Hőtan Az anyagok belső szerkezete, szilárd tárgyak és folyadékok hőtágulása, hőterjedés (Ez az összefoglalás tartalmaz utalásokat a tankönyv egyes

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hőtan Az anyagok belső szerkezete, szilárd tárgyak és folyadékok hőtágulása, hőterjedés (Ez az összefoglalás tartalmaz utalásokat a tankönyv egyes"

Átírás

1 Hőtan Az anyagok belső szerkezete, szilárd tárgyak és folyadékok hőtágulása, hőterjedés (Ez az összefoglalás tartalmaz utalásokat a tankönyv egyes részeihez, ezért a tankönyvvel együtt használható.) Tapasztalatok, kísérletek az anyagok belső szerkezetének megismeréséhez: Légnemű anyagokra: 1. Az ablakon besütő Nap fényében a porszemek össze-vissza mozogni látszanak. 2. Egy teremben illatos gázt kibocsátva ez idő után az illat, vagyis a gáz kitölti a rendelkezésére álló teret. 3. A gáz (pl. levegő) összenyomható pl. fecskendőben. Folyadékokra: 4. Mikroszkóppal vizsgálva vízben az apró pl. bors szemeket, azok rendezetlenül mozognak. 5. A folyadékba öntött másik (színezett) folyadék összekeveredik. 6. Melegítés hatására a keveredés gyorsabb. 7. Két különböző folyadékot összeöntve a térfogatuk kevesebb lesz, mint a külön-külön mért térfogatuk összege.

2 8. A folyadékból csöppek keletkeznek, rátapad szilárd tárgyakra. 9. A folyadék nem összenyomható (pl. fecskendőben) 10. A folyadéknak nincs alakja, felveszi az edény alakját. Szilárd tárgyakra: 11. A szilárd anyag szintén nem nyomható össze. 12. Van olyan szilárd anyag amit egymáshoz lehet ragasztani, összeáll, ha elég közel összenyomjuk. Pl. két szappan 13. A szilárd anyagnak van alakja, nehezen vágható ketté. (A fenti kísérletek közül néhánynak a képe, összeállítása a tankönyvben található meg a 136. o o.-ig. A kísérletek nagy részét az órákon elvégeztük.) A tapasztalatokból, kísérletekből levont következtetésekből megalkothatjuk a szilárd testekre, folyadékokra, gázokra vonatkozó modellt, amivel a felépítésüket, anyagszerkezetüket írjuk le. Modell: a valóság leegyszerűsített képe, amivel a modellezett dolog tulajdonságait, működését, viselkedését le tudjuk írni. (modellalkotásra példák a tankönyv 140. oldalán)

3 Az anyagok belső szerkezetére vonatkozó modellek Mindhárom halmazállapotra (szilárd, foly., gáz): - Az anyagok különböző részecskékből állnak, amelyek állandó rendezetlen mozgásban vannak. (1., 2., 4., 5., 7., 10. tapasztalatból) - A részecskék mérete nem egyforma. (7. tapasztalat, ahol a nagyobb részecskék be tudnak menni a kisebbek közé) - A részecskék gyorsabban mozognak, ha az anyagot melegítjük. (6. tapasztalatból) Gázmodell: - A részecskék állandó, rendezetlen mozgással kitöltik a rendelkezésükre álló teret. (1., 2. tapasztalatból) - A részecskék mozgásuk során ütköznek egymással és a tartály falával. - A részecskék között nincs vonzóerő. - A részecskék közti távolság elég nagy, közöttük üres hely van, ezért a gáz összenyomható. (3. tapasztalatból) Folyadékmodell: - A folyadékok részecskéi szorosan egymás mellett helyezkednek el. (ezért nem összenyomható, 9., 10. tapasztalatból)

4 - A részecskék egymáson gördülve mozognak. (5., 7., 10. tap.-ból) - A folyadékrészecskék között van vonzóerő, ez tartja össze a folyadékot (pl. a folyadékcseppet, 8. tapasztalatból) Szilárd testek modellje: - A részecskék kristályrácsba rendeződnek, egymáshoz kötötten helyezkednek el. - Közöttük nagy vonzóerő van (sokkal nagyobb, mint a folyadéknál). (11., 12., 13. tapasztalatból) - A rácsszerkezetben levő részecskék helyhez kötött rezgőmozgást végeznek. A modellek egyéb közös jellemzői: - A szilárd testek részecskéi és a vele érintkező folyadékrészecskék között is van vonzóerő (pl. ezért tapad rá a vízcsepp szilárd anyagra, 8. tapasztalat) - A részecskék közötti vonzóerő összetartani igyekszik őket, a részecskék mozgása viszont az anyag szétszakítását segíti elő. A két ellentétes hatás nagyságától függ, hogy egy anyag szilárd, folyadék, vagy légnemű állapotban van. Mivel a hő hatására a részecskék gyorsabban mozognak, ezért lehet hővel a szilárd anyagot folyadékká olvasztani, a folyadékot légneművé forralni.

5 Elnevezések: Brown mozgás: A porszemek, vagy a folyadékban levő apró pl. bors, vagy virágporszemek mozgása. (Az anyag részecskéi lökdösik őket, azért mozognak.) Diffúzió: A különböző folyadékok vagy különböző gázok összekeveredése a részecskék rendezetlen mozgása miatt. Hőmozgás: Mivel a részecskék melegítés hatására gyorsabban, nagyobb sebességgel mozognak, a mozgásukat hőmozgásnak is nevezik. (A tankönyv 138. oldalán található a diffúzió és a Brown-mozgás képe, rajza, és az ezáltal történő egyenletes térkitöltés ábrája.) Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Fahrenheit skála (angolszász országokban használják): 0 ºC = 32 ºF 100 ºC = 212 ºF Átszámítása: t Celsius = (t F 32)/1,8

6 Kelvin skála: A beosztása 273-al van elcsúsztatva a Celsiushoz képest: 0 ºC = 273 K, -273 ºC = 0 K Abszolút hőmérsékleti skálának is nevezik, mert a 0 Kelvin fok az abszolút nulla fok. Ezzel egyenlő vagy ennél kisebb hőmérséklet nem létezik, mert ezen a hőmérsékleten a részecskék sebessége 0-ra csökkenne. (A tankönyvben a 137. oldalon szerepel az oxigén gáz molekuláinak sebessége különböző hőmérsékleten. Megtanulni csak a nagyságrendet kell, vagyis azt, hogy több száz m/s, és azt, hogy nagyobb hőmérsékleten nagyobb, kisebben kisebb és -273 ºC = 0 K -re hűtve a részecskék sebessége 0 lenne.) (A tankönyv 134. oldalán vannak példák különböző hőmérsékletekre, pl. ember, Nap felszíne, stb. - néhány példát kell tudni.) Szilárd testek hőtágulása Kísérlet: Két fémrudat melegítve különböző mértékben megnő a hosszuk. Ezt nevezik lineáris (hosszirányú) hőtágulásnak. Ennek nagysága függ az eredeti hosszától, a hőmérséklet-változástól és a tárgy anyagától.

7 Kiszámítása: Δl = I 0 α ΔT Δl : hosszváltozás, I 0 : eredeti hossz, ΔT : hőmérséklet-változás α (alfa) : az anyag lineáris hőtágulási együtthatója, a szilárd anyagra jellemző állandó. Mértékegysége: 1 / ºC pl. alumínium: 2, /ºC, vas: 1, /ºC Az alumínium jobban tágul, mint a vas, nagyobb a hőtágulási együtthatója. A hő hatására megnőtt teljes hossz = az eredeti hossz és a hossznövekedés összegével: l = l 0 + Δl = l 0 (1 + α ΔT) (Kidolgozott számítási feladat a tankönyv 146. oldalán.) Térfogati hőtágulás: A szilárd tárgy nemcsak hosszirányban, hanem teljes térfogatában (szélesség, magasság is) is kitágul. Ennek nagysága függ az eredeti térfogatától, a hőmérsékletváltozástól és a szilárd test anyagától. Kiszámítása: ΔV = V 0 β ΔT ΔV : térfogatváltozás, V 0 : eredeti térfogat, ΔT : hőmérsékletváltozás, β (béta) : az anyag térfogati hőtágulási együtthatója, a szilárd anyagra jellemző állandó. Mértékegysége: 1 / ºC

8 Ugyanannak az anyagnak a térfogati hőtágulási együtthatója kb. 3-szorosa a lineáris hőtágulási együtthatójának: β = 3 α A hő hatására megnőtt teljes térfogat = az eredeti térfogat és a térfogat-növekedés összegével: V = V 0 + ΔV = V 0 (1 + β ΔT) Kísérlet: Fémgolyó átfér a fémkarikán. Ha felmelegítjük, akkor már nem fér át, mert kitágult, de ha a karikát is felmelegítjük, akkor megint átfér. Gyakorlati példák szilárd tárgyak hőtágulására: Sínek nyári melegben megnyúlnak, ezért hűteni kell. Hidak hőtágulása miatt a pillérek görgőkön állnak. Fűtéscső-vezetékekben kanyar van, a híd végén az útfelületek fésűs fémcsatlakozásban találkoznak Bimetall lemez: két különböző fémből készült lemez meleg hatására meghajlik. Felhasználása: hőkapcsoló, pl. vasalóban (A hőkapcsoló működési elve a tankönyv 147. oldalán.)

9 Folyadékok hőtágulása A különböző folyadékok térfogata is megnő melegítés hatására különböző mértékben. Hosszirányú tágulásuk nem meghatározható, mert nincs hosszuk, csak térfogati tágulásuk van. Ez ugyanúgy számolható, mint a szilárd testeknél. A különbség annyi, hogy a folyadékok sokkal jobban tágulnak, vagyis a térfogati hőtágulási együtthatójuk (β) többszázszorosa a szilárd tárgyakénak. ΔV = V 0 β ΔT (Kidolgozott számítási feladat: tankönyv150. oldal) A hőtáguláskor a folyadék térfogata nő, sűrűsége csökken. A hőtágulás utáni sűrűség kiszámítása: 1 ρ = ρ , ahol ρ 0 (ró) : (1 + β ΔT) az eredeti sűrűség A hőtágulás anyagszerkezeti magyarázata: Melegítés hatására a részecskék gyorsabban mozognak, átlagosan jobban eltávolodnak egymástól. A folyadékok hőtágulásán alapuló legismertebb eszköz a folyadékos hőmérő.

10 A víz sajátos viselkedése A vizet 0 ºC-ról melegítve 4 ºC-ig a térfogata nem nő, hanem csökken, sűrűsége pedig nő. Ezután 4 ºC felett már a szokásos módon hő hatására nő a térfogata és csökken a sűrűsége. Tehát a víz sűrűsége 4 ºC-on a legnagyobb. Ezért ez a hőmérsékletű víz marad a tó fenekén akkor is, amikor a tó felszíne már befagy. Így a tó alja nem fagy meg, ezért az élővilág a tó alsó rétegében áttelelhet. (Ennek rajza a részletes hőmérsékletadatokkal a tankönyv 150. oldalán.) A hő terjedése (hőáramlás, hővezetés, hősugárzás) Hőáramlás - folyadékoknál és gázoknál melegítés (hőtágulás) hatására a folyadékok és gázok sűrűsége csökken. A folyadéknak (vagy gáznak) a melegebb, kisebb sűrűségű része felfelé áramlik és összekeveredik a többi részével. A felfelé áramló részecskék a gyorsabb mozgásukkal a lassabb részecskéket is felgyorsítják. Így a hő a folyadékban és a gázban a részecskék áramlásával terjed.

11 Hővezetés szilárd anyagokban A szilárd anyag melegített részében a részecskék gyorsabban rezegnek, mozognak és ezt a gyorsabb mozgást átadják a szomszédjaiknak. Így terjed tovább a szilárd testben a hő. Ezt nevezik hővezetésnek. Kísérlet: Melegítünk fém és üvegrudat. A gyertyaviasszal rögzített szögek a fémrúdról egymás után leesnek, az üvegrúdról nem. Vannak jó hővezető szilárd anyagok, amikben gyorsan terjed a hő, és vannak rossz hővezető anyagok. A rossz hővezető anyagokat hőszigetelőknek nevezik. A legjobb hővezetők a fémek. Rossz hővezetők, hőszigetelők: pl. üveg, hungarocell, kerámia, fa, gumi, műanyag Hőszigetelők felhasználása: pl. épületek hőszigetelő bevonata, fakanál, edény füle nem fém, termosz, hűtőkamion fala, űrhajó külső bevonata

12 Hősugárzás Van olyan hőterjedés, amihez nem szükséges közvetítő anyag, a légüres térben is terjed (elektromágneses) sugárzás formájában. Ilyen pl. a Napsugárzás. A Föld is bocsát ki hősugárzást, amit a felhők visszavernek, ezért van hidegebb éjszaka, ha nincsenek felhők. Minden meleg tárgy bocsát ki magából hősugárzást, amit hőkamerával le is lehet fényképezni. A sötét érdes felületek jobban elnyelik a hősugarakat, mint a sima fényes felületek, amikről jobban visszaverődnek a sugarak. Ezért nem célszerű nyáron sötét ruhában járni. Példák a hősugárzás gyakorlati felhasználására: Hőkamerával lehet embereket, állatokat megtalálni sötétben is. Házak hőfényképén meg lehet állapítani, hol rossz a hőszigetelés. Emberek hőfényképén meg lehet állapítani, hogy hol van benne gyulladásos betegség. Az infra-lámpával történő melegítés gyógyító hatású. távirányító (TV, hifi,...)

13 Megjegyzések a tanuláshoz, dolgozathoz A témakör tananyaga a tankönyv Hőtan fejezetének első 5 leckéje (132.o.-152.o.), plusz a hőterjedés fajtái, ami nincs benne ebben a könyvben. Ebben az összefoglalásban szereplő, az anyagok belső szerkezetére vonatkozó tapasztalatok, kísérletek közül példákat kell tudni a gáz, vagy folyadék, vagy szilárd test modelljének magyarázatához. Vagyis: Pl. Kérdés: Írj 2 tapasztalatot, vagy kísérletet arra, ami azt bizonyítja, hogy a szilárd test részecskéi szorosan összekapcsolódnak. Vagy fordítva: Kérdés: Miért tapasztaljuk azt, hogy a folyadék nem összenyomható. Lesz feladat a hőtágulás kiszámítására. Az egyes anyagok hőtágulási együtthatójának értékét nem kell megtanulni, az a feladatban meg lesz adva.

Hőtágulás - szilárd és folyékony anyagoknál

Hőtágulás - szilárd és folyékony anyagoknál Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

A hő terjedése (hőáramlás, hővezetés, hősugárzás)

A hő terjedése (hőáramlás, hővezetés, hősugárzás) A hő terjedése (hőáramlás, hővezetés, hősugárzás) Hőáramlás - folyadékoknál és gázoknál melegítés (hőtágulás) hatására a folyadékok és gázok sűrűsége csökken. A folyadéknak (vagy gáznak) a melegebb, kisebb

Részletesebben

Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok

Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:

Részletesebben

A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy

A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy hőelvonás), vagy munkavégzéssel (pl. súrlódási munka,

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála:

Részletesebben

TestLine - Fizika hőjelenségek Minta feladatsor

TestLine - Fizika hőjelenségek Minta feladatsor 1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:

HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Hőmérséklet HŐTAN Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Fahrenheit skála (angolszász országokban

Részletesebben

Halmazállapotok. Gáz, folyadék, szilárd

Halmazállapotok. Gáz, folyadék, szilárd Halmazállapotok Gáz, folyadék, szilárd A levegővel telt üveghengerbe brómot csepegtetünk. A bróm illékony, azaz könnyen alakul gázhalmazállapotúvá. A hengerben a levegő részecskéi keverednek a bróm részecskéivel

Részletesebben

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István FIZIKA Ma igazán belemelegszünk! (hőtan) Dr. Seres István Hőtágulás, kalorimetria, Halmazállapot változások fft.szie.hu 2 Seres.Istvan@gek.szi.hu Lineáris (vonalmenti) hőtágulás L L L 1 t L L0 t L 0 0

Részletesebben

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy

Részletesebben

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat, 2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül

Részletesebben

A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó.

A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. HŐTAN I. A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. E jellemzőt az ember elsősorban tapintás útján, a hőérzettel észleli, másodsorban hőmérő segítségével. A hőmérséklet a hőtan

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

Halmazállapot-változások

Halmazállapot-változások Halmazállapot-változások A halmazállapot-változások fajtái Olvadás: szilárd anyagból folyékony a szilárd részecskék közötti nagy vonzás megszűnik, a részecskék kiszakadnak a rácsszerkezetből, és kis vonzással

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

TERMIKUS KÖLCSÖNHATÁSOK

TERMIKUS KÖLCSÖNHATÁSOK ERMIKUS KÖLCSÖNHAÁSOK ÁLLAPOJELZŐK, ERMODINAMIKAI EGYENSÚLY A mindennai élet legkülönbözőbb területein találkozunk a hőmérséklet fogalmáal, méréséel, a rendszerek hőtani jellemzőiel (térfogat, nyomás,

Részletesebben

11. Melyik egyenlőség helyes? a) 362 K = 93 o C b) 288 K = 13 o C c) 249 K = - 26 o C d) 329 K = 56 o C

11. Melyik egyenlőség helyes? a) 362 K = 93 o C b) 288 K = 13 o C c) 249 K = - 26 o C d) 329 K = 56 o C Hőtágulás tesztek 1. Egy tömör korongból kivágunk egy kisebb korongnyi részt. Ha az eredeti korongot melegíteni kezdjük, átmérője nő. Hogyan változik a kivágott lyuk átmérője? a) Csökken b) Nő c) A lyuk

Részletesebben

Kaméleonok hőháztartása. Hősugárzás. A fizikában három különböző hőszállítási módot különböztetünk meg: Hővezetés, hőátadás és a hősugárzás.

Kaméleonok hőháztartása. Hősugárzás. A fizikában három különböző hőszállítási módot különböztetünk meg: Hővezetés, hőátadás és a hősugárzás. Kaméleonok hőháztartása Hősugárzás A fizikában három különböző hőszállítási módot különböztetünk meg: Hővezetés, hőátadás és a hősugárzás. - Az első típust (hővezetés) érzékeljük leginkább a mindennapi

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis

Részletesebben

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál

Részletesebben

11. Melyik egyenlőség helyes? a) 362 K = 93 o C b) 288 K = 13 o C c) 249 K = - 26 o C d) 329 K = 56 o C

11. Melyik egyenlőség helyes? a) 362 K = 93 o C b) 288 K = 13 o C c) 249 K = - 26 o C d) 329 K = 56 o C Hőtágulás tesztek 1. Egy tömör korongból kivágunk egy kisebb korongnyi részt. Ha az eredeti korongot melegíteni kezdjük, átmérője nő. Hogyan változik a kivágott lyuk átmérője? a) Csökken b) Nő c) A lyuk

Részletesebben

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK

ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK 03 02 Termodinamika Az adatgyűjtés, állapothatározók adattovábbítás mérése nemzetközi Hőmérséklet hálózatai Alapfogalmak Hőmérséklet:

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

(2006. október) Megoldás:

(2006. október) Megoldás: 1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a

A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a Kísérletek: 1 2 3 4 A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a szilárd testet alkotó molekulák rezgőmozgásának

Részletesebben

HARTAI ÉVA, GEOLÓGIA 3

HARTAI ÉVA, GEOLÓGIA 3 HARTAI ÉVA, GEOLÓgIA 3 ALaPISMERETEK III. ENERgIA és A VÁLTOZÓ FÖLD 1. Külső és belső erők A geológiai folyamatokat eredetük, illetve megjelenésük helye alapján két nagy csoportra oszthatjuk. Az egyik

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44)

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Munka, energia, teljesítmény

Munka, energia, teljesítmény Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és

Részletesebben

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a Hőtan (2. rész) Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

TANMENET Fizika 7. évfolyam

TANMENET Fizika 7. évfolyam TANMENET Fizika 7. évfolyam az Oktatáskutató és Fejlesztő Intézet NT-11715 raktári számú tankönyvéhez a kerettanterv B) változata szerint Heti 2 óra, évi 72 óra A tananyag feldolgozása során kiemelt figyelmet

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Hatvani István fizikaverseny forduló megoldások. 1. kategória . kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m

Részletesebben

Fizika. Tanmenet. 7. osztály. ÉVES ÓRASZÁM: 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz::

Fizika. Tanmenet. 7. osztály. ÉVES ÓRASZÁM: 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6 Időjárási-éghajlati elemek: a hőmérséklet, a szél, a nedvességtartalom, a csapadék 2010.12.14. FÖLDRAJZ 1 Az időjárás és éghajlat elemei: hőmérséklet légnyomás szél vízgőztartalom (nedvességtartalom) csapadék

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Kutatói pályára felkészítő akadémiai ismeretek modul

Kutatói pályára felkészítő akadémiai ismeretek modul Kutatói pályára felkészítő akadémiai ismeretek modul Környezetgazdálkodás Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC A hőmérséklet mérése

Részletesebben

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható! FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

Szakmai fizika Gázos feladatok

Szakmai fizika Gázos feladatok Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk. A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?

Részletesebben

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

A légkör víztartalmának 99%- a troposzféra földközeli részében található.

A légkör víztartalmának 99%- a troposzféra földközeli részében található. VÍZ A LÉGKÖRBEN A légkör víztartalmának 99%- a troposzféra földközeli részében található. A víz körforgása a napsugárzás hatására indul meg amikor a Nap felmelegíti az óceánok, tengerek vizét; majd a felmelegedő

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

Elektromos töltés, áram, áramkörök

Elektromos töltés, áram, áramkörök Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Hőtan 2. feladatok és megoldások

Hőtan 2. feladatok és megoldások Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika

Részletesebben

Speciális relativitás

Speciális relativitás Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

FIZIKA 10. OSZTÁLY - HŐTAN

FIZIKA 10. OSZTÁLY - HŐTAN FIZIKA 10. OSZTÁLY - HŐTAN 1 Hőtani alapjelenségek Bevezető: Fizikai alapmennyiség: Hőmérséklet (jele: T, me.: C, K, F) Termikus kölcsönhatás során a két test hőmérséklete kiegyenlítődik. Hőmérsékleti

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Munka, energia, teljesítmény

Munka, energia, teljesítmény Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és

Részletesebben