Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Hasonló dokumentumok
Belső energia, hőmennyiség, munka Hőtan főtételei

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a

Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok

Termodinamika. Belső energia

Hőtan I. főtétele tesztek

Termodinamika (Hőtan)

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

Munka, energia, teljesítmény

Munka, energia, teljesítmény

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy

Hőtágulás - szilárd és folyékony anyagoknál

Hőtan 2. feladatok és megoldások

Digitális tananyag a fizika tanításához

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

Hőtan főtételei. (vázlat)

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének

Termodinamika. 1. rész

Légköri termodinamika

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

Fizika minta feladatsor

Feladatlap X. osztály

Halmazállapot-változások

Mivel foglalkozik a hőtan?

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Művelettan 3 fejezete

A termodinamika törvényei

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

TestLine - Fizika hőjelenségek Minta feladatsor

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

Szabadentalpia nyomásfüggése

Komplex természettudomány 3.

W = F s A munka származtatott, előjeles skalármennyiség.

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

Termokémia. Termokémia Dia 1 /55

Munka, energia, teljesítmény

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

DINAMIKA ALAPJAI. Tömeg és az erő

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Termodinamikai bevezető

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

TestLine - Csefi tesztje-01 Minta feladatsor

Hajdú Angéla

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

FÖL(D)PÖRGETŐK TERMÉSZETTUDOMÁNYOS HÁZI CSAPATVERSENY 2015/ FORDULÓ Téma: Tűz 5 6. évfolyam

Termodinamika. Tóth Mónika

A nyomás. IV. fejezet Összefoglalás

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Reológia Mérési technikák

Elektromos ellenállás, az áram hatásai, teljesítmény

1. Feladatok a termodinamika tárgyköréből

Hatvani István fizikaverseny Döntő. 1. kategória

GYAKORLATI ÉPÜLETFIZIKA

Fizika. Tanmenet. 7. osztály. ÉVES ÓRASZÁM: 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz::

(2006. október) Megoldás:

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Gáztörvények tesztek

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Munka, energia Munkatétel, a mechanikai energia megmaradása

Newton törvények, lendület, sűrűség

TANMENET Fizika 7. évfolyam

A hő terjedése (hőáramlás, hővezetés, hősugárzás)

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok

Folyadékok és gázok mechanikája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Munka, energia, teljesítmény

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.

Halmazállapotok. Gáz, folyadék, szilárd

Spontaneitás, entrópia

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből december 8. Hővezetés, hőterjedés sugárzással

Hőtan Az anyagok belső szerkezete, szilárd tárgyak és folyadékok hőtágulása, hőterjedés (Ez az összefoglalás tartalmaz utalásokat a tankönyv egyes

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI

Mit nevezünk nehézségi erőnek?

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása

Folyadékok és gázok áramlása

V e r s e n y f e l h í v á s

FIZIKA 10. OSZTÁLY - HŐTAN

Diffúzió 2003 március 28

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Átírás:

Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály falával. Közöttük más kölcsönhatás (pl. vonzás) nincs. A részecskék között üres tér van. A gáz nyomása a gázrészecskéknek a tartály falába való ütközéséből származó erőhatásból származik. A gáz nyomása akkor nagyobb, - ha nagyobb a gáz sűrűsége (ρ=m/v) (több részecske ütközik a tartály falával) - és nagyobb a részecskék sebessége (v) (nagyobb sebességgel ütköznek a tartály falával)

Egy részecske mozgási energiája: m 0 v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1,38 10-23 J/K Boltzmann-állandó) Tehát a gáz hőmérséklete egyenesen arányos a részecskék átlagos mozgási energiájával. (Nagyobb hőmérsékletű a gáz, ha a részecskék gyorsabban mozognak és nagyobb a mozgási energiájuk.) A gázrészecskék energiája, szabadsági foka ( jele: f ) 1 atomos gázrészecske mozgási energiája 3 koordináta irányú mozgásra bontható, forgási energiája nincs. Szabadsági foka 3 2 atomos gázrészecske (súlyzó alak) mozgási energiája 3 irányú haladó mozgásra és 2 koordináta irányú forgási energiára bontható. Szab. foka 3+2 = 5 3 vagy több atomos gázrészecske mozgási energiája 3 irányú haladó mozgásra és 3 irányú forgási energiára bontható. Szabadsági foka: 3+3= 6

Ekvipartició elve (az energia egyenletes eloszlásának elve) Minden gázrészecske mindegyik szabadsági fokára ½ k T energia jut. Egy gázrészecske energiája: f/2 k T A gáz teljes belső energiája egyenlő = a benne levő részecskék mozgási és forgási energiáinak összegével f f f Képletben: E belső = N k T = n R T = p V 2 2 2 A belső energia változása ( ΔE ) Egy rendszer vagy anyag (akár szilárd, folyékony vagy gáz) energiája kétféle módon változtatható meg: - Hőátadással, hőelvonással (melegítéssel, hűtéssel) ( Q ) - Munkavégzéssel ( W ) (pl. súrlódási munkával, vagy gáz esetén a gáz összenyomásával, vagy a gáz végez munkát, ha kitágul) Ebből adódik a hőtan I. főtétele: Egy rendszer belső energiájának megváltozása egyenlő a rendszerrel közölt hőmennyiség és a rendszeren végzett munka összegével. Képletben: ΔE = Q + W

Kísérlet: Különböző anyagokat (pl. két különböző folyadékot) melegítve megállapítható, hogy azonos idő alatt különböző hőmérsékletre melegednek fel. Tehát különböző anyagoknál ugyanakkora hőmérséklet-változáshoz különböző hőmennyiség szükséges. Képletben: az átadott hőmennyiség: Q = c m ΔT m: az anyag tömege, ΔT: az anyag hőmérsékletének változása c: fajhő, amely az anyagra jellemző állandó, amely megadja, hogy 1 kg anyag 1 C fokkal való felmelegítéséhez mekkora hőmennyiség szükséges. A fajhő mértékegysége: J/(kg C) vagy J/(kg K) pl. a víz fajhője 4200 J/(kg C) Ez nagynak számít, tehát sok hő szükséges ahhoz, hogy a víz hőmérséklete megváltozzon. Kísérlet: vízzel telt lufit gyertyalánggal melegítve a lufi nem ég el, nem lyukad ki, mert a víz belül hűti, és nagyon lassan melegszik fel. Tapasztalat: A tengerek vize lassan melegszik fel és lassan hűl ki. Egyéb gyakorlati példa: radiátor fűtésnél a víz sokáig tartja a meleget

Az I. főtételbe szereplő tágulási munka függ a gáz nyomásától és a gáz kitágulásának nagyságától: W = p ΔV Azért van negatív előjel, mert ha a gáz kitágul, térfogata nő (ΔV pozitív) viszont a belső energiája csökken, tehát a W csökkenti a ΔE-t. Vagyis összegezve: ΔE = Q + W = c m ΔT p ΔV Néhány példa a hőtan I. főtételében szereplő hőközlésre és munkavégzésre: Benzinmotor: A berobbant levegő-benzin keverék gáz felmelegszik és kitágul, lenyomja a dugattyút, munkát végez. Gázturbina: Az elégett üzemanyag; felmelegedett gáz kitágul és a turbinalapátokra áramlik, és forgatja a turbinát. Ilyen gázturbina hajtja pl. a vadászgépeket. Kísérlet: A felmelegített lombik lehűl, lecsökken a gáz térfogata beszívja a főtt tojást. Fordítva pedig a lombikban melegített levegő kitágul, munkát végez; kinyomja a lombik száján a tojást.

A hőtan II. főtétele A természetben önmaguktól (spontán) lejátszódó folyamatok mindig csak egyirányba mennek végbe. Ezek a folyamatok nem megfordíthatóak (irreverzibilisek). pl. termikus kölcsönhatásban az egyik anyag által leadott hőmennyiség egyenlő a másik anyag által felvett hőmennyiséggel, a hőmérséklet-változás addig tart, amíg a két anyag hőmérséklete kiegyenlítődik. pl. a folyadékba tett cukor, vagy festék szétterjed a folyadékban, amíg egyenletesen elkeveredik. pl. egy teremben kifújt illatosító szétterjed a teremben, amíg egyenletesen szétoszlik. Ezek a folyamatok fordított irányban nem mennek végbe (nem lehet, hogy a hideg anyag tovább hűljön, és a meleg tovább melegedjen, nem lehet, hogy a cukor szilárd anyagként kiváljon a folyadékból,...stb. Elnevezés: Entrópia: A rendezetlenség mértéke. A II. főtétel másképp: A természetes folyamatok iránya mindig olyan, hogy a rendszer entrópiája, rendezetlensége nő.

Kísérlet termikus kölcsönhatásra: Meleg és hideg víz kölcsönhatásának mérése, és grafikonon ábrázolása. A kölcsönhatás addig tart, amíg a hőmérsékletük kiegyenlítődik. Az egyik anyag által leadott hőmennyiség egyenlő a másik anyag által felvett hőmennyiséggel. Q leadott = Q felvett c 1 m 1 ΔT 1 = c 2 m 2 ΔT 2 ΔT 1 : az 1. anyag hőmérsékletváltozása c 1 : az 1. anyag fajhője m 1 : az 1. anyag tömege ΔT 2 : a 2. anyag hőmérséklet-változása c 2 : a 2. anyag fajhője m 2 : a 2. anyag tömege Ha a két anyag azonos (pl. mindkettő víz), és a tömegük is azonos, akkor mindkettő hőmérséklet-változása azonos (ΔT 1 = ΔT 2 ), egyébként nem.