Elektrokémia 01. (Biologia BSc)

Hasonló dokumentumok
Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok. Láng Győző

Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok. Láng Győző

Kiss László Láng Győző ELEKTROKÉMIA

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

A kémiai és az elektrokémiai potenciál

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

13 Elektrokémia. Elektrokémia Dia 1 /52

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.

Vezetők elektrosztatikus térben

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.

Elektromos alapjelenségek

Elektrokémia. Elektrokémia. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

Az anyagi rendszer fogalma, csoportosítása

Elektronegativitás. Elektronegativitás

Általános Kémia, 2008 tavasz

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Kémiai alapismeretek hét

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző

EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése

7 Elektrokémia. 7-1 Elektródpotenciálok mérése

Az elektrokémia áttekintése

Elektrokémia Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı.

Az elektrokémia áttekintése

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

Szigetelők Félvezetők Vezetők

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Elektrokémia kommunikációs dosszié ELEKTROKÉMIA. ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

1. Elektromos alapjelenségek

ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS)

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Elektrosztatikai alapismeretek

Az anyagi rendszerek csoportosítása

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Az anyagi rendszerek csoportosítása

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

1. SI mértékegységrendszer

1. ábra. 24B-19 feladat

Elektronátadás és elektronátvétel

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN

Transzportfolyamatok

Kötések kialakítása - oktett elmélet

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.

Q 1 D Q 2 (D x) 2 (1.1)

Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

Elektrokémia B01. Mi a ph? Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Javítókulcs (Kémia emelt szintű feladatsor)

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan

Általános Kémia, BMEVESAA101

Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Elektro-analitikai számítási feladatok 1. Potenciometria

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

Klasszikus analitikai módszerek:

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Kémiai energia - elektromos energia

Kémiai alapismeretek 6. hét

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

KÉMIA FELVÉTELI DOLGOZAT

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető.

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Fizika 1 Elektrodinamika beugró/kis kérdések

Molekuláris dinamika I. 10. előadás

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002

AZ EGYENÁRAM HATÁSAI

3. A kémiai kötés. Kémiai kölcsönhatás

m n 3. Elem, vegyület, keverék, koncentráció, hígítás m M = n Mértékegysége: g / mol elem: azonos rendszámú atomokból épül fel

Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

Modern Fizika Labor. 2. Elemi töltés meghatározása

Általános kémia vizsgakérdések

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel

Elektrokémiai gyakorlatok

Általános és szervetlen kémia Laborelıkészítı elıadás VI

Kolloidkémia 8. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia

Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. fejezet

A voltammetriás mérések során az elektrokémiai cella két vagy három elektródot tartalmaz. Ezek a következők:

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

Átírás:

Elektrokémia 01. (Biologia BSc) Fogalmak, Elektrokémia, Elektroanalitika, Elektródok Láng Győző Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest

Elektrokémia Elektrokémia: Egy ma már klasszikusnak számító megfogalmazás szerint az elektrokémia a fizikai kémia egyik ága, amely a makroszkópos elektromos hatásokra létrejövő kémiai változásokkal, valamint a kémiai hatások által előidézett makroszkópos elektromos jelenségekkel és ezek összefüggéseivel foglalkozik. Ez a meghatározás azonban ma már nem tekinthető teljesnek, mivel figyelmen kívül hagy igen sok olyan rendszert, illetve jelenséget, amelyek napjainkban az elektrokémiai kutatás területéhez számítanak.

Elektrokémia Elektrokémián a modern felfogás szerint azt a tudományágat értjük, amelynek tárgyköre az elektromos erőtér hatására elmozdulni képes ionokat tartalmazó kondenzált rendszerekre és az ezekben lezajló folyamatokra terjed ki, beleértve a különböző fázisok határán végbemenő, töltésátadással járó folyamatokat is. Az elektrokémia korszerű meghatározása megadható abból kiindulva is, hogy az elektrokémia a fizikai kémia egyik ága: az elektrokémia az elektrokémiai rendszerek fizikai kémiája. Ennek érdekében definiálni kell azokat az objektumokat, azokat a rendszereket, amelyeket az elektrokémia vizsgál, azaz az elektrokémiai rendszereket.

Elektrokémia Elektrokémiai rendszerek Elektrokémiai rendszereknek nevezzük az olyan, ionokat ( elektrolitot ) tartalmazó kondenzált rendszereket, amelyekben legalább egy fázisban elektromos potenciálgradiens hatására ezek az ionok elmozdulhatnak. Homogén elektrokémiai rendszerek: Az elektrolitoldatok és -olvadékok, ionos folyadékok, szilárd elektrolitok. Heterogén elektrokémiai rendszerek: Fázishatárok, pl. az elektrolitoldat és fém vagy félvezető határfelületén, elektródok.

Elektrokémia Az elméleti elektrokémia két nagy témaköre Az "ionika" a homogén, az "elektrodika" a heterogén elektrokémiai rendszerek fizikai kémiai sajátságaival foglalkozik, ezen belül e rendszerek egyensúlyát, illetve a bennük végbemenő nem egyensúlyi jelenségeket és folyamatokat vizsgálja.

Elektrokémia Néhány gondolat az elektrokémiai rendszerekkel kapcsolatban A rendszerbe vitt töltés, és a rendszert alkotó kémiai anyagok mennyisége nem lehet független egymástól, hiszen anyag nélküli töltés nem létezik, a töltés mindig valamilyen szpécieszhez (elektron, pozitron, ion) kapcsolódik.

Elektrokémia Az elektroneutralitási feltétel Az elektrosztatikából tudjuk, hogy vezető fázisok belsejében az elektromos térerősség zérus, azaz az elektromos potenciál értéke a helytől független állandó. A fázis belseje elektromosan semleges, tehát akárhogyan is választunk ki benne egy makroszkopikus térfogatelemet, az abban levő töltések (előjeles) összege nulla.

Elektrokémia Elektrokémiai rendszerekre is vonatkozóan az elektroneutralitás tétele: vagy vagy stb., ahol az i-dik töltött szpéciesz (ion, elektron) töltésszáma, n i annak anyagmennyisége, c i a koncentrációja, x i a móltörtje, stb. i z i n i z i ci i i z i x i 0 0 0

Elektrokémia Milyen következményekkel jár az elektroneutralitási feltétel sérülése? Numerikus példa: pontosan 1 mól ezüstből készült gömb. Az ezüst moláris tömege M Ag = 107,8682 g/mol, sűrűsége 20 ºC-on Ag = 10,50 g/cm 3. A gömb sugara r 3 1,348 cm Legyen a kezdetben elektromosan semleges gömbön légüres térben 10-12 mól egységnyi pozitív töltésű ion (pl. Ag + ). A többlettöltés a fázis felületén helyezkedik el! 3 4 M ρ Ag Ag π

Elektrokémia Az r sugarú Q = 96487 C/mol 10-12 mol = 9,6487 10-8 C töltéssel rendelkező gömb elektromos potenciálja: ψ 1 4πε r ε 0 Q r (e r a közeg relatív permittivitása, e 0 a vákuum permittivitása) ψ 4π 18,854187 1 4 10-8 9,6487 10 C 6,433 10 12-1 -1 2 AsV m 1,348 10 m - -!!! V

Elektrokémia Az elektroneutralitástól való minimális mértékű eltérés, amelyet a kémiai módszerekkel ki nem mutatható 10-12 mol ion jelenléte okoz, rendkívül nagy elektromos potenciálnak felel meg. A tárgyalthoz hasonló 2 ezüstgömb esetében 1V potenciálkülönbség 1,56 10-17 mol egységnyi töltésű ionnak felel meg!!! Azonos kémiai összetételű, de különböző elektromos potenciálú fázisok.

Elektrokémia A töltött részecskéket is tartalmazó fázisok energetikája Egy gömb alakú vezető fázis (pl. egy fémgömb vagy egy elektrolitoldatból álló csepp) sematikus metszeti képe és a megfelelő potenciál-különbségek. 1: Felületi réteg, amely dipólusokat és szabad töltéshordozókat is tartalmazhat. 2: A fázis belseje. : Galvani-potenciál ( belső elektromos potenciál ); : Volta-potenciál ( külső elektromos potenciál ); : felületi potenciál.

Elektrokémia A belső elektromos potenciál vagy Galvani-potenciál (leggyakoribb jelölése ): ψ χ A külső elektromos potenciál, a Volta-potenciál annak a következménye, hogy a gömbön levő többlettöltések (elektronok, ionok) a gömb környezetében elektromos teret hoznak létre. A külső elektromos potenciál azon W ψ q ψ munka segítségével definiálható, ami ahhoz szükséges, hogy q töltést ( próbatöltés ) a végtelenből a felület közelébe hozzunk.

Elektrokémia A próbatöltést csak olyan közelségbe szabad vinnünk a felülethez, ahol a kémiai erők, az ún. tükrözési töltések, és a gömb felületén esetlegesen elhelyezkedő dipólusréteg hatása a munka értékére elhanyagolható. Ez a távolság a tapasztalatok szerint kb. 10-6 cm. Mivel a külső elektromos potenciál ugyanazon fázis két pontja közötti potenciálkülönbséget reprezentál, ezért elvileg mérhető mennyiség.

Elektrokémia A kémiai és az elektrokémiai potenciál Elektromosan semleges részecskéket tartalmazó rendszerek esetében a kémiai potenciál: Töltött részecskék esetén az analóg összefüggés: i j,, i i n p T n G μ i j,, i i ~ n p T n G μ

Elektrokémia - Az i-edik részecskének a rendszerbe juttatása elektromos töltések bevitelével jár együtt, így a kémiai munka mellett elektromos munka is végződik. - Az utóbbi esetben n i nem feltétlenül független komponenseket jelöl. A ~μ i mennyiséget elektrokémiai potenciál -nak szokás nevezni.

Elektrokémia Megjegyzések - Az anyag nélküli próbatöltés csupán fikció, és bármilyen töltés transzportjával szükségszerűen anyag transzportja is együtt jár, azaz a q töltéssel együtt anyagot is átjuttatunk a fázishatáron. Mivel a fázishatáron történő átjutáskor az anyag kémiai környezete is megváltozik, ezért az elektromos munka mellett kémiai munkát is kell végeznünk. Kísérletileg tehát e két járulék nem választható szét, csak az összegük határozható meg.

Elektrokémia - Gyakorlati megfontolások alapján az elektrokémiai potenciál μ~ μ a i alakban történő felírása elterjedt gyakorlat. ( az a fázisban lévő i-edik komponens kémiai potenciálja, a az adott fázis belső (Galvani) potenciálja. Az elektrokémiai potenciál eme önkényes felbontása kémiai és elektromos részre azonban általában csak addig elfogadható, amíg csak a számítások egyszerűsítésére szolgál, és figyelembe veszik a vele kapcsolatos korlátokat. a i z i F a μ a i

Elektrokémia - A fázis belsejéhez rendelhető elektromos potenciál fizikai realitásához nem férhet kétség, annak ellenére, hogy ennek abszolút értéke nem mérhető, azonban a belső (Galvani) potenciál megváltozása meghatározható.

Elektrokémia Elektroanalitika Az elektroanalitika az elektrokémiának az a területe, ahol a töltésátlépéssel járó kémiai változásokat (pl. redoxireakciók, ionok szeparációja, mozgása, stb.), illetve az ezeket jellemző elektromos mennyiségek közötti összefüggéseket (minőségi és mennyiségi) analitikai vizsgálatokhoz használják fel. Az elektroanalitikán belül a konkrét mérési módszerekhez kapcsolódóan definiálhatók területek, pl. potenciometria, amperometria, coulometria, polarográfia, stb.

Elektrokémia - fogalmak Elektrolit Olyan anyag, amely adott hőmérsékleten és nyomáson, szilárd vagy folyékony halmazállapotban ionos vezető, vagy pedig oldata, illetve olvadéka az elektromos áramot ionosan vezeti. Az elektrolitok döntő többsége közönséges körülmények között tiszta állapotban nem, vagy csak igen rosszul vezeti az elektromosságot, mivel csak oldatukban, vagy olvadékukban vannak jelen elmozdulni képes töltött részecskék (ionok). (Ilyen tulajdonságokkal rendelkezik az ionkristályok nagy része és egyes molekulák vagy molekularácsos kristályok.)

Az elektromosan semleges kémiai egységek (ionkristályok, molekulák) az oldószer hatására ionokra esnek szét. Ezt nevezzük elektrolitos disszociációnak. A pozitív töltésű ionok a kationok, a negatív töltésűek az anionok. A B ion z B töltésszáma kationok esetén pozitív, anionok esetén negatív egész szám. (z B töltésének a hányadosa.). Elektrokémia - fogalmak a B ion töltésének és a proton További fogalmak: szolvatáció, hidratáció; erős elektrolit (ion, ionasszociátum); gyenge elektrolit (ion, semleges molekula); elektromos (elektrokémiai) kettősréteg (részben rendezett molekuláris méretű töltésszétválás)

Elektrokémia - fogalmak Heterogén elektrokémiai rendszerek Elektród A heterogén elektrokémiai rendszerek tipikus alapegysége az elektród. A klasszikus szemlélet szerint elektródnak nevezzük az olyan elektrokémiai rendszert, amelyben legalább két fázis érintkezik, és ezek közül egy elektronvezető (leggyakrabban fém) vagy félvezető, egy pedig ionvezető (rendszerint elektrolit-oldat).

Elektrokémia - fogalmak Az elektrokémiai kettős réteg Különböző fázisok érintkezésekor, közöttük különleges sajátságú fázishatár- vagy határfelületi réteg képződik. A két fázis érintkezése után az egyes fázisokban levő elektromos töltések átrendeződése következhet be, és a határfelületen elektrokémiai (vagy elektromos) kettős réteg alakul ki. Az elektródokon végbemenő folyamatok mechanizmusa és sebessége azonban attól is függ, hogy a potenciálkülönbség miként oszlik el a határrétegben, azaz, hogy milyen a kettős réteg szerkezete.

Elektrokémia - fogalmak A fázishatáron bekövetkező töltésátrendeződés rendszerint a következő utakon mehet végbe: a) Töltésátmenet a fázishatáron keresztül (a töltéseket elektronok vagy ionok szállítják). b) Az anionok és kationok egymástól eltérő adszorpciója. c) Dipólusmolekulák orientált adszorpciója. d) Az atomok, molekulák deformációja és polarizációja a határréteg erőterében. A fázishatáron kialakuló elektromos kettős réteg egyidejűleg ható több tényező eredménye lehet, így a "kettős réteg" több rétegből is állhat. Rendszerint azonban a döntő tényező az elsőként említett, a fázishatáron keresztüli töltésátmenet.

Elektrokémia - fogalmak Az előbbiekben említett töltésátrendeződés eredményeként a fázishatáron egyensúly alakul ki. Egyensúlyban a fém töltése vonzza az oldat ellentétes töltésű ionjait és taszítja az azonos töltésűeket. Emiatt a fémével ellentétes töltésű ionok a fémfelület közelében nagyobb mennyiségben vannak a fémfelület töltésével megegyezőkéhez viszonyítva. Így a fémfelület közvetlen közelében az anionok és kationok koncentrációja különböző lesz.

Elektrokémia - fogalmak Az elektrokémiai kettős réteg tulajdonságai első közelítésben egy elektromos kondenzátoréhoz hasonlítanak. Ha az ionok a fém felületén csak elektrosztatikus erővel kötődnek az ionok középpontja csak a hidrátburkok által megszabott távolságra közelítheti meg a fém felületét. Az ion és a fém között: oldószer unimolekulás rétege. A fémhez legközelebb elhelyezkedő hidratált ionok középpontján átfektetett sík külső Helmholtz-sík. (Az itt levő potenciált gyakran -vel jelölik.) E sík és a fém közötti réteg a Helmholtz-réteg. A Helmholtz-rétegben ilyen körülmények között a potenciálesés lineáris.

Elektrokémia - fogalmak Helmholz-féle kondenzátormodell, 1879 d állandó dx e r e A C d 0 C a térerősség állandó Q U dq d W 1 CU 2 2 x Q 0 A kapacitás állandó U

Elektrokémia - fogalmak Egyéb modellek (Gouy-Chapman, Stern, stb.) A hőmozgás miatt a fém felületi töltéseit kompenzáló ionok a fém felületénél diffúz réteget képeznek a külső Helmholtz-síktól indulva az oldat belseje felé. A fém felületén nem csak elektrosztatikusan megkötött ionok lehetnek, hanem Van der Waals-féle erőkkel vagy kémiai kölcsön-hatással megkötött (adszorbeálódott) ionok és molekulák is. Az ilyen, nem elektrosztatikus kölcsönhatással bekövetkező adszorpciót specifikus adszorpciónak nevezzük. A specifikusan adszorbeálódott ionok középpontján átfektetett síkot belső Helmholtz-síknak nevezik. A belső és a külső Helmholtzsík közötti réteg a külső Helmholtz-réteg, a belső Helmholtz-sík és a fém közötti réteg a belső Helmholtz-réteg. Specifikus adszorpciókor a potenciálesés a teljes Helmholtz-rétegben általában nem lineáris.

Akikről a modelleket elnevezték: Elektrokémia - fogalmak

Elektrokémia - fogalmak Gouy-Chapman-modell, 1910-1913 ( x exp M - x κ Stern-féle modell, 1924 2 d 1 ( ) 2 dx 2 I 1 2 c i z i 2 1 2F I e0e r RT 2

Az elektrokémiai kettős réteg. A fenti ábrán a fém negatív töltésű. Jobbra: potenciálesés, koncentráció. x 1 a belső Helmholtz-sík; x 2 a külső Helmholtz-sík Elektrokémia - fogalmak

Elektrokémia - fogalmak Ideálisan polarizálható elektród Olyan elektród, amelyben töltésátlépés nem lehetséges, és külső feszültségforrás hatására csakis a kettős réteg mint kondenzátor feltöltődése következik be. Az elektródra adott potenciálkülönbség a feszültségforrás kikapcsolása után is megmarad, mert a fázishatáron töltések nem lépnek át, vagyis elektródfolyamat nem megy végbe tökéletes, veszteségmentes kondenzátorként viselkedik. Jó közelítés olyan elektródok, amelyekben a termodinamikailag lehetséges töltésátlépési folyamatok eléggé gátoltak. Elektrokémiai kettős réteg természetesen a nem ideálisan polarizálható elektródokon is kialakul és így elektromos kapacitásuk ezeknek is van.

Elektrokémia - fogalmak Elektródfolyamat Valamely elektródban (egy elektronvezető vagy félvezető és egy ionvezető fázis határfelületén és annak közelében) az elektromos töltések (elektromos áram) áthaladásakor, illetve az elektrokémiai kettős réteg töltésekor fellépő változások összességét. Adott feltételek mellett az áram nagyságát a folyamatban szereplő részlépések kinetikája szabja meg. elektrokémiai kinetika.

Elektrokémia - fogalmak E részlépések között feltétlenül szerepel a határfelülethez, illetve a határfelülettől történő anyagtranszport és a tulajdonképpeni határfelületi reakció. Ez utóbbi, amelyet elektródreakciónak nevezünk, - az ideálisan (vagy tökéletesen) polarizálható elektródok (határ)esetének kivételével - mindig tar-talmaz egy olyan elemi lépést, amely során az egyik fázisból a másikba töltésátlépés történik, ezért ezt töltésátlépési- vagy elektrokémiai reakciónak nevezzük.

Elektrokémia - fogalmak A töltésátlépési- vagy elektrokémiai reakció mellett az elektródreakció tartalmazhat a határfelületi tartományban lejátszódó tisztán kémiai lépéseket (kémiai reakciókat) is. Az elektródreakció egyenletét megállapodás szerint úgy adjuk meg, hogy az balról jobbra olvasva a redukciós reakciót írja le. Pozitív áramnak tekintjük a pozitív elektromosságnak az elektronvezető (vagy félvezető) fázisból az ionvezető fázisba történő áramlását.

Elektrokémia - fogalmak Az elektródok osztályozása a bennük lejátszódó elektródreakciók száma szerint: Egyszerű elektród Olyan elektród, amelyben csak egyetlen elektródreakció játszódik le. Keverékelektród Olyan elektród, amelyben egynél több elektródreakció megy végbe.

Elektrokémia - fogalmak Az egyszerű elektródok osztályozása felépítésük szerint: elsőfajú elektródok másodfajú elektródok harmadfajú elektródok redoxielektródok

Elektrokémia - elsőfajú elektródok Az elsőfajú elektródok azok, amelyekben az egyensúly a semleges (töltés nélküli) kémiai elemből álló anyag (pl. fématom vagy gázmolekula) és az ebből képződő ionok között jön létre. Típusai: a) Fémelektród b) Amalgámelektród c) Gázelektród

Elektrokémia - elsőfajú elektródok a) Fémelektród az, amelyen az M z+ (aq) + ze - = M(s) bruttó elektródreakció megy végbe. Ilyen például a Cu 2+ (aq) + 2e - = Cu(s) elektródreakció. A "bruttó" jelző arra utal, hogy az adott reakcióegyenlettel jellemzett folyamat esetleg bonyolult mechanizmussal, több reakciólépésben megy végbe.

Elektrokémia - elsőfajú elektródok a) Amalgámelektród az, amelyen az M z+ (aq) + ze - = M(Hg)(l) bruttó elektródreakció megy végbe, ahol (l) az amalgámfázisra utal. c) Gázelektród Az olyan elektród, amely elektródreakciójában gázhalmazállapotú anyag is részt vesz. Gyakorlati szempontból egyik legfontosabb gázelektród a hidrogénelektród. A hidrogénelektródban az elektródreakció a bruttó egyenlettel írható le. H + (aq) + e - = 1/2 H 2 (g)

Elektrokémia - elsőfajú elektródok Hidrogénelektród vázlatos rajza 1 platinakorommal bevont platinalemez 2 hidrogénnel telített, hidrogénionokat tartalmazó oldat

Elektrokémia - másodfajú elektródok Másodfajú elektródok Olyan rendszerek, amelyekben egy fém saját rosszul oldódó sójával (vagy oxidjával) érintkezik, és belemerül a rosszul oldódó só anionját (oxid esetén hidroxidot) tartalmazó oldatba. A másodfajú elektródban végbemenő elektródreakció: M ν A ν - ( s e - ν M( s ν A z-( aq z - ahol z = z - n - az elektródreakció töltésszáma.

Példák: Ezüst - ezüst-klorid - elektród AgCl ( - ( - s e Ag s Cl ( aq Elektrokémia - másodfajú elektródok Kalomelelektród, amelyben az elektródreakció: Hg 2 Cl 2 (s) + 2e - = 2Hg(l) + 2Cl - (aq). A kalomelelektródban a rosszul oldódó só anionját tartalmazó elektrolitoldatként rendszerint a kálium-klorid oldatát használják. Dihigany-oxid-elektród, amelynek elektródreakciója: Hg 2 O(s) + 2e - + H 2 O(l) = Hg(l) + 2OH - (aq).

Elektrokémia - másodfajú elektródok A kalomelelektród felépítése. 1 fémkontaktus; 2 fémhigannyal pasztává dörzsölt Hg 2 Cl 2 ; 3 fémhigany; 4 KCl - oldat

Elektrokémia - harmadfajú elektródok Harmadfajú elektródok Csak elméleti szempontból jelentősek. A cinket, cinkoxalátot, kalcium-oxalátot és kalciumsóoldatot tartalmazó harmadfajú elektródban a következő elektródreakció megy végbe: Zn(CO - 2 2 ) 2 2e Ca Zn Ca(CO ) ( s) (s) (s) 2 2(s)

Elektrokémia - redoxielektródok Redoxielektródok A történelmileg kialakult "redoxielektród" elnevezés nem szerencsés és némiképpen félrevezető. Ugyanis, mint azt korábban már tárgyaltuk, minden elektródban oxidációs és redukciós folyamatok mennek végbe. Redoxielektród akkor keletkezik, ha egy indifferens fém (rendszerint platina) olyan elektrolitoldatba merül, amely tartalmazza egy redoxirendszer oxidált és redukált formáját is. Legyen a végbemenő elektródreakció például az azaz pl. ( - z aq ze M ( aq z 1 M 2 Fe ( - 2 aq e Fe ( aq 3

Elektrokémia - redoxielektródok Kinhidronelektród (Inert fém, pl. Pt merül kinhidront tartalmazó elektrolitoldatba.) Kinhidron: Néhány csepp éteres p-benzokinon-oldatot adunk 1 cm 3 éteres hidrokinon-oldathoz. Az elektródreakció: C - 6 H 4 O 2 2H 2e C 6 H OH 4 ( 2