7. OPTIKA II. A fény mint elektromágneses hullám
|
|
- Miklós Lakatos
- 7 évvel ezelőtt
- Látták:
Átírás
1 7. OPTIKA II. A fény mint elektromágneses hullám A monokromatikus síkhullám A fényforrások időben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában terjed. Távol a fényforrástól, átlátszó, homogén, izotrop közegben az elektromágneses tér monokromatikus síkhullámok összegére bontható. Az elektromos térerősség egy ilyen síkhullámban az r helyvektorú pontban: E = E 0 sin (k r - t + 0 ). (1) E 0 a síkhullám amplitúdója, a körfrekvencia, =, ahol a frekvencia. A = k r - t + 0 () kifejezés a fázis, 0 a fázisállandó, k a hullámszámvektor. A hullám terjedési iránya megegyezik k vektor irányával. Az E 0 vektor irányát tekintjük a polarizáció irányának. A fény transzverzális hullám, E 0 merőleges a terjedési irányra, így k-ra is. A fény intenzitása az ilyen monokromatikus síkhullámban az amplitúdó négyzetével, E 0 -tel arányos. Hullámfront: Azoknak a pontoknak az összessége, melyeken a fázis értéke egy adott időpontban azonos. A hullámfront minden pontjában ugyanaz a térerősség és időben azonos módon változik. Az (1) alakú síkhullámok hullámfrontjai síkok, melyek egyenlete a t időpontban = k r t + 0 = konst. Ha a hullám az x tengely irányában terjed, a hullámfront, azaz a fázissík egyenlete: = kx t + 0 = konst. Az (1) síkhullám időben és térben periodikus függvény. A periódusidő, T, az a legrövidebb idő, melynek elmúltával adott helyen ugyanaz lesz a térerősség és a térerősség időderiváltja is, vagyis a fázis változása T idő alatt -vel egyenlő:. A periódusidő reciproka a frekvencia: = 1/T. A térbeli periódus a hullámhossz, : két szomszédos fázissík távolsága, melyeken a fázis -vel különbözik: = = k, azaz / k. (3) Eszerint a k hullámszámvektor nagysága a hullámhossz reciprokával, a hullámszámmal arányos, annak a -szerese. Egy adott fázisú hullámfront helyzete a t időpontban x = t / k + ( - 0 ) / k, azaz a front v = / k (4) sebességgel ( fázissebességgel ) mozog az x tengely mentén. Vákuumban a fázissebesség c. Ha a hullám egy más közegbe lép be, frekvenciája azonos marad, terjedési sebessége azonban változik a közeg optikai sajátságaitól függően. A vákuumbeli és közegbeli terjedési sebesség hányadosa a törésmutató. A törésmutató függ a frekvenciától (diszperzió), átlátszó közegben a frekvencia növekedésével kissé nő. Ekkor normális diszperzióról beszélünk. [Abszorbeáló közegekben a törésmutató komplex szám. Ilyenkor a fény terjedését csillapodó hullámmal írhatjuk le.] A fény frekvenciája, terjedési sebessége és hullámhossza közötti összefüggést (3) és (4) összevetésével kapjuk: k = v T, (5) v T v a fázissík egy periódusidő alatt éppen egy hullámhossz távolságra jut el. 7. Optika II. / 1
2 Vákuumban a hullámfront egy periódusidő alatt = c T távolságot tesz meg. A közegbeli terjedési sebesség v = c/n, így a közegbeli hullámhossz c T 0. (6) n n A hullámhossz közegről közegre változik, a vákuumbeli hullámhossz azonban éppúgy jellemzi a hullámot, mint a frekvencia. A látható tartományban a (vákuumbeli) hullámhossz 380 és 760 nm között van. Egy n törésmutatójú közegben beszélhetünk az optikai úthosszról: s = n d, (7) mely a tényleges d úthossz és az n törésmutató szorzata. A hullámok interferenciája; koherencia Tekintsünk két, az x tengely irányában terjedő, azonos irányban (pl. az y tengely irányában) polarizált, azonos frekvenciájú, azonos irányban haladó, de különböző fázisállandójú síkhullámot. Legyen a két síkhullámban az y irányú térerősség E 1 és E : E 1 = E 10 sin(kx t + 10 ), E = E 0 sin(kx t + 0 ). Az eredő térerősség E = E 1 + E. Beláthatjuk, hogy ez szintén síkhullám: E = E 0 sin(kx t + 0 ), melynek amplitúdója E 0, fázisállandója. Az eredő hullám amplitúdója, E E E E E cos( ) (8) függ a = 10 0 fáziskülönbségtől: az eredő amplitúdó maximális, ha 0 vagy egész számú többszöröse, és minimális, ha páratlan számú többszöröse a fáziskülönbség. Az eredő hullám fázisa: tg E sin E sin E10 cos 10 E0 cos 0 A fázisállandók különbsége úthosszkülönbségnek is felfogható a két összetevő fényhullám között: s k, ahol a közegbeli hullámhossz. Felhasználva, hogy = / n, n s 0. A két fényhullám maximálisan erősíti egymást, ha fázisaik különbsége egész számú többszöröse, illetve ha az optikai úthosszkülönbség köztük a vákuumbeli hullámhossz egész számú többszöröse, és maximálisan gyengíti, ha a félhullámhossz páratlan számú többszöröse. Ha egy párhuzamos fénynyalábban az összetevők fázisainak különbsége időben állandó, akkor a fénynyaláb koherens. Ekkor az azonos irányban polarizált hullámok egyetlen hullámmal helyettesíthetők. Csak azonos frekvenciájú síkhullámok alkothatnak koherens nyalábot. Lineárisan, cirkulárisan és elliptikusan poláros fény A fénynyalábot alkotó azonos frekvenciájú monokromatikus síkhullámok térerősség-amplitúdó vektorai lehetnek párhuzamosak, ekkor a fénynyaláb lineárisan poláros és a polarizáció iránya megegyezik az összetevők polarizáció irányával. Ha a komponensekben az amplitúdó vektorok nem párhuzamosak, akkor az eredő lehet lineárisan, cirkulárisan vagy elliptikusan poláros. Két egymásra merőlegesen poláros síkhullám eredője - lineárisan poláros, ha a fáziskülönbségük 0; - cirkulárisan poláros, ha az amplitúdók nagysága azonos és a fáziskülönbség /; - elliptikusan poláros különben. 7. Optika II. /
3 A fény intenzitása A fényintenzitás (I) a térerősség abszolút érték négyzetének időátlagával arányos. Az (1) monokromatikus síkhullámban I ~ E 0. Egy koherens fénynyaláb mindig felbontható két egymásra merőleges lineárisan poláros fényhullám összegére. Két egymásra merőlegesen poláros síkhullámból álló nyalábban a fényintenzitás a két merőleges komponens intenzitásainak összege: I = I p + I m. Itt a "p" (párhuzamos) és az "m" (merőleges) jelzés egy kitüntetett síkra, pl. a beesési síkra vonatkozik. Ha a fénynyalábban a komponensek fázisainak különbsége időben véletlenszerűen változik, akkor ezeknek a komponenseknek az intenzitása összegződik. Két, egymással párhuzamos polarizáció-irányú koherens fénynyaláb interferenciára képes. Ez azt jelenti, hogy az eredő fénynyalábban a térerősségek (8) szerint a fáziskülönbségtől függően erősítik vagy gyengítik egymást, és az eredő intenzitás I I1 I I1 I cos (9) Koherens és közönséges fényforrások A fényforrásokban a valamilyen módon magasabb energiaállapotokba gerjesztett atomok vagy molekulák sugároznak ki fényt egy fotont emittálnak, miközben a gerjesztett állapotból az alapállapotba vagy alacsonyabb energiájú állapotba kerülnek. A foton kibocsátása az átmenet alatt, véges ideig történik, ezért a foton egy véges hullámvonulat, véges hossza van: ez a koherenciahossz. A következő foton fázisállandója nem egyezik az előzőével, és ha az emisszió spontán következik be, a fotonok iránya és fázisa véletlenszerű. Így egy közönséges fényforrásból származó fénynyaláb nem koherens, mert benne a fotonok elemi hullámvonulatok fázisa időben véletlenszerűen változik. Egy ilyen nemkoherens fénynyalábban egy foton csak önmagával interferálhat a koherenciahosszán belül. A lézerek monokromatikus, párhuzamos és koherens fénynyalábot szolgáltató fényforrások. (Persze, a lézerfény sem abszolút monokromatikus, párhuzamos és koherens, de a közönséges fényforrásokhoz viszonyítva nagymértékben az.) Ez annak köszönhető, hogy a lézerben a fénykibocsátás indukált emisszióval történik, szemben a közönséges fényforrásokkal, ahol spontán emisszióval. Az indukált emissziónál egy gerjesztő foton hatására az atomi rendszer úgy kerül egy alacsonyabb energiájú állapotba, hogy a gerjesztő fotonnal tökéletesen azonos (azonos frekvenciájú, terjedési irányú és fázisú) fotont bocsát ki. Fényhullámok törése, visszaverődése, elhajlása A fény mint elektromágneses hullám kielégíti az elektromágneses tér Maxwell-egyenleteit és az egyenletekhez tartozó határfeltételeket. Végtelen homogén és izotrop közegben egyetlen síkhullám is megoldás. Ha azonban a közegben inhomogenitások a fénysugár útjában akadályok vannak, akkor egyetlen síkhullám már nem felel meg a határfeltételeknek. Tegyük fel, hogy a teret egyetlen sík határfelület két különböző optikai tulajdonságú részre osztja, és az első közegben egy síkhullám terjed a határfelület felé. Megmutatható, hogy az első közegben az elektromágneses tér két hullám a beeső haladó hullám és egy visszavert hullám összege lesz, és a második közegben egy megtört, az eredetitől különböző hullámszámvektorú hullám terjed. A két közeg határfelületének normálisa a beesési merőleges. Ha ezzel a beeső fénysugár k hullámszámvektora szöget zár be, akkor a visszavert sugár hullámszámvektora szöget; a megtört sugáré pedig szöget zár be, ahol az beesési szög és a törési szög között a Snellius-Descartes törvény áll fenn: n 1 sin = n sin, ahol n 1 a beesés oldalán, n a határfelület másik oldalán a törésmutató. Ha a két közeg határfelülete görbült, de a görbületi sugár a hullámhossznál sokkal nagyobb, a felület minden pontján az ottani érintősíkkal helyettesíthető, és a törés és visszaverődés törvényei változatlanok maradnak, csupán a sík normálisa és így a beesési szög is pontról-pontra változik, és a síkhullám-kép továbbra is érvényes marad. 7. Optika II. / 3
4 Ha az akadály mérete összemérhető a hullámhosszal, akkor elvész a síkhullámjelleg az akadály közelében. A Huygens-elvvel szemléltethető a fény terjedése ilyen esetben: a hullámfront minden pontja elemi gömbhullámok kiindulópontja és ezek eredője adja az új hullámfrontot. Ha a fény útjába egy ernyőt teszünk, melyen egy nagyon kicsi lyuk van, akkor az ernyő mögött a hullámfrontok gömbfelületek lesznek (1. ábra). 1. ábra. A fény elhajlása ernyőn lévő kis nyíláson Nagy távolságból nézve egy ilyen gömbfelületnek csak egy kis térszögű részét észleljük, és ez a hullámfrontdarab síkkal is helyettesíthető, a hullám pedig a megfigyelés környezetében síkhullámmal. Bárhonnan nézzük az ernyőt, a rajta lévő nyílásból, mint pontszerű fényforrásból fény jut a szemünkbe. (A fénysugarakhoz kötődő szemléletünk szerint az ernyő mögötti térbe minden irányba fénysugarak indulnak ki az ernyőn lévő nyílásból.) Tegyünk egy párhuzamos, monokromatikus fénynyaláb útjába a terjedési irányra merőlegesen egy ernyőt, melyen két párhuzamos keskeny rés van D távolságban egymástól (. ábra). A réseken a fény elhajlik, nagy távolságból olyan a hullámkép, mintha a résekből az ábra síkjában minden irányban síkhullámok indulnának ki. Tekintsük azt az irányt, mely az ernyő normálisával szöget zár be. Ebben az irányban a két réstől származó párhuzamos fénynyaláb közti úthosszkülönbség D sin, és a fáziskülönbség = D sin /. (10) A két fénynyalábhoz tartozó térerősségek összeadódnak az eredő nyalábban; E = E 1 + E. Mivel az amplitúdók a két elhajlított nyalábban megegyeznek, az intenzitás (9) szerint I = I 0 ( 1 + cos ). L D beeső síkhullám elhajlított nyaláb x. ábra. Elhajlás kettős résen Ha 0 vagy egész számú többszöröse, azaz D sin a hullámhossz egész számú többszöröse, maximális erősítést kapunk, míg ha páratlan számú többszöröse, azaz D sin a félhullámhossz páratlan számú többszöröse, teljes kioltást kapunk. A résektől bizonyos L távolságban elhelyezett ernyőn sötét és világos csíkokat fogunk észlelni, a maximális gyengítés és maximális erősítés irányainak megfelelően. D sin = (m+1) / : kioltás, D sin = m : maximális erősítés. (11) 7. Optika II. / 4
5 Az optikai rács Ha egy átlátszó lemezt egyenlő távolságban, párhuzamosan bekarcolunk, vagy valamilyen más eljárással párhuzamos, periodikusan váltakozva átlátszó és átlátszatlan csíkokat hozunk létre rajta, transzmissziós optikai rácsot kapunk. Hasonló módon, reflektáló felületen periodikus, tükröző és nem-tükröző, egymással párhuzamos csíkokból álló mintázatot létrehozva reflexiós rácsot kapunk. A rácsot koherens fénynyalábbal megvilágítva és a rács által elhajlított fényt ernyőn felfogva a fényforrás elhajlási képét kapjuk, egy a rács csíkjaira merőleges egyenesen elhelyezkedő fényfoltsorozatot az el nem hajlított nyalábnak megfelelő transzmittált vagy reflektált kép mindkét oldalán; úgy mint a kettős rés esetén, csak nagyobb intenzitással. Ha a fény merőlegesen esik a síkrácsra, az elhajlási kép szimmetrikus és a kioltás és erősítés feltételét (11) adja meg. Így ha az m-edik és ( m)-edik elhajlított kép távolsága az ernyőn x m, a rács és az ernyő távolsága L és a rácsállandó D, akkor (11)-nek megfelelően x m = L tg = L m / D ( m ), (1) ahonnan a rácsállandó kiszámítható. Ha m << D, akkor D = m L / x m. A Michelson-féle interferométer Először Th. Young hozott létre interferenciaképeket úgy, hogy keskeny fénynyalábot irányított két szorosan egymás mellett elrendezett résre. A résekkel szemben elhelyezett ernyőn a réseken keresztül ráeső fényből szabályos, sötét és világos sávokból álló kép jött létre. Young kísérlete fontos bizonyítéka volt a fény hullámtermészetének ben (78 évvel Young után) A. A. Michelson hasonló elven működő interferométert épített. Michelson eredetileg az éternek, az elektromágneses sugárzások így a fénynek is terjedését biztosító feltételezett közegnek a kimutatására szerkesztette meg interferométerét. Részben az ő erőfeszítéseinek is köszönhetően az éter feltételezését ma nem tekintjük életképes hipotézisnek. Ezen túlmenően azonban a Michelsonféle interferométer széleskörűen elterjedt a fény hullámhosszának mérésére, illetve ismert hullámhosszúságú fényforrás alkalmazásával rendkívül kis távolságok mérésére és optikai közegek vizsgálatára. A 3. ábrán a Michelson-féle interferométer vázlata látható. A lézer sugárnyalábja sugárosztóra esik, amely a beeső fény 50 %-át visszaveri és másik 50 %-át átengedi. A beeső fény így két nyalábra oszlik. Az egyik a (tengelye mentén előre-hátra) mozgatható tükörre (M1) esik, a másik az álló tükörre (M) verődik. Mindkét tükör a sugárosztóra veri vissza a fényt. A mozgatható tükörről visszavert fény egyik fele most a megfigyelő ernyőre esik be, és az álló tükörről visszaverődő fény fele a sugárosztón áthaladva szintén a megfigyelő ernyőre esik. Ily módon az eredeti sugárnyaláb először kettéosztódik, majd a keletkezett nyalábok egy része visszafelé egyesül egymással. Mivel a nyalábok ugyanabból a fényforrásból származnak, fázisuk erősen korrelált. Így, amikor lencsét helyezünk a lézer fényforrás és a sugárosztó közé, a fénynyaláb kitágul és a megfigyelő ernyőn sötét és világos gyűrűkből álló kép jelenik meg (4. ábra). 3. ábra 7. Optika II. / 5 4. ábra
6 Mivel a két interferáló nyaláb ugyanabból a forrásból származik, fázisuk eredetileg azonos volt. Relatív fázisuk, amikor a megfigyelő ernyő bármely pontjában találkoznak, attól az optikai úthossztól függ, amelyet ezen pont eléréséig megtettek. M1 mozgatásával az egyik nyaláb úthossza változtatható. Mivel a nyaláb az M1 és a sugárosztó közötti utat kétszer teszi meg, M1-et 1/4 hullámhossznyival közelítve a sugárosztóhoz, a nyaláb úthossza 1/ hullámhossznyival csökken. Eközben megváltozik az interferenciakép. A maximumok sugara oly módon csökken, hogy a korábbi minimumok helyét foglalják el. Ha M1-et tovább mozgatjuk 1/4 hullámhossznyival a sugárosztó felé, a maximumok sugara tovább csökken úgy, hogy a maximumok és a minimumok ismét helyet cserélnek, és az új elrendezés megkülönböztethetetlen lesz az eredeti képtől. Lassan mozgatva a tükröt egy meghatározott d N távolságon és közben leszámolva N-et, vagyis annak számát, hányszor jutott a gyűrűkép az eredeti állapotába, meghatározható a fény hullámhossza: d N. (13) N Ha a fény hullámhossza ismert, ugyanígy meghatározható a d N távolság. Mérési feladatok 1.A. Lézer hullámhosszának meghatározása reflexiós ráccsal Eszközök: - optikai sín, lovasok - pozicionálható lézerdióda - vízszintes korong - fém vonalzó, bekarcolt 1 mm-es ill. 0,5 mm-es beosztással - ernyő - milliméterpapír - mérőszalag Reflexiós rácsként fém vonalzót használunk. A vonalzó az 1 ill. 0,5 mm-es skálájával tulajdonképpen egy 1 ill. 0,5 mm rácsállandójú reflexiós rács. A bekarcolt jelek mentén a fény elhajlik, a szomszédos beosztásokon elhajlott fénynyalábok interferálnak egymással, és ha a beesési szög elég nagy (súrló beesést hozunk létre), akkor az ernyőn egy sorozat fénypöttyöt kapunk, a különböző rendű rácsképeket. [Az eredeti ötlet, hogy tolómérő felhasználható reflexiós rácsként, és tolómérővel ily módon nemcsak egy cső vagy valami munkadarab szélessége, hossza, hanem a fény hullámhossza is mérhető, annak ellenére, hogy a hullámhossz sokkal kisebb, mint a legfinomabb beosztás, a Trinity College Fizika Intézetéből (Dublin, Írország) származik.] 5. ábra. A fény elhajlása a reflexiós rácson súrló beesésnél 7. Optika II. / 6
7 Vizsgáljuk meg, mennyi az úthosszkülönbség két szomszédos beosztásról származó elhajlított hullám (a és b) között (5. ábra)! s = CB AD. (14) Ha adott az beesési szög, akkor maximális erősítést azoknál a m elhajlási szögeknél kapunk, melyekre az úthosszkülönbség a hullámhossz egész számú többszöröse, D (sin sin m ) = m. (15) D, a rácsállandó esetünkben 0,5 mm. Feladat: Ragasszunk egy milliméterpapír-csíkot az ernyőre, és tegyük az ernyőt az optikai sín végére egy alacsony lovasba. A sín másik végére tegyük fel a lézert (alacsony lovasban), és állítsuk be úgy, hogy a lézersugár az ernyő alsó részét érje. Ezután helyezzük a vonalzót a forgatható korongra (magas lovason) úgy, hogy a lézersugár a 0,5 mm-es skálára essen. A vonalzó és a korong helyét, valamint a lézert állítsuk be úgy, hogy a legfényesebb pötty (az egyszerű visszavert sugár) alatt legfeljebb egy pötty, fölötte viszont legalább 8 pötty legyen látható az ernyőn. (Ha szükséges, emeljük meg a lézertartót a lovasban.) Jelöljük meg a pöttyök helyét (P 0, P 1,...) a milliméterpapíron, mérjük meg a mérőszalaggal a vonalzón látható fényfolt közepének távolságát (L) az ernyőtől, és (a korongot levéve) jelöljük meg az eltérítetlen lézersugár foltját (R) is. Kiértékelés: A 4. ábrán látjuk kissé eltorzítva a mérési elrendezést a kiértékeléshez szükséges mennyiségek feltüntetésével. Az el nem térített lézersugár helye az ernyőn R, az elhajlási kép fényfoltjainak helye rendre P 0, P 1,. A P 0 pont, a legfényesebb fényfolt középpontja, a nulladrendben elhajlított fénynyalábtól származik. A nulladrendben elhajlított nyaláb tulajdonképpen az egyszerű visszavert sugár, úgyhogy 0 =. Az RP 0 szakasz felezőpontja az O pont. Ettől a ponttól mérjük az egyes fényfoltok távolságát: x m OPm. A vonalzón lévő fényfolt távolsága az ernyőtől L. Látható, hogy tg m = L / x m. (16) 6. ábra. A mérési elrendezés lézer hullámhosszának meghatározásához Ebből meghatározzuk az elhajlási szögeket, majd sin m -et: L L sin m sin arctg x m L x m ábrázoljuk m függvényében. Másrészt (14)-ből kifejezve sin m -et: sin m = sin m /D (17) látható, hogy ez egy egyenest ad m függvényében, melynek meredeksége /D. tehát meghatározható a mérési pontokra illesztett egyenes meredekségéből a rácsállandó ismeretében. 7. Optika II. / 7
8 A jegyzőkönyvben beadandó: Készítsünk táblázatot, melyben feltüntetjük m-et, x m -et, és sin m értékét 6 tizedes pontossággal kiszámítva. Ábrázoljuk sin m -et az elhajlás rendjének, m-nek a függvényében! Számoljuk ki a lézerdióda hullámhosszát és annak hibáját, az egyenes meredekségét és annak szórását a legkisebb négyzetek módszerével meghatározva! 1.B. Hajszál vastagságának mérése A hajszál vastagsága összemérhető a fény hullámhosszával, így alkalmas arra, hogy megfigyeljük rajta az elhajlás jelenségét. A hajszál szélein elhajló fénynyalábok által létrehozott elhajlási képből megmérhető a hajszál vastagsága is. Eszközök: - optikai sín, lovasok, diatartó, ernyő - pozicionálható lézerdióda - hajszál diakeretben - mérőszalag Feladat: Az előző méréshez hasonlóan helyezzük el az optikai sínen a lézert és az ernyőt, majd közéjük a diatartóban a hajszálat. A lézer pozicionálásával állítsuk elő az elhajlási képet. Mérjük meg az első 3 kioltási hely pozícióját az ernyőn, és mérjük meg a hajszál távolságát az ernyőtől. Kiértékelés: A hajszál két széléről, azaz egymástól D távolságról kiinduló két fénynyaláb interferenciája következtében (11) szerint kioltás azokon a helyeken jön létre, ahol D sin m = (m+1) /. Mivel kicsi, sin közelíthető tg-val, vagyis sin m tg m = x m /L. A hajszáltól L távolságra lévő ernyőn tehát a kioltási helyek távolsága a középponttól (azaz a nulladrendű maximumtól) x m = (m+1) L / D, és két szomszédos kioltási hely távolsága x =L / D. Két szomszédos kioltási hely távolságából tehát kiszámolható a hajszál vastagsága. (A lézer hullámhosszát, azaz értékét az előző feladatban meghatároztuk.) Vessük össze a most kiszámolt értéket az Optika I. mérésnél kiszámolt értékkel! 1.C. Transzmissziós rács rácsállandójának meghatározása Eszközök: - optikai sín, lovasok, diatartó, ernyő - diakeretbe foglalt transzmissziós rács - pozicionálható lézerdióda Feladat: Az előző méréshez hasonlóan helyezzük el az optikai sínen a lézert és az ernyőt, majd közéjük a diatartóban a transzmissziós rácsot, és állítsuk elő az elhajlási képet. Mérjük meg az első -3 kioltási hely pozícióját az ernyőn, és mérjük meg a rács távolságát az ernyőtől. A jegyzőkönyvben beadandó: a rácsállandó értéke..a. A Michelson-féle interferométer összeállítása és beszabályozása (demonstráció) 1. Szereljük a lézertartót, a sugárosztót és a tükröket az interferométer alapra! Most mindkét tükör álló, de a dőlésszögük állítható.. Helyezzük el a sugárosztót a lézernyalábbal 45 -os szöget bezárólag a jelzések közé úgy, hogy a visszavert nyaláb az M tükör közepére essék. 3. Ekkor két fényes pontsorozatot kell látnunk a megfigyelő ernyőn. Az egyik pontsorozat az egyik tükörről, a másik a másik tükörről jön létre, mindegyik pontsorozat egy fényes pontot és két vagy több kevésbé fényes pontot tartalmaz (a többszörös visszaverődés miatt). Állítsuk a sugárosztó 7. Optika II. / 8
9 szögét addig, amíg a két pontsorozat a lehető legközelebb kerül egymáshoz, majd rögzítsük a sugárosztó helyzetét! 4. A tükrök hátoldalán lévő csavarokkal állítsuk be azok hajlásszögét úgy, hogy a két pontsorozat a megfigyelő ernyőn egybeessék! 5. Helyezzünk egy (18 mm fókusztávolságú) lencsét a lézer és a sugárosztó közötti nyalábba, és állítsuk be úgy, hogy a széttartó nyaláb a sugárosztóra koncentrálódjék! Ekkor koncentrikus gyűrűknek kell megjelenniük a megfigyelő ernyőn. Ha nem így volna, állítsunk be a tükrök dőlésszögén, amíg a gyűrűk meg nem jelennek..b. Kerámiacső lineáris hőtágulási együtthatójának meghatározása (közös feladat) 6. Cseréljük ki az egyik tükröt a kerámiacsövet tartó állványra. A vízszintesen befogott kerámiacső végére van rögzítve a tükör. A kerámiacső feszültség ráadásával fűthető, és a hőmérsékletét tudjuk mérni egy benne elhelyezett Pt ellenálláshőmérővel. 7. Állítsuk be a tükör dőlésszögét úgy, hogy megjelenjenek a koncentrikus gyűrűk. 8. Az Pt ellenálláshőmérő névleges ellenállása t 0 = 0 C-on R 0 = Olvassuk le az ellenállásmérő műszerről az ellenállást, és mérjük meg a szobahőmérsékletet. Számoljuk ki ezek alapján, hány -ot kell mutasson az ellenállásmérő műszer, ha 5 C-kal akarjuk emelni a kerámiacső hőmérsékletét. R(t) = R 0 ( 1 + (t t 0 ) ) 9. Jelöljünk meg az ernyőn egy kioltási pontot a belső gyűrűk egyikén. Kezdjük el fűteni a kerámiacsövet. A koncentrikus gyűrűk sugara most folyamatosan változik, az ernyőn kijelölt pontban hol erősítés, hol kioltás lesz (az adott pont hol világos, hol sötét lesz). 10. Figyeljük, mikor érjük el a 5 C-os hőmérsékletnövelésnek megfelelő ellenállásértéket, és közben számoljuk, hányszor lett újra sötét a megfigyelt pont. 11. Számoljuk ki, mennyivel változott meg a kerámiacső hossza! = 650 nm 1. Olvassuk le a kerámiacső hosszát. Számoljuk ki a kerámiacső lineáris hőtágulási együtthatóját. Kérdések, gyakorló feladatok: A jegyzetben szereplő legfontosabb fogalmak ismertetése: pl. elhajlás, Huygens-elv, interferencia A mérési elrendezések rajzai. Igaz-e, hogy * - a 0,5 m hullámhosszú elektromágneses sugárzás a látható fény tartományába esik? - az elsőrendű elhajlási képek távolsága arányos a hullámhosszal? - ha az elektromágneses hullám más közegbe lép be, a hullámhossza változatlan marad? - interferencia esetén az eredő amplitúdó akkor minimális, ha a fáziskülönbség egész számú többszöröse? - a törésmutató függ a fény frekvenciájától? * A válaszokhoz indoklást is kérünk! Feladatok: 1. Üvegbe levegőből érkező 710 nm hullámhosszú fénysugár beesési szöge 60, a törési szög 30. Mekkora a fény - sebessége - hullámhossza - frekvenciája az üvegben?. Transzmissziós rácsot merőlegesen beeső koherens fénynyalábbal világítunk meg, a hullámhossz 633 nm (He-Ne lézer). Az elsőrendű elhajlási képek távolsága 50 cm, a rács és az ernyő távolsága 75 cm. Számítsuk ki a rácsállandót! 7. Optika II. / 9
10 Gyakorló feladatok: 1. Üvegbe levegőből érkező 760 nm hullámhosszú fénysugár beesési szöge 60, a törési szög 30. Mekkora az üvegben a fény hullámhossza, terjedési sebessége és frekvenciája? Adjuk meg a hullámszámvektor nagyságát is az üvegben! Megoldás: A beesési és törési szögből számolható az üveg törésmutatója: n = sin 60 / sin 30 = 1,73. Az üvegbeli hullámhossz: = / n, ahol = 760 nm a vákuumbeli hullámhossz, tehát = 439 nm. A terjedési sebesség az üvegben v = c/n = / 1,73 = 1, m/s. A frekvencia = c / 0 = v / = 3, Hz A k vektor nagysága k = = /( ) = 1, m -1, iránya a terjedés iránya.. Két, azonos irányban lineárisan polarizált, azonos frekvenciájú síkhullám alkot egy fénynyalábot. Az egyes síkhullámokban az elektromos térerősség nagysága: E 1 = 3 sin(t kx /6) E = 4 sin(t kx + /3). Adjuk meg az eredő hullám amplitúdóját és fázisállandóját! Megoldás: Vezessük be a = t kx jelölést, és legyen az eredő hullám amplitúdója A, fázisállandója. E 1 = 3 sin cos(/6) 3 cos sin(/6), E = 4 sin cos(/3) + 4 cos sin(/3) E 1 + E = sin(3cos(/6)+4cos(/3)) + cos(4sin(/3) 3sin(/6)) = Acossin + Asincos. A cos-t és sin-t tartalmazó tagok együtthatóit egyenlővé téve a fenti egyenlet mindkét oldalán, kapjuk: A sin = 4 sin(/3) 3sin(/6), A cos = 3cos(/6) + 4cos(/3). Mindkét egyenletet négyzetre emelve és a két egyenletet összeadva: A = sin(/3)sin(/6) + 4 cos(/3)cos(/6) = 5 4 cos(/3+/6) = 5 A = 5. A két egyenletet elosztva: tg = 0,47 = 0, Transzmissziós rácsot merőlegesen beeső koherens fénynyalábbal világítunk meg, a hullámhossz 633 nm (He-Ne lézer). Az elsőrendű elhajlási képek távolsága 50 1 cm, a rács és az ernyő távolsága 60 1 cm. Számítsuk ki a rácsállandót és a rácsállandó hibáját! Megoldás: (11) szerint D sin =, ahol az első rendben elhajlított sugár és a rácssík normálisa által bezárt szög, = 633 nm a hullámhossz. tg = x/l, ahol L = 0,6 m, és x az elsőrendű képpont távolsága a nulladrendű képponttól, vagyis x = 0,5 m. Behelyettesítve x L D 1,65 m. sin arctg (x / L) x A rácsállandó hibája: (x = 0,5 cm és L = 1 cm) D D L L D x x x L x L L x L x L x 0,04 m. 7. Optika II. / 10
7. OPTIKA II. Fizikai optika, hullámoptika
7. OPTIKA II. Fizikai optika, hullámoptika A fényforrások időben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában terjed, az E elektromos és a H
Részletesebben7. OPTIKA II. Fizikai optika
7. OPTIKA II. Fizikai optika A fényforrások időben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában terjed, az E elektromos és a H mágneses térerősség
Részletesebben2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
Részletesebben8. OPTIKA II. A fény mint elektromágneses hullám
8. OPTIKA II. A fény mint elektromágneses hullám A monokromatikus síkhullám A fényforrások idben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában
Részletesebben8. OPTIKA 1. Geometriai optika
8. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. Bizonyos optikai alapismeretekkel együtt születünk, vagy legalábbis életünk nagyon korai szakában szert teszünk rájuk: ilyen a fénysugár fogalma
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
RészletesebbenOptika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
RészletesebbenOptika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
Részletesebben11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
RészletesebbenElektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
RészletesebbenGEOMETRIAI OPTIKA I.
Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában
RészletesebbenOptika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Részletesebben2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
RészletesebbenXVIII. A FÉNY INTERFERENCIÁJA
XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,
RészletesebbenLegyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése
6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az
RészletesebbenGeometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
RészletesebbenMechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
RészletesebbenHullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám
RészletesebbenLézer interferometria Michelson interferométerrel
SZÉCHENYI ISTVÁN EGYETEM FIZIKA ÉS KÉMIA TANSZÉK OPTIKAI ÉS FÉLVEZETŐFIZIKAI LABORATÓRIUMI MÉRÉSEK 3. MÉRÉS Lézer interferometria Michelson interferométerrel Hullámok találkozásakor interferencia jelenséget
RészletesebbenOPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
Részletesebben5.1. ábra. Ábra a 36A-2 feladathoz
5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o
RészletesebbenElektromágneses hullámok - Hullámoptika
Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik
RészletesebbenTörténeti áttekintés
A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először
RészletesebbenP vízhullámok) interferenciáját. A két hullám hullámfüggvénye:
Hullámok találkozása, interferencia Ha a tér egy pontjában két hullám van jelen, akkor hatásuk ott valamilyen módon összegződik. A hullámok összeadódását interferenciának nevezzük. Mi az interferencia
RészletesebbenOptika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
RészletesebbenOptika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 3. Fényelhajlás (Diffrakció) Cserti József, jegyzet, ELTE, 2007. Akadályok között elhaladó hullámok továbbterjedése nem azonos a geometriai árnyékkal.
RészletesebbenA fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
RészletesebbenOptika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp
RészletesebbenHullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
RészletesebbenNév... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
RészletesebbenA fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
Részletesebbens levegő = 10 λ d sin α 10 = 10 λ (6.1.1)
6. gyakorlat 6.. Feladat: (HN 38B-) Kettős rést 6 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n,65) készült lemezt helyezünk
RészletesebbenOPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
RészletesebbenBevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális
RészletesebbenOPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
RészletesebbenA hullámoptika alapjai
KÁLMÁN P-TÓTH A: Hullámoptika/ 53 A hullámoptika alapjai Számos kísérlet mutatja, hogy a fény hullámként viselkedik Ez elsősorban abból derül ki, hogy a fény interferenciát és elhajlási jelenségeket mutat
RészletesebbenHullámok, hanghullámok
Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési
RészletesebbenOptika mérések építőmérnököknek
Optika mérések építőmérnököknek I. Geometriai optikai vizsgálatok A leggyakoribb és legegyszerűbb optikai eszközök viselkedését geometriai optikai módszerrel lehet szemléletesen leírni. Ezen ismeretek
RészletesebbenOptikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
Részletesebben( ) A visszaverődő fény intenzitását kifejezve az. Optika mérések építőmérnököknek
Optika mérések építőmérnököknek I. Geometriai optikai vizsgálatok A leggyakoribb és legegyszerűbb optikai eszközök viselkedését geometriai optikai módszerrel lehet legegyszerűbben és szemléletesen leírni.
Részletesebben- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)
OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve
RészletesebbenElektrooptikai effektus
Elektrooptikai effektus Alapelv: A Pockels effektus az a jelenség, amikor egy eredendően kettőstörő anyag kettőstörő tulajdonsága megváltozik az alkalmazott elektromos tér hatására, és a változás lineáris
Részletesebben13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:
13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris
RészletesebbenRöntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
Részletesebben3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
3. OPTIKA I. Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
Részletesebben10. mérés. Fényelhajlási jelenségek vizsgála
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő 2012.10.15 (engedélyezett késés) 10. mérés Fényelhajlási jelenségek vizsgála Bevezetés: A mérések során a fény hullámhosszából adódó jelenségeket
RészletesebbenRezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Részletesebben9. Fényhullámhossz és diszperzió mérése jegyzőkönyv
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel
RészletesebbenMézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
RészletesebbenModern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina
RészletesebbenKristályok optikai tulajdonságai. Debrecen, december 06.
Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik
RészletesebbenCsillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
RészletesebbenRezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
RészletesebbenSpeciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
RészletesebbenOptika I. 1. Geometriai optika A geometriai optika törvényei A teljes visszaver dés
Optika I. Utolsó módosítás: 2011. október 12. Az optika tudománya a látás élményéb l fejl dött ki. Bizonyos optikai alapismeretekkel együtt születünk, vagy legalábbis életünk nagyon korai szakában szert
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Részletesebben2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő
1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított
Részletesebben1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet
A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,
RészletesebbenOptika az orvoslásban
Optika az orvoslásban Makra Péter Orvosi Fizikai és Orvosi Informatikai Intézet 2018. november 19. Makra Péter (SZTE DMI) Optika az orvoslásban 2018. november 19. 1 99 Tartalom 1 Bevezetés 2 Visszaverődés
Részletesebben24. Fénytörés. Alapfeladatok
24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza
RészletesebbenKísérleti forduló július 17., csütörtök 1/8 Kísérlet: Látni a láthatatlant (20 pont)
Kísérleti forduló. 2014. július 17., csütörtök 1/8 Kísérlet: Látni a láthatatlant (20 pont) Bevezetés Sok anyag optikailag anizotrop, ami azt jelenti, hogy a törésmutató függ a fényterjedés és a polarizáció
RészletesebbenHullámtan. A hullám fogalma. A hullámok osztályozása.
Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen
RészletesebbenFény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
RészletesebbenΨ - 1/v 2 2 Ψ/ t 2 = 0
ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;
RészletesebbenA levegő törésmutatójának mérése Michelsoninterferométerrel
XI. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 008. május 3 4. A levegő törésmutatójának mérése Michelsoninterferométerrel Szerző: Kovács Anikó-Zsuzsa, Babes-Bolyai Tudoányegyetem Kolozsvár, Fizika
RészletesebbenAz optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
RészletesebbenOPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István
Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,
RészletesebbenModern Fizika Labor. 17. Folyadékkristályok
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
RészletesebbenTÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet
RészletesebbenA fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával
Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,
RészletesebbenElektromágneses hullámegyenlet
Elektromágneses hullámegyenlet Valódi töltésektől és vezetési áramoktól mentes szigetelőkre felírva az első két egyenletet: Az anyagegyenletek továbbá: Ezekből levezethetők a homogén hullámegyenletek a
RészletesebbenMikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
RészletesebbenA geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenFénysebesség E Bevezetés
Figyelem! Minden mért és számolt értéket SI egységben kell megadnod, megfelelő számú értékes jegyre kerekítve. (Prefixumokat használhatsz.) Hibahatárokat csak akkor kell megadnod, ha ezt kifejezetten kérjük.
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
RészletesebbenOPTIKA. Vozáry Eszter November
OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS
RészletesebbenGyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
RészletesebbenFÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb
RészletesebbenMikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
RészletesebbenOptika gyakorlat 5. Gyakorló feladatok
Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen
RészletesebbenOptika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
RészletesebbenOptika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
RészletesebbenHullámoptika II.Két fénysugár interferenciája
Hullámoptika II. Két fénysugár interferenciája 2007. november 9. Vázlat 1 Bevezet 2 Áttekintés Két rés esetének elemzése 3 Hullámfront-osztáson alapuló interferométerek Amplitúdó-osztáson alapuló interferométerek
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
RészletesebbenA lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
Részletesebbenegyetemi tanár, SZTE Optikai Tanszék
Hullámtan, hullámoptika Szabó Gábor egyetemi tanár, SZTE Optikai Tanszék Hullámok Transzverzális hullám Longitudinális hullám Síkhullám m matematikai alakja Tekintsünk nk egy, az x tengely mentén n haladó
RészletesebbenHajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
RészletesebbenTartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
RészletesebbenOPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István
OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek
RészletesebbenA hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.
HULLÁMOK MECHANIKAI HULLÁMOK Mechanikai hullám: ha egy rugalmas közeg egyensúlyi állapotát megbolygatva az előidézett zavar tovaterjed a közegben. A zavart a hullámforrás váltja ki. A hullámok terjedése
RészletesebbenOPT TIKA. Hullámoptika. Dr. Seres István
OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz
RészletesebbenGyakorló feladatok Fizikai optikából
Kedves Hallgató! Gyakorló feladatok Fizikai optikából 2008. január 10. Ebben a dokumentumban olyan elméleti kérdéseket és számolós feladatokat talá, melyekhez hasonlókat fogok a vizsga írásbeli részén
Részletesebbend) A gömbtükör csak domború tükröző felület lehet.
Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye
RészletesebbenMérés spektroszkópiai ellipszométerrel
Mérés spektroszkópiai ellipszométerrel Bevezetés Az ellipszometria egy igen sokoldalú, nagypontosságú optikai módszer vékonyrétegek dielektromos tulajdonságainak meghatározására. Mivel optikai módszer,
RészletesebbenTávolságmérés hullámokkal. Sarkadi Tamás
Távolságmérés hullámokkal Sarkadi Tamás Mechanikai hullám Mechanikai rezgés tovaterjedése: rugalmas közegben terjed Hang: Legtöbbször longitudinális (sűrűsődés-ritkulás) Sebesség, frekvencia=>hullámhossz
RészletesebbenOPTIKA. Vékony lencsék. Dr. Seres István
OPTIKA Vékon lencsék Dr. Seres István Gömbfelület féntörése R sugarú gömbfelület mögött n relatív törésmutatójú közeg x d x
Részletesebbenc v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v
Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással
RészletesebbenFizika 2 - Gyakorló feladatok
2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
RészletesebbenFizikai optika (Vázlat)
Fizikai optika (Vázlat) 1. Történeti áttekintés 2. A fény interferenciája a) Young-féle kísérlet b) Fresnel-kísérlet c) Fényinterferencia észlelhetőségének feltétele d) Interferencia vékony rétegen 3.
Részletesebben