a következők: T T λ λ T λtégla 0. 43 λeps 0. 048 λ W mk W mk Q A T pl. Porotherm 38 HS pl. Austrotherm AT-N30 Vizsgáljuk meg miként viselkedik hővezetőképesség szempontjából az ábrán látható rendszer, mely két egymással érintkező rétegből áll, melyek vastagságai és hővezetőképességei rendre,, illetve λ és λ. Ha T >T, az energia az ábrán balról jobbra terjed. A hővezetőképességet definiáló egyenletből az időegység alatt átáramló energiát kifejezve: T Qλ A Stacionárius állapotban a rétegek bármely felületén időegység alatt ugyanannyi energia kell átáramoljon. Ha nem így lenne, akkor bizonyos pontokban az energia felhalmozódhatna, vagy eltűnhetne. Ennek következtében az is igaz, hogy stacionárius állapotban egy időben állandó hőmérsékleteloszlás alakul a rendszer két szélső felülete, azaz a T, illetve T hőmérsékletű síkok között. IX/6

Ha T -vel jelöljük a tégla-eps határfelület közös hőmérsékletét és T T λ Q Q ( T T ) ( T T ) Q illetve Q λ A λ A, T λt + λt λ + λ Feladat folyt. Az EPS+tégla rétegrendszert helyettesítő homogén rendszer hővezetőképessége legyen λ, vastagsága pedig +. Ez termikusan akkor lesz ekvivalens a kétréteg rendszerrel, ha felületén időegység alatt szintén QQ Q energia áramlik át. Tehát a 8cm vastag hőszigetelés a falazat hővezetőképességét kb. 5%-kal csökkenti. ( T T ) Q λ A ( T T ) ( T T ) Q Q Q λ A λ λ ( T T ) A Q λt + λt T λ + λ λ W W 0.048 0.43 λλ λ mk mk W 38cm W 8cm λ + λ 0.048 + 0.43 + + mk8cm+ 38cm mk8cm+ 38cm Egy ilyen hőszigetelt falazat hőáteresztése (felületegységre és időegységre vonatkoztatva) egy kb. 6cm vastag téglafal hőáteresztésével egyezik meg. 0.06 W mk IX/7 Néhány anyag hővezetőképessége növekvő λ λ (W/m K) Fémek Alumínium 47 Acél 5 Volfrám 78 Arany 35 Kerámiák MgO 38 Korund (Al O 3 ) 39 Nátronüveg.7 krist. SiO.4 Polimerek polipropilén 0. polietilén 0.46-0.50 polisztirén 0.3 Teflon 0.5 Az energiaátadás módja Rácsrezgések (fononok) és szabad elektronok mozgása Rácsrezgések áncmolekulák rezgése/forgása IX/8

Fémek: a szabadelektronok hozzájárulása a hővezetéshez sokkal nagyobb, mint a fononoké. (Sokan vannak, gyorsabban mozognak és kevésbé szóródnak.) Ilyenkor igaz awiedemann-franz törvény: λ σ T π 3 k e B.44 0 8 W Ω K orenz szám ahol σ az elektromos vezetőképesség, T az abszolút hőmérséklet, λ a hővezetőképesség. Ötvözés: szórócentrumok a hővezetőképesség (és az elektromos vezetőképesség) csökken. Réz-cink ötvözet hővezetőképessége a cink tartalom függvényében IX/9 Kerámiák: csak fononok kisebb hővezetőképesség. A szóródás szerepe: Amorf forma: λkisebb (ld. táblázat). A szóródás T-vel növekszik A levegő hővezetőképessége ~0,0 W/m K ha kis hővezetőképességet akarunk: porózus anyagok. A hőszigetelő anyagok többsége porózus kerámia. Polimerek: néhány tized W/m K alacsony hőmérsékleteken jó hőszigetelők (habosítás). IX/0

Hőtágulás Hőmérsékletváltozás hatására az anyagok mérete megváltozik. l végső l kezdeti α l l kezdeti (T végső T kezdeti ) lineáris hőtágulási együttható ([α l ]/K vagy / C) kezdeti végső Tkezdeti Tvégső Atomi szinten: az átlagos kötéstávolság ált. növekszik T-vel. Energia r(t ) r(t 5 ) Atomi távolság (r) növekvő T T5 T A hőtágulás a kötési energia-kötéstávolság függvény aszimmetrikus jellegéből köv. IX/ Néhány anyag hőtágulási együtthat tthatója α l (0-6 /K) szobahőmérsékleten Polimerek Polipropilén 45-80 Polietilén 06-98 Polisztirén 90-50 Teflon 6-6 Fémek Alumínium 3.6 Acél Volfrám 4.5 Arany 4. Kerámiák Magnesia (MgO) 3.5 Alumina (Al O 3 ) 7.6 Nátronüveg 9 Krist. SiO 0.4 Erős kötés meredek potenciálgödör kicsi α l Gyenge kötés nagy α l (pl. polimerek) Kerámiák esetén anizotróp. feszültség törés Ha izotróp: OK. Fém-kerámia kötés: Kovar/Invar + Pyrex IX/

Hőtágulás s Hőmérsékletváltozás hatására az anyagok térfogata is megváltozik. V V 0 β T A legtöbb anyagra a hőtágulás irányfüggő (anizotróp). Azokra az anyagokra, melyekre izotróp: β 3α l térfogati hőtágulási együttható ([α l ][β]/k vagy / C) IX/3 Hőmérsékletváltozás/ s/hőterhelés hatására kialakuló feszülts ltség Esetek: Szabadon álló homogén, izotróp anyag, egyenletes hűtés, melegítés (nincs hőmérsékletgradiens) feszültségmentes Valamely irányban rögzített/kitámasztott homogén, izotróp anyag, egyenletes hűtés/melegítés (nincs hőmérsékletgradiens) feszültség σ E α l T Szabadon álló homogén, izotróp anyag, gyors hűtése/melegítése hatására az anyagban hőmérsékletgradiens alakul ki feszültség Amikor előnytelen a kicsi hővezetőképesség: kerámiák Thermal Shock Resistance parameter, TSR σ f λ/e α l A hősokkal szemben ellenálló anyagot: nagy hővezetőképesség (λ) és törési szilárdság (σ f ), valamint kicsi Young modulus (E) és hőtágulási együttható (α l ) jellemzi. pl. üveg boroszilikát üveg: Pyrex. IX/4

Space Shuttle Milyen anyagokból legyen a hővédő pajzs? szénszál erősítésű grafit (650 C) szilícium-dioxid szálakból készült téglák (400-60 C) nejlon, szilikongumi borítás (400 C) Az ideális anyag(ok): nagy op., nagy fajhő, kis hővezetőképesség, kis hőtágulás RCCReinforced carbon-carbon (>60 o C) HRSIHigh-temperature Reusable Surface Insulation (<60 o C) RSIow-temperature Reusable Surface Insulation (<649 o C) FRSIFelt Reusable Surface Insulation (<37 o C) 00µm ~90% porozitás! SiO x szálak, a szerkezetet hőkezeléssel alakítják ki belül T50ºC IX/5