8. OPTIKA 1. Geometriai optika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "8. OPTIKA 1. Geometriai optika"

Átírás

1 8. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. Bizonyos optikai alapismeretekkel együtt születünk, vagy legalábbis életünk nagyon korai szakában szert teszünk rájuk: ilyen a fénysugár fogalma és a fény egyenesvonalú terjedésének "törvénye". A fényforrásokból, a fénylő tárgyakról fénysugarak indulnak ki és a tárgyakat arrafelé látjuk, amely irányból a fény róluk a szemünkbe érkezik. 1. Geometriai optika A geometriai optika a fénysugarak terjedésével foglalkozik. A fénysugár a fényforrásból egy keskeny térszögbe kiinduló fénynyaláb határesete, amikor ez a térszög végtelenül kicsi. A tárgyakat azért látjuk, mert vagy fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket, és ez a fény a tárgyról visszaverődve a szemünkbe jut. A geometriai optika alaptörvényei: a. Homogén közegben a fény egyenes vonalban terjed. b. A fény a közegtől függő, véges sebességgel terjed. Vákuumban a fény terjedési sebessége c = 2, m/s. A törésmutató, n, a vákuumbeli c fénysebesség és a v közegbeli fénysebesség hányadosa: n = c / v. (1) c. Két közeg közötti határfelületre érve a fény egy része a közeghatárról visszaverődik, más része behatol a második közegbe, de itt "megtörik", terjedési iránya általában megváltozik. A határfelület normálisa (n) és a beeső fénysugár iránya (i) meghatározza a beesési síkot. A visszavert fénysugár (r) és a határfelületen áthaladt és megtört fénysugár (t) a beesési síkban marad. A beeső fénysugár és a beesési merőleges szöge, α a beesési szög. A visszavert fénysugár ugyanakkora szöget (α) zár be a beesési merőlegessel, mint a beeső fénysugár. A törési szög (β) a megtört sugár és a beesési merőleges közötti szög. α és β között a Snellius-Descartes törvény áll fenn. Ha n 1 az első, n 2 a második közeg törésmutatója: n 1 sin α = n 2 sin β. (2) 1. ábra. Törés és visszaverődés két közeg határfelületén A törés és visszaverődés törvényei a sík és görbült felületeknél egyaránt érvényesek azzal a különbséggel, hogy a görbült határfelület különböző pontjaiba érkező fénysugarak számára a beesési merőleges különböző irányú lesz. A teljes visszaverődés Ha a fény egy nagyobb törésmutatójú közegből lép át egy kisebb törésmutatójú közegbe, a törési szög nagyobb a beesési szögnél. 91

2 sin β = n 1 sinα / n 2. A beesési szöget növelve az α h határszögnél sin β = 1. A határszögnél nagyobb beesési szöghöz nem tartozik megtört fénysugár, a fény teljes egészében visszaverődik. A képalkotás Ha egy tárgy minden egyes pontjából kiinduló fénysugarak a visszaverődés és törés után újból egy pontban metszik egymást, képalkotásról beszélünk. Ha a fénysugarak ténylegesen metszik egymást a képpontban, a kép valós, ernyővel felfogható. Ha a visszavert illetve megtört sugarak széttartók és hátrafelé meghosszabbítva metszik csak egymást, a kép virtuális. A tükrök és a lencsék képalkotásának törvényei a visszaverődés és törés törvényeiből vezethetők le. A kép megszerkesztéséhez néhány speciális fénysugarat használhatunk fel: az optikai tengellyel (szimmetriatengellyel) párhuzamos fénysugarak a visszaverődés illetve törés után a fókuszponton mennek keresztül. Az optikai centrumba beérkező sugár a tükörnél szimmetrikusan verődik vissza, a lencsén pedig irányváltozás nélkül halad át. A fókuszponton át beérkező fénysugarak pedig az optikai tengellyel párhuzamosan haladnak tovább. Mindez akkor érvényes, ha a lencse vagy tükör átmérője sokkal kisebb, mint a görbületi sugara. A fókusztávolság a görbületi sugár fele a tükrök esetében, homorú tükörnél pozitív, domborúnál negatív. A vékony lencsék fókusztávolságát a "lencsekészítők törvénye" adja meg: 1/f = (n - 1)(1/R 1 + 1/R 2 ), (3) ahol n a lencse törésmutatója a környezethez viszonyítva, R 1 és R 2 a lencsefelületek görbületi sugara. A kívülről nézve domború felület görbületi sugara pozitív, a homorúé negatív. Egy, a tükörtől vagy lencsétől t távolságban lévő tárgy képe k távolságra keletkezik a leképező eszköztől: 1/t + 1/k = 1/f, (4) ahonnan t f k =. tf Ha k < 0, a kép virtuális. Domború tükörnél vagy homorú lencsénél, ahol a fókusztávolság negatív, mindig virtuális kép keletkezik. A nagyítás (N) a képnagyság (K) és a tárgynagyság (T) hányadosa: N = K / T = k / t. (5) Ha a kép virtuális, a nagyítás negatív szám. Síktükörnél f végtelen, ezért k = - t, a kép a tükör mögött ugyanolyan távol látszik, mint amilyen távol van a tárgy a tükörtől. A geometriai optika korlátai, a fény hullámtermészete Ha a fénysugár nagyon keskeny résen vagy szűk blendén halad keresztül, a rés vagy blende mögötti ernyőn sötét-világos csíkokat illetve koncentrikus köröket kapunk. Egy nagyon apró tárgy pedig nem vet éles árnyékot, sőt, az ernyőn ott kapjuk a legerősebb megvilágítást, ahol a tárgy árnyékának kellene lenni. Ezek a jelenségek a fény hullámtermészetének megnyilvánulásai. 2. A fény mint elektromágneses hullám A monokromatikus síkhullám A fényforrások időben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában terjed. Távol a fényforrástól, átlátszó, homogén, izotróp közegben az elektromágneses tér monokromatikus síkhullámok összegére bontható. Az elektromos térerősség egy ilyen síkhullámban az r helyvektorú pontban: E = E 0 sin (k r - ωt + ϕ 0 ). (6) E 0 a síkhullám amplitúdója, ω a körfrekvencia, ω = 2πν, ahol ν a frekvencia. A 92

3 ϕ = k r - ωt + ϕ 0 (7) kifejezés a fázis, ϕ 0 a fázisállandó, k a hullámszám-vektor. A hullám terjedési iránya megegyezik k irányával. Az E 0 vektor irányát tekintjük a polarizáció irányának. A fény transzverzális hullám, E 0 merőleges a terjedési irányra, így k-ra is. A fény intenzitása az ilyen monokromatikus síkhullámban az amplitúdó négyzetével, E 0 2 -tel arányos. Hullámfront : Azoknak a pontoknak az összessége, melyeken a ϕ fázis értéke egy adott időpontban azonos. A hullámfront minden pontjában ugyanaz a térerősség és időben azonos módon változik. A (6 ) alakú síkhullámok hullámfrontjai síkok, melyek egyenlete a t időpontban ϕ = k r - ωt + ϕ 0 = konst. Ha a hullám az x tengely irányában terjed, a fázissík egyenlete: kx- ωt + ϕ 0 = konst. A (6) síkhullám időben és térben periodikus függvény. A periódusidő, T, az a legrövidebb idő melynek elmúltával adott helyen ugyanaz lesz a térerősség és a térerősség időderiváltja is, vagyis ha a fázis változása T idő alatt 2π-vel egyenlő: ϕ = ω Τ = 2π. A periódusidő reciproka a frekvencia: ν=1/t. A térbeli periódus a hullámhossz, λ: két szomszédos fázissík távolsága, melyeken a fázis 2π -vel különbözik: ϕ = 2π = k λ, azaz λ=2π /k. (8) Eszerint a k hullámvektor nagysága a hullámhossz reciprokával, a hullámszámmal arányos, annak a 2πszerese. Egy adott ϕ fázisú hullámfront helyzete a t időpontban x = ωt / k + (ϕ - ϕ 0 ) / k, azaz a front v = ω / k (9) sebességgel (fázissebesség) mozog az x tengely mentén. Vákuumban a fázissebesség c. Ha a hullám egy más közegbe lép be, frekvenciája azonos marad, terjedési sebessége azonban változik, a közeg optikai sajátságaitól függően. A vákuumbeli és közegbeli terjedési sebesség hányadosa a törésmutató. A törésmutató függ a frekvenciától (diszperzió), átlátszó közegben a frekvencia növekedésével kissé nő. Ekkor normális diszperzióról beszélünk. Abszorbeáló közegekben a törésmutató komplex szám. Ilyenkor a fény terjedését csillapodó hullámmal írhatjuk le. A fény frekvenciája, terjedési sebessége és hullámhossza közötti összefüggést (8) és (9) összevetésével kapjuk: k = ω / v = 2π / T v = 2 π / λ λ = v T. (10) A fázissík egy periódusidő alatt éppen egy hullámhossz távolságra jut el. Vákuumban a hullámfront egy periódusidő alatt λ 0 = c T távolságot tesz meg. A közegbeli terjedési sebesség v=c/n, így a közegbeli hullámhossz λ = c/n T = λ 0 /n. (11) A hullámhossz közegről közegre változik, a vákuumbeli hullámhossz azonban éppúgy jellemzi a hullámot, mint a frekvencia. A látható tartományban a (vákuumbeli) hullámhossz 380 és 760 nm között van. Egy n törésmutatójú közegben beszélhetünk az optikai úthosszról: s = n d, (12) mely a tényleges d úthossz és az n törésmutató szorzata. A hullámok interferenciája, koherencia Tekintsünk két, az x tengely irányában terjedő, azonos irányban (pl. az y tengely irányában) polarizált, azonos frekvenciájú, azonos irányban haladó, de különböző fázisállandójú síkhullámot. Legyen a két síkhullámban az y irányú térerősség E 1 és E 2 : E 1 = E 10 sin( kx - ωt + ϕ 10 ), E 2 = E 20 sin( kx - ωt + ϕ 20 ). 93

4 Az eredő térerősség E = E 1 + E 2. Beláthatjuk, hogy ez szintén síkhullám: E = E 0 sin(kx - ωt + ϕ 0 ), melynek amplitúdója E 0, fázisállandója ϕ 0. E 2 0 = E E E 10 E 20 cos (ϕ 10 -ϕ 20 ). (13) Az eredő hullám amplitúdója a ϕ = ϕ 10 - ϕ 20 fáziskülönbségtől függ: az eredő amplitúdó maximális, ha ϕ 0 vagy 2π egész számú többszöröse, és minimális, ha π páratlan számú többszöröse a fáziskülönbség. Az eredő hullám fázisa: tgϕ 0 = E 10 sin ϕ0 + E 20 sin ϕ20. E10 cosϕ0 + E20 cosϕ20 A fázisállandók különbsége úthosszkülönbségnek is felfogható a két összetevő fényhullám között: s = ϕ / k = λ ϕ / 2π, ahol λ a közegbeli hullámhossz. Felhasználva, hogy a λ = λ 0 / n, n s = λ 0 ϕ / 2π. A két fényhullám maximálisan erősíti egymást, ha fázisaik különbsége 2π egész számú többszöröse illetve ha az optikai úthosszkülönbség köztük a vákuumbeli hullámhossz egész számú többszöröse, és maximálisan gyengíti, ha a félhullámhossz páratlan számú többszöröse. Ha egy párhuzamos fénynyalábban az összetevők fázisainak különbsége időben állandó, akkor a fénynyaláb koherens. Ekkor az azonos irányban polarizált hullámok egyetlen hullámmal helyettesíthetők. Csak azonos frekvenciájú síkhullámok alkothatnak koherens nyalábot. Lineárisan, cirkulárisan és elliptikusan poláros fény A fénynyalábot alkotó azonos frekvenciájú monokromatikus síkhullámok térerősség-amplitúdó vektorai lehetnek párhuzamosak, akkor a fénynyaláb lineárisan poláros és a polarizáció iránya megegyezik az összetevők polarizáció irányával. Ha a komponensekben az amplitúdó vektorok nem párhuzamosak, akkor az eredő lehet lineárisan, cirkulárisan vagy elliptikusan poláros. Két egymásra merőlegesen poláros síkhullám eredője - lineárisan poláros, ha a fáziskülönbségük 0; - cirkulárisan poláros, ha az amplitúdók nagysága azonos és a fáziskülönbség π/2; - elliptikusan poláros különben. A fény intenzitása A fényintenzitás (I) a térerősség abszolút-érték négyzetének időátlagával arányos. A (6) monokromatikus síkhullámban I E 0 2. Egy koherens fénynyaláb mindig felbontható két egymásra merőleges lineárisan poláros fényhullám összegére. Két egymásra merőlegesen poláros síkhullámból álló nyalábban a fényintenzitás a két merőleges komponens intenzitásainak összege: I = I p + I m. Itt a "p" (párhuzamos) és az "m" (merőleges) jelzés egy kitüntetett síkra, pl. a beesési síkra vonatkozik. Ha a fénynyalábban a komponensek fázisainak különbsége időben véletlenszerűen változik, akkor ezeknek a komponenseknek az intenzitása összegződik. Két, egymással párhuzamos polarizáció-irányú koherens fénynyaláb interferenciára képes. Ez azt jelenti, hogy az eredő fénynyalábban a térerősségek (13) szerint a fáziskülönbségtől függően erősítik vagy gyengítik egymást, és az eredő intenzitás I = I 1 + I I 1 I 2 cos(ϕ 10 - ϕ 20 ). (14) Koherens és közönséges fényforrások A fényforrásokban a valamilyen módon magasabb energiaállapotokba gerjesztett atomok vagy molekulák sugároznak ki fényt - egy fotont emittálnak, miközben a gerjesztett állapotból az alapállapotba vagy alacsonyabb energiájú állapotba kerülnek. A foton kibocsátása az átmenet alatt, véges ideig történik, ezért a foton egy véges hullámvonulat, véges hossza van - ez a koherenciahossz. A következő foton fázisállandója nem egyezik az előzőével, és ha az emisszió spontán következik be, a 94

5 fotonok iránya és fázisa véletlenszerű. Így egy közönséges fényforrásból származó fénynyaláb nem koherens, mert benne a fotonok - elemi hullámvonulatok - fázisa időben véletlenszerűen változik. Egy ilyen nem-koherens fénynyalábban egy foton csak önmagával interferálhat - a koherenciahosszán belül. A lézerek monokromatikus, párhuzamos és koherens fénynyalábot szolgáltató fényforrások. (Persze, a lézerfény sem abszolút monokromatikus, párhuzamos és koherens, de a közönséges fényforrásokhoz viszonyítva nagymértékben az.) Ez annak köszönhető, hogy a lézerben a fénykibocsátás indukált emisszióval történik, szemben a közönséges fényforrásokkal, ahol spontán emisszióval. Az indukált emissziónál egy gerjesztő foton hatására az atomi rendszer úgy kerül egy alacsonyabb energiájú állapotba, hogy a gerjesztő fotonnal tökéletesen azonos -azonos frekvenciájú, terjedési irányú és fázisúfotont bocsát ki. Fényhullámok törése, visszaverődése, elhajlása A fény, mint elektromágneses hullám kielégíti az elektromágneses tér Maxwell-egyenleteit és az egyenletekhez tartozó határfeltételeket. Végtelen homogén és izotróp közegben egyetlen síkhullám is megoldás. Ha azonban a közegben inhomogenitások - a fénysugár útjában akadályok - vannak, akkor egyetlen síkhullám már nem felel meg a határfeltételeknek. Tegyük fel, hogy a teret egyetlen sík határfelület két különböző optikai tulajdonságú részre osztja, és az első közegben egy síkhullám terjed a határfelület felé. Megmutatható, hogy az első közegben az elektromágneses tér két hullám - a beeső haladó hullám és egy visszavert hullám - összege lesz, és a második közegben egy megtört - az eredetitől különböző hullámszámvektorú - hullám terjed. A két közeg határfelületének normálisa a beesési merőleges. Ha ezzel a beeső fénysugár k hullámszám-vektora α szöget zár be, akkor a visszavert sugár hullámszám-vektora -α szöget; a megtört sugáré pedig β szöget zár be, ahol az α beesési szög és a β törési szög között a Snellius-Descartes törvény áll fenn: n 1 sinα = n 2 sinβ, ahol n 1 a beesés oldalán, n 2 a határfelület másik oldalán a törésmutató. Ha a két közeg határfelülete görbült, de a görbületi sugár a hullámhossznál sokkal nagyobb, a felület minden pontján az ottani érintősíkkal helyettesíthető, és a törés és visszaverődés törvényei változatlanok maradnak, csupán a sík normálisa és így a beesési szög is pontról-pontra változik, és a síkhullám-kép továbbra is érvényes marad. Ha az akadály mérete összemérhető a hullámhosszal, akkor elvész a síkhullám- jelleg az akadály közelében. A Huygens-elvvel szemléltethető a fény terjedése ilyen esetben: a hullámfront minden pontja elemi gömbhullámok kiindulópontja és ezek eredője adja az új hullámfrontot. Ha a fény útjába egy ernyőt teszünk, melyen egy nagyon kicsi lyuk van, akkor az ernyő mögött a hullámfrontok gömbfelületek lesznek (2. ábra). 2. ábra. A fény elhajlása ernyőn lévő kis nyíláson Nagy távolságból nézve egy ilyen gömbfelületnek csak egy kis térszögű részét észleljük, és ez a hullámfront-darab síkkal is helyettesíthető, a hullám pedig a megfigyelés környezetében síkhullámmal. Bárhonnan nézzük az ernyőt, a rajta lévő nyílásból, mint pontszerű fényforrásból fény jut a szemünkbe. 95

6 A fénysugarakhoz kötődő szemléletünk szerint az ernyő mögötti térbe minden irányba fénysugarak indulnak ki az ernyőn lévő nyílásból. Tegyünk egy párhuzamos, monokromatikus fénynyaláb útjába a terjedési irányra merőlegesen egy ernyőt, melyen két párhuzamos keskeny rés van D távolságban egymástól (3. ábra). A réseken a fény elhajlik, nagy távolságból olyan a hullámkép, mintha a résekből az ábra síkjában minden irányban síkhullámok indulnának ki. Tekintsük azt az irányt, mely az ernyő normálisával α szöget zár be. Ebben az irányban a két réstől származó párhuzamos fénynyaláb közti úthosszkülönbség D sinα, a fáziskülönbség ϕ = 2π sinα D / λ. (15) A két fénynyalábhoz tartozó térerősségek összeadódnak az eredő nyalábban; E = E 1 + E 2. Mivel az amplitúdók a két elhajlított nyalábban megegyeznek, az intenzitás (14) szerint I = 2 I 0 ( 1 + cos ϕ ). 3. ábra. Elhajlás kettős résen Ha ϕ π/2 páratlan számú többszöröse, azaz D sinα a félhullámhossz páratlan számú többszöröse, teljes kioltást kapunk. A résektől bizonyos L távolságban elhelyezett ernyőn sötét és világos csíkokat fogunk észlelni, a maximális gyengítés és maximális erősítés irányainak megfelelően. D sinα = (2m+1) λ/2 : kioltás, D sinα = m λ : maximális erősítés (16) Az optikai rács Ha egy átlátszó lemezt egyenlő távolságban, párhuzamosan bekarcolunk, vagy valamilyen más eljárással párhuzamos, periodikusan váltakozva átlátszó és átlátszatlan csíkokat hozunk létre rajta, transzmissziós optikai rácsot kapunk. Hasonló módon, reflektáló felületen periodikus, tükröző és nem-tükröző, egymással párhuzamos csíkokból álló mintázatot létrehozva, kapjuk a reflexiós rácsot. A rácsot koherens fénynyalábbal megvilágítva, és a rács által elhajlított fényt ernyőn felfogva, a fényforrás elhajlási képét kapjuk, egy a rács csíkjaira merőleges egyenesen elhelyezkedő fényfolt-sorozatot az el nem hajlított nyalábnak megfelelő transzmittált vagy reflektált kép mindkét oldalán, úgy mint a kettős rés esetén, csak nagyobb intenzitással. Ha a fény merőlegesen esik a síkrácsra, az elhajlási kép szimmetrikus és a kioltás és erősítés feltételét (16) adja meg. Így ha az m-edik és (-m)-edik elhajlított kép távolsága az ernyőn 2x m, a rács és az ernyő távolsága L és a rácsállandó D, akkor (16)-nak megfelelően x m = L tg α = L m λ / D 2 2 ( mλ ), (17) ahonnan a rácsállandó kiszámítható. Ha mλ << D, akkor D = m λ L / x m. 96

7 A lézer (olvasmány) A fotonok és atomok illetve molekulák kölcsönhatásánál történhet - abszorpció: a foton az atomot vagy molekulát egy magasabb energiájú állapotba gerjeszti, miközben maga elnyelődik. A két állapot közti energiakülönbség E = hν, ahol ν a foton frekvenciája; - spontán emisszió: a molekula vagy atom "magától" tér vissza egy alacsonyabb energiájú állapotba, foton kibocsátása közben, a foton frekvenciája ν = E / h; - indukált emisszió: a magasabb energiájú állapotból az alacsonyabb energiájú állapotba egy fotonnal való kölcsönhatás révén kerül a molekula vagy atom, miközben az indukáló fotonnal teljesen azonos fotont bocsát ki. Az indukáló foton frekvenciája ν = E/h, és ugyanez a gerjesztett foton frekvenciája is. Az indukált emisszióval keletkezett fotonnak nemcsak a frekvenciája, hanem a neki megfelelő hullám terjedési iránya, fázisa és polarizációja is megegyezik az indukáló fotonéval. A lézerben tulajdonképpen fotonsokszorozás történik az indukált emisszió révén, mert a gerjesztett fotonok újabbakat hoznak létre. Az indukált emissziónak és az abszorpciónak azonos a hatáskeresztmetszete, valószínűsége pedig a kiindulási állapotok számától függ. Normális esetben kevesebb atom vagy molekula van a magasabb energiájú állapotban, mint az alacsonyabb energiájúban, így egy spontán emisszióval keletkező foton számára az abszorpció valószínűsége jóval nagyobb, mint a spontán emisszióé. Spontán emisszió létrehozásához gerjesztett állapotokban lévő atomok, molekulák jelenléte szükséges. Ahhoz, hogy a spontán emisszió valószínűsége nagyobb legyen, mint az abszorpcióé, több atomnak kell lennie a magasabb energiájú állapotban, mint az alacsonyabb energiájúban - populáció inverziót kell létrehozni. Ehhez az kell, hogy a magasabb energiájú állapot élettartama viszonylag hosszú legyen (metastabilis állapot). Ez akkor teljesül, ha a gerjesztett állapotból tiltott az átmenet az alacsonyabb energiájú állapotba. Ebbe a metastabil állapotba hozni az atomokat pl. másféle, gerjesztett állapotú atomokkal való ütközéssel lehet, ha a két gerjesztett állapot energiája közel azonos. A magasabb energiájú állapot feltöltése az optikai pumpálás. A lézerhez szükséges még egy rezonáns üreg, egy két végén tükröző felülettel ellátott cső. A tükrökről visszaverődve, a cső tengelyével párhuzamosan haladó fotonok újabbakat keltenek, míg a más irányba haladó fotonok kiszóródnak vagy elnyelődnek a cső falán. (4. ábra) A cső hosszának olyannak kell lenni, hogy állóhullámok alakuljanak ki benne. A lézer hangolásával ki lehet választani a kívánt hullámhosszat a lehetséges hullámhosszak közül. 4. ábra. Fotonsokszorozás a lézer üregében A He-Ne lézerben a gázkeverék 90%-a helium és 10%-a neon. A lézerben elektromos kisülést hoznak létre, mely gerjeszti a He atomokat. A Ne atomoknak vannak olyan állapotai, melyek energiája kb. megegyezik a He atomok gerjesztett állapotának energiájával. Ütközéssel a He atomok ebbe az állapotba tudják gerjeszteni a Ne atomokat. Ezek a Ne állapotok metastabilisak, így a sokkal nagyobb koncentrációban lévő He atomokkal való ütközések révén feltöltődnek és létrejön a populáció-inverzió. Spontán emisszióval keletkezik néhány elsődleges foton, és ezek indukált emisszióval újabbakat keltenek. A szekunder fotonok megint új fotonokat indukálnak. Csak a tengely mentén haladó fotonok hatékonyak, ezek lépnek ki a lézerből az egyik végtükrön lévő ablakon keresztül (a többi elnyelődik a lézercső falában) - az eredmény egy nagyon párhuzamos, monokromatikus és koherens fénynyaláb. A He-Ne lézert leginkább a 632,8 nm-es hullámhosszon használják, mely a Ne 2p 5 5s elektron konfigurációjú állapotából a 2p 5 3p állapotba való átmenetnek felel meg. A He-Ne lézer az infravörös tartományban is működtethető a 1152,3 nm és a 1117,7 nm-es hullámhosszokon, ezek a 2p 5 4s konfigurációjú állapotokból a 2p 5 3p állapotokba való átmenettel keletkeznek. 97

8 3. Mérési feladat 3a. Geometriai optika: visszaverődés és törés, teljes visszaverődés Eszközök: halogénlámpás kísérleti fényforrás tápegységgel, szögbeosztással ellátott optikai korong, rugalmas tükör, homorú és domború tükrök, konvex és konkáv lencse-szeletek, trapéz alakú prizma, egy- és kétréses, illetve három- és ötréses blende, téglalap kivágású blende. Tükrök és lencsék: a sugármenet vizsgálata, a fókusztávolság meghatározása A fókusztávolság az a pont, ahol a főtengellyel párhuzamosan beeső fénysugarak a tükörről visszaverődve, illetve a lencsén áthaladva, metszik egymást. Állítsunk elő párhuzamos fénynyalábot. Helyezzük a háromréses blendét a fényforrás kimenő ablakára. Helyezzük a tükör- illetve lencseszeleteket merőlegesen a fénysugarakra, határozzuk meg a fókusztávolságot és a fókusztávolság előjelét! Fordítsuk meg a blendét, hogy 5 fénysugarunk legyen. Figyeljük meg, egy pontban metszi-e egymást az összes fénysugár! Állítsuk a tükröt illetve a lencsét úgy, hogy ferdén essenek rá a fénysugarak. Vázoljuk a sugármenetet! Fénytörés és teljes visszaverődés prizmán, színbontás a prizmán; a prizma törésmutatójának meghatározása Az 5. ábra szerint helyezzük a trapéz alakú prizmát az optikai korongra úgy, hogy a prizma ferde lapjának normálisa egybeessen a korong 0 szögnek megfelelő tengelyével. Az egyréses blendét használva, állítsunk elő egyetlen keskeny párhuzamos fénynyalábot, mely pont a korong közepén éri el a prizmát. Figyeljük meg a prizma színbontását! Milyen színű fény törik meg (változtat irányt) a legjobban? A fénytörés mértékét a prizma törésmutatója határozza meg. Minél nagyobb a törésmutató, (minél inkább különbözik a környezetétől) annál erősebben törik a fény. Az átlátszó közegek törésmutatója kissé növekszik a frekvencia növekedésével. A látható tartományban a vörös fény frekvenciája a legkisebb, az ibolyáé a legnagyobb. Így az ibolya színű fénysugár törik meg a legjobban. A korongot forgassuk úgy, hogy a fénysugár belépési pontja a korong középpontjában maradjon, és határozzuk meg azt az α beesési szöget, melynél a szomszédos lapra érkező fénysugár éppen nem lép ki a prizmából (ahol δ = 90 ), külön a vörös és külön az ibolya szélén a spektrumnak. 5. ábra. Prizma törésmutatójának mérése A mérés kiértékelése: Legyen φ a prizma törőszöge. Az α, β, γ, δ beesési illetve törési szögeket a felület normálisától (beesési merőleges) mérjük. φ = β + γ, sinα = n sinβ, n sinγ = sinδ = 1 γ = φ - β, n (sinφ cosβ - cosφ sin β) = n sinφ cosβ - cosφ sinα = 1 98

9 n cosβ = (1 + cosφ sinα) / sinφ n sinβ = sinα. Az utolsó két egyenletet négyzetre emelve és összeadva, kapjuk: n 2 = (1 + 2 cosφ sinα + cos 2 φ sin 2 α)/ sin 2 φ + sin 2 α = (1 + 2 cosφ sinα + sin 2 α) / sin 2 φ. n = 2 2 (1 + 2 cos φ sin α + sin α) / sin φ. (17) A méréssel kapott α értéket és a φ értékét behelyettesítve, megkapjuk a törésmutatót. (A prizma törőszöge 60 ). Tegyük fel, hogy a törőszög hibája elhanyagolható, a kritikus α szöget viszont fél fok pontossággal tudjuk meghatározni. Határozzuk meg a törésmutató-mérés pontosságát! 3b. Polarizáció A fényhullám elektromos térerősségének irányát tekintjük a polarizáció irányának. A polarizátorok egy irányban polarizált fényhullámot engednek át, az erre az irányra merőleges elektromos teret nem, így a polarizátor mögött a polarizátor áteresztési irányának megfelelően lineárisan polarizált fényt kapunk. Eszközök: két polarizátor, szögbeosztással ellátott foglalatban; diavetítő; blendék diakeretben optikai pad, lovasokkal; kvarckristály-lapka diakeretben. műanyag vonalzó Nézzünk a polarizátoron keresztül a lámpa felé és forgassuk a polarizátort! Semmi változást nem észlélünk. Most nézzük a lámpa fényét két polarizátoron keresztül és forgassuk a polarizátorokat egymáshoz képest! Az áteresztett fény intenzitása erősen változik. Vizsgáljuk meg polarizátoron keresztül nézve a sima fényes (de nem fém!) felületekről kb. 50 fokos szögben visszaverődött természetes fényt! Ha forgatjuk a polarizátort, a fény intenzitása változik. Visszaverődésnél másképp viselkedik a beesési síkra merőlegesen és a beesési síkkal párhuzamosan polarizált fény. A párhuzamosan polarizált fény kisebb hányada verődik vissza az átlátszó közegekről, mint a merőlegesen polarizálté. Az ún. Brewster-szögnél pedig a visszavert fényből hiányzik a párhuzamosan polarizált komponens. A Brewster-szögben beeső fény visszaverődés után lineárisan polarizált lesz. A polarizátorok egyik fajtája éppen ezt a jelenséget használja fel, hogy ha a fény a Brewster-szögben esik az anyagra, akkor a visszaverődött fény a beesési síkra merőlegesen polarizált. Egy másik módszer a polarizált fény előállítására az anizotróp anyagoknál előforduló dikroizmus jelenségét használja. A dikroikus anyagok egyes polarizációs irányban a fényt elnyelik, az erre merőlegesen polarizáltat pedig átengedik. A polaroid fóliát tartalmazó polarizátorok működnek ezen az elven. Ilyen polarizátort használunk ennél a mérésnél. 99

10 Az optikai aktivitás vizsgálata 6. ábra. Mérési elrendezés a polarizáció vizsgálatához Helyezzünk el az optikai padon négy lovast benne tartókkal a 6. ábra szerint. A polarizátorokat úgy helyezzük a szögbeosztású tartókra, hogy egymás felé nézzenek. Húzzuk be a vetítőbe a közepes méretű blendét! Állítsuk be a vetítőt úgy, hogy a falon a köralakú blende éles képét kapjuk! A két polarizátort hozzuk először párhuzamos helyzetbe: a rajtuk lévő jel a szögskála 0-jánál legyen.. Forgassuk a fal felé eső polarizátort. Ha a két polarizátor áteresztési iránya párhuzamos, maximális fényintenzitást kapunk a két polarizátor után. Az ernyő felőli polarizátor (analizátor) forgatásával az áteresztett fény gyengül, a keresztezett polarizátorok ( az ernyő felé eső polarizátor jele 90 o -nál áll) pedig nem engednek át fényt. Helyezzük be keresztezett polarizátorok közé a diatartóba a kvarcréteget! A blende képe kivilágosodik az ernyőn. A kvarckristály-lapka elforgatta a polarizátor után kapott fény polarizáció irányát, így ebben lett olyan komponens, mely párhuzamos az analizátor áteresztési irányával. Próbáljuk kioltani a fényt az ernyőn, az analizátor forgatásával! Nem kapunk teljes sötétséget, ellenben a fényfolt színe az analizátor szögétől függően változik Ezek a színek azonban mások, mint a prizma vagy rács színbontásánál kapott spektrum tiszta színei. A kvarc optikai forgatóképessége frekvencia függő. Így az analizátor mindig csak egy színt olt ki, és a ki nem oltott színek keverékét látjuk az ernyőn. Monokromatikus fényforrást (lézer) használva viszont ki tudnánk oltani a kvarclapka által elforgatott fényt. A kvarclapkának ez a tulajdonsága, hogy el tudja forgatni a polarizáció irányát, az optikai aktivitás. Ez a szimmetriacentrumot nem tartalmazó molekulájú anyagokra jellemző. Az elforgatás mértéke a rétegvastagságtól és az optikailag aktív anyag koncentrációjától függ. Kettőstörés vizsgálata Vegyük ki a diatartóból a kvarclapkát és állítsunk a helyére egy átlátszó műanyag vonalzót. A fal felé eső lencsével állítsuk be a falon a vonalzó éles képét! Keresztezzük a polarizátorokat! Ha a polarizátorok között ott van a vonalzó, megjelenik a fény az ernyőn, és a vonalzó skálájának környékén, a szélén, a töréseknél (ahol mechanikai feszültségek vannak) színes csíkokat látunk. Ennek a jelenségnek az oka a mechanikai kettőstörés. A vonalzó, az előállítás körülményei miatt anizotróp, a törésmutatója irányfüggő. A kettőstörő anyagok is elforgatják a polarizáció irányát, és a forgatás mértéke itt is függ a fény frekvenciájától és az anyag vastagságától. A mechanikai feszültségek törékennyé teszik az anyagokat. Ezzel a polarizációs módszerrel kimutathatók. 100

11 3c. He - Ne lézer hullámhosszának meghatározása reflexiós ráccsal Eszközök: He-Ne lézer (2 mw); tolómérő; mérőszalag; milliméterpapír. Reflexiós rácsként tolómérőt fogunk használni. A tolómérő a mm-es skálájával tulajdonképpen egy 1 mm rácsállandójú reflexiós rács. A bekarcolt jelek mentén a fény elhajlik, a szomszédos beosztásokon elhajlott fénynyalábok interferálnak egymással, és ha a beesési szög elég nagy (súrló beesést hozunk létre), akkor az ernyőn egy sorozat fénypöttyöt kapunk, a különböző rendű rácsképeket. Az ötlet, hogy a tolómérő felhasználható reflexiós rácsként, és tolómérővel ilymódon nemcsak egy cső vagy valami munkadarab szélessége, hossza, hanem a fény hullámhossza is mérhető, annak ellenére, hogy a hullámhossz sokkal kisebb, mint a legfinomabb beosztás, a Trinity College Fizika Intézetéből (Dublin, Irország) származik. 7. ábra. A fény elhajlása a reflexiós rácson súrló beesésnél Vizsgáljuk meg, mennyi az úthosszkülönbség két szomszédos beosztásról származó elhajlított hullám (a és b) között (7. ábra)! s = CB - AD. (18) Ha adott az α beesési szög, akkor maximális erősítést azoknál a β m elhajlási szögeknél kapunk, melyekre az úthosszkülönbség a hullámhossz egész számú többszöröse, D ( sinα - sinβ m ) = m λ, (19) ahol a D, a rácsállandó esetünkben 1 mm. A 8. ábrán látjuk a mérési elrendezést. A tolómérő vízszintes helyzetű, és a lézert úgy állítjuk be, hogy a fénysugár néhány fokos szöget képezve a vízszintessel, a mm skálára essen. A tolómérő kb. kb. 2 m távolságban legyen a faltól, melyre egy mm-papírt erősítünk fel, és ezen beállítjuk az elhajlási képet. A tolómérőt eltávolítva megjelöljük az el nem térített lézersugár helyét az ernyőn (R). Visszatesszük a tolómérőt és megjelöljük az elhajlási kép fényfoltjainak (P 0, P 1,...P 6 ) helyét (A foltok középpontját). A P 0 pont, a legfényesebb fényfolt középpontja, a nulladrendben elhajlított fénynyalábtól származik. A nulladrendben elhajlított nyaláb tulajdonképpen az egyszerű visszavert sugár, úgyhogy β 0 = α. Az O pont az RP 0 szakasz felezőpontja. Miután felvettük az elhajlási képet, mérőszalaggal megmérjük az O pont távolságát a tolómérőn látható fényfolt középpontjától. Ezt az L hosszt is tüntessük fel az elhajlási képen a milliméter-papíron. Ha a tolómérőn lévő fényfolt távolsága a faltól L, és az m-edik rácskép magassága x m, akkor tg β m = L / x m. (20) 101

12 8. ábra. A mérési elrendezés lézer hullámhosszának meghatározásához. (20)-ból meghatározzuk β m -eket és sinβ-t ábrázoljuk m függvényében: sinβ m = sin (arctg (L / x m ) ) (19) szerint sinβ = sinα - m λ/d (21) egy egyenest ad m függvényében, melynek meredeksége λ/d. λ-t a mérési pontokra illesztett egyenes meredekségéből határozzuk meg, grafikusan és a legkisebb négyzetek módszerével is! A jegyzőkönyvben beadandó: 3a. Domború és homorú lencse fókusztávolsága. A prizma törésmutatójának meghatározása: a mérési elrendezés vázlata, a kritikus beesési szög, a törésmutató számított értéke vörös és ibolya fényre és a törésmutató hibája (elég az egyik színre meghatározni!). 3b. Írjuk le és értelmezzük a kísérletben megfigyelt jelenségeket, rajzoljuk le a mérési elrendezést! 3c. Vázoljuk (rajzzal is!) a mérés elvét és a mérési elrendezést! Készítsünk táblázatot, melyben feltüntetjük m-et és x m -et, valamint az ernyő távolságát a rácson visszaverődött fényfolt közepétől (L)! Számítsuk ki 6 tizedes pontossággal a sinβ m értékeket és tüntessük fel a táblázatban! Ábrázoljuk sinβ m -t az elhajlás rendjének, m-nek a függvényében! Határozzuk meg a hullámhosszt az egyenes meredekségéből! Szorgalmi feladat: alkalmazzuk a legkisebb négyzetek módszerét! 102

13 Példák 1. Egy kocka alakú üvegedény aljának közepére kis fehér pöttyöt festünk. Az edény élei 20 cm hosszúak, a falvastagság elhanyagolható. A kocka testátlója irányából vékony fénynyaláb esik a kocka aljára. Meddig kell a kockát folyadékkal feltölteni, hogy a fénynyaláb megvilágítsa a pöttyöt? A folyadék törésmutatója a levegőre vonatkoztatva n f = 1,6. Megoldás: A beesési szög α, a törési szög β. A levegő törésmutatója n l = 1. Mivel a fény az átlósíkban halad, a testátló irányában, tgα = 1,4141. A Snellius-Descartes törvényből sin β = 0,5103, így tg β = 0,5934. A rajz alapján h tg β + (a-h) tg α = a/ 2 h = 0,8614 a = 17,2 cm. 2. Gyűjtőlencsével egy izzólámpa izzószálának 9 cm nagyságú éles képét állítjuk elő egy ernyőn. A lencsével az ernyőhöz közelítve ismét éles képet kapunk, de a kép most 1 cm nagyságú. Milyen hosszú az izzószál? Megoldás: A tárgytávolság t 1 illetve t 2, a képtávolság k 1 illetve k 2. A tárgy és az ernyő távolsága mindkét esetben ugyanaz, d. A fókusztávolság f. Az izzószál hossza legyen T, a képnagyság K 1 illetve K 2. A lencsetörvényből k t = f d, tehát k 1 t 1 = k 2 t 2. A nagyítás az első esetben 9 / T = k 1 / t 1, a másodikban 1 / T = k 2 / t 2. k 1 + t 1 = k 2 + t 2 t 2 = 3 t 1, k 2 = 3t 1 / T, k 1 = 9 t 1 / T, T= 3 cm. 3. A víz levegőre vonatkoztatott törésmutatója 4/3. 2 m mély úszómedence fenekén lámpa világít. Mekkora átmérőjű a víz felszínén látható kör alakú folt? (A lámpát pontszerűnek tekinthetjük.) Megoldás: A kör alakú foltot azok a lámpából kiinduló fénysugarak hozzák létre, melyek a víz felszínére a határszögnél kisebb szögben érkeznek. A többi sugár teljesen visszaverődik. A határszög szinusza 3/4, a határszög α = 48,6. A folt sugara 2 tgα = 2,27 m, az átmérője 4,54 m. 4. Üvegbe levegőből érkező 760 nm hullámhosszú fénysugár beesési szöge 60, a törési szög 30. Mekkora a fény hullámhossza az üvegben? Megoldás: α = 60, β = 30, az üveg törésmutatója n = 1,732. A hullámhossz: λ = λ 0 / n, ahol λ 0 a vákumbeli hullámhossz, ezzel az üvegbeli hullámhosszat megegyezőnek tekinthetjük, tehát λ = 439 nm. 5. Két, azonos irányban lineárisan polarizált, azonos frekvenciájú síkhullám alkot egy fénynyalábot. Az egyes síkhullámokban az elektromos térerősség nagysága: E 1 = 3 sin (ωt - kx + π/6) E 2 = 4 sin(ωt - kx - π/3). Adjuk meg az eredő hullám amplitúdóját és fázisállandóját! Megoldás: Vezessük be a ϑ = ωt-kx jelölést, és legyen az eredő hullám amplitúdója A, fázisállandója ϕ. E 1 = 3 sinϑ cosπ/6-3 cosϑ sinπ/6 E 2 = 4 sinϑ cosπ/3 + 4 cosϑ sinπ/3 E 1 + E 2 = sinϑ (3cosπ/6 + 4cosπ/3) + cosϑ (4sinπ/3-3sinπ/6) = A cosϑ sinϕ + A sinϑ cosϕ. A cosϑ -t és sinϑ -t tartalmazó tagok együtthatóit egyenlővé téve a fenti egyenlet mindkét oldalán, kapjuk: A sinϕ = 4 sinπ/3-3sinπ/6 A cosϕ = 3cosπ/6 + 4cosπ/3. Mindkét egyenletet négyzetre emelve és a két egyenletet összeadva: 103

14 A 2 = sinπ/3 sinπ/ cosπ/3 cosπ/6 = cos(π/3+π/6)= 25; A = 5. A két egyenletet elosztva: tgϕ = 0,4272, ϕ = 0, Reflexiós rácsot merőlegesen beeső koherens fénynyalábbal világítunk meg, a hullámhossz 633 nm (He-Ne lézer). Az elsőrendű elhajlási képek távolsága 50 ± 1 cm, a rács és az ernyő távolsága 60 ± 1 cm. Számítsuk ki a rácsállandót és a rácsállandó hibáját! Megoldás: (11) szerint D sin α = λ, ahol α az első rendben elhajlított sugár és a rácssík normálisa által bezárt szög, D a rácsállandó. tgα = x/l, ahol x az elsőrendű rácskép távolsága a reflektált képtől. D = λ / ( sin arctg (x/l) ) = 1,65 µm. A rácsállandó hibája: D = D x 2 2 x + D L L = 0,03 µm. 7. Egy He-Ne lézerben a lézertükrök távolsága D = 20 cm. A lézerüregben az elektromágneses tér állóhullámai alakulnak ki azokból a fotonokból, melyek a neon 2p 5 5s és 2p 5 3p állapotai közötti átmenetben jönnek létre. Tegyük fel, hogy ilyen állóhullám-rendszer - módus - csak a lézerüreg tengelyével párhuzamos irányban haladó fotonokból alakul ki. A lézerüreget lezáró tükröknél az állóhullámoknak csomópontja van. A fotonok átlagenergiája E = 3, J, de az egyes fotonok energiája kismértékben szór e körül az érték körül. Mennyi két szomszédos módus hullámhosszának különbsége? (h = 6, Js) Megoldás: Egy adott módusban N félhullám alakul ki az üregben, tehát a módusnak megfelelő foton-hullámhossz λ = 2 D / N. A hullámhossz és az energia közötti összefüggés: λ = hc/e, ahol c a fénysebesség. A közepes energiájú foton esetében N 0 = 2 D E / hc = 6, félhullám alakul ki. A szomszédos módusban N 0 -nál eggyel több vagy kevesebb félhullám lesz, és ennek megfelelően a hullámhossz λ± = 2D / (N±1). Mivel N csak kissé változik meg N 0 -hoz képest, a hullámhosszak különbségét közelíthetjük a differenciálhányadosból kapott növekménnyel: λ = d λ dn N, ahol N = ± 1. = 0 N N λ = -2 D / N 0 2 N = ± m = ± 0,001 nm. 104

2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.

2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül. 2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.

3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül. 3. OPTIKA I. Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat

Részletesebben

7. OPTIKA II. A fény mint elektromágneses hullám

7. OPTIKA II. A fény mint elektromágneses hullám 7. OPTIKA II. A fény mint elektromágneses hullám A monokromatikus síkhullám A fényforrások időben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában

Részletesebben

8. OPTIKA II. A fény mint elektromágneses hullám

8. OPTIKA II. A fény mint elektromágneses hullám 8. OPTIKA II. A fény mint elektromágneses hullám A monokromatikus síkhullám A fényforrások idben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában

Részletesebben

7. OPTIKA II. Fizikai optika

7. OPTIKA II. Fizikai optika 7. OPTIKA II. Fizikai optika A fényforrások időben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában terjed, az E elektromos és a H mágneses térerősség

Részletesebben

7. OPTIKA II. Fizikai optika, hullámoptika

7. OPTIKA II. Fizikai optika, hullámoptika 7. OPTIKA II. Fizikai optika, hullámoptika A fényforrások időben és térben változó elektromágneses teret keltenek maguk körül. Ez az elektromágneses tér hullám alakjában terjed, az E elektromos és a H

Részletesebben

Optika I. 1. Geometriai optika A geometriai optika törvényei A teljes visszaver dés

Optika I. 1. Geometriai optika A geometriai optika törvényei A teljes visszaver dés Optika I. Utolsó módosítás: 2011. október 12. Az optika tudománya a látás élményéb l fejl dött ki. Bizonyos optikai alapismeretekkel együtt születünk, vagy legalábbis életünk nagyon korai szakában szert

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

5.1. ábra. Ábra a 36A-2 feladathoz

5.1. ábra. Ábra a 36A-2 feladathoz 5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

XVIII. A FÉNY INTERFERENCIÁJA

XVIII. A FÉNY INTERFERENCIÁJA XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,

Részletesebben

Optika az orvoslásban

Optika az orvoslásban Optika az orvoslásban Makra Péter Orvosi Fizikai és Orvosi Informatikai Intézet 2018. november 19. Makra Péter (SZTE DMI) Optika az orvoslásban 2018. november 19. 1 99 Tartalom 1 Bevezetés 2 Visszaverődés

Részletesebben

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

Elektrooptikai effektus

Elektrooptikai effektus Elektrooptikai effektus Alapelv: A Pockels effektus az a jelenség, amikor egy eredendően kettőstörő anyag kettőstörő tulajdonsága megváltozik az alkalmazott elektromos tér hatására, és a változás lineáris

Részletesebben

Elektromágneses hullámok - Interferencia

Elektromágneses hullámok - Interferencia Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses

Részletesebben

Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor

Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp

Részletesebben

d) A gömbtükör csak domború tükröző felület lehet.

d) A gömbtükör csak domború tükröző felület lehet. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye

Részletesebben

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése 6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az

Részletesebben

Kristályok optikai tulajdonságai. Debrecen, december 06.

Kristályok optikai tulajdonságai. Debrecen, december 06. Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25. A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő 1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

24. Fénytörés. Alapfeladatok

24. Fénytörés. Alapfeladatok 24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

Optika gyakorlat 5. Gyakorló feladatok

Optika gyakorlat 5. Gyakorló feladatok Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

s levegő = 10 λ d sin α 10 = 10 λ (6.1.1)

s levegő = 10 λ d sin α 10 = 10 λ (6.1.1) 6. gyakorlat 6.. Feladat: (HN 38B-) Kettős rést 6 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n,65) készült lemezt helyezünk

Részletesebben

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással

Részletesebben

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk. 37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban

Részletesebben

A hullámoptika alapjai

A hullámoptika alapjai KÁLMÁN P-TÓTH A: Hullámoptika/ 53 A hullámoptika alapjai Számos kísérlet mutatja, hogy a fény hullámként viselkedik Ez elsősorban abból derül ki, hogy a fény interferenciát és elhajlási jelenségeket mutat

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban.

A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban. A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban. Orvosi fizika és statisztika Varjú Katalin 202. október 5. Vizsgára készüléshez ajánlott: Damjanovich Fidy Szöllősi: Orvosi biofizika

Részletesebben

OPTIKA. Vozáry Eszter November

OPTIKA. Vozáry Eszter November OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS

Részletesebben

13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:

13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk: 13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris

Részletesebben

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

6Előadás 6. Fénytörés közeghatáron

6Előadás 6. Fénytörés közeghatáron 6Előadás 6. Fénytörés közeghatáron Fénytörés esetén a Snellius-Descartes törvény adja meg a beeső- ésa megtört sugár közti összefüggést, mely a következő: sinα n = 2 sin β n 1 Ahol α és β a beesési ill.

Részletesebben

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás 25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t

Részletesebben

A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.

A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus. HULLÁMOK MECHANIKAI HULLÁMOK Mechanikai hullám: ha egy rugalmas közeg egyensúlyi állapotát megbolygatva az előidézett zavar tovaterjed a közegben. A zavart a hullámforrás váltja ki. A hullámok terjedése

Részletesebben

P vízhullámok) interferenciáját. A két hullám hullámfüggvénye:

P vízhullámok) interferenciáját. A két hullám hullámfüggvénye: Hullámok találkozása, interferencia Ha a tér egy pontjában két hullám van jelen, akkor hatásuk ott valamilyen módon összegződik. A hullámok összeadódását interferenciának nevezzük. Mi az interferencia

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 3. Fényelhajlás (Diffrakció) Cserti József, jegyzet, ELTE, 2007. Akadályok között elhaladó hullámok továbbterjedése nem azonos a geometriai árnyékkal.

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet) Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az

Részletesebben

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv 9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel

Részletesebben

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,

Részletesebben

A teljes elektromágneses színkép áttekintése

A teljes elektromágneses színkép áttekintése Az elektromágneses spektrum. Geometriai optika: visszaverődés, törés, diszperzió. Lencsék és tükrök képalkotása (nevezetes sugarak, leképezési törvény) A teljes elektromágneses színkép áttekintése Az elektromágneses

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

O 1.1 A fény egyenes irányú terjedése

O 1.1 A fény egyenes irányú terjedése O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)

- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató) OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve

Részletesebben

TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József

TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet

Részletesebben

Kísérleti forduló július 17., csütörtök 1/8 Kísérlet: Látni a láthatatlant (20 pont)

Kísérleti forduló július 17., csütörtök 1/8 Kísérlet: Látni a láthatatlant (20 pont) Kísérleti forduló. 2014. július 17., csütörtök 1/8 Kísérlet: Látni a láthatatlant (20 pont) Bevezetés Sok anyag optikailag anizotrop, ami azt jelenti, hogy a törésmutató függ a fényterjedés és a polarizáció

Részletesebben

Elektromágneses hullámegyenlet

Elektromágneses hullámegyenlet Elektromágneses hullámegyenlet Valódi töltésektől és vezetési áramoktól mentes szigetelőkre felírva az első két egyenletet: Az anyagegyenletek továbbá: Ezekből levezethetők a homogén hullámegyenletek a

Részletesebben

Modern Fizika Labor. 17. Folyadékkristályok

Modern Fizika Labor. 17. Folyadékkristályok Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Hullámok, hanghullámok

Hullámok, hanghullámok Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

Optika. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29.

Optika. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Optika Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Bevezetés A fény és az elektromágneses spektrum A színek keletkezése A fény sebessége A fényhullámok interferenciája A fény polarizációja

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

Lézer interferometria Michelson interferométerrel

Lézer interferometria Michelson interferométerrel SZÉCHENYI ISTVÁN EGYETEM FIZIKA ÉS KÉMIA TANSZÉK OPTIKAI ÉS FÉLVEZETŐFIZIKAI LABORATÓRIUMI MÉRÉSEK 3. MÉRÉS Lézer interferometria Michelson interferométerrel Hullámok találkozásakor interferencia jelenséget

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Kidolgozott minta feladatok optikából

Kidolgozott minta feladatok optikából Kidolgozott minta feladatok optikából 1. Egy asztalon elhelyezünk két síktükröt egymásra és az asztalra is merőleges helyzetben. Az egyik tükörre az asztal lapjával párhuzamosan lézerfényt bocsátunk úgy,

Részletesebben

A gradiens törésmutatójú közeg I.

A gradiens törésmutatójú közeg I. 10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek

Részletesebben

Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.

Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II. Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja

Részletesebben

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

Fény. , c 2. ) arányával. Ez az arány a két anyagra jellemző adat, a két anyag egymáshoz képesti törésmutatója (n 2;1

Fény. , c 2. ) arányával. Ez az arány a két anyagra jellemző adat, a két anyag egymáshoz képesti törésmutatója (n 2;1 Fény A fény a mechanikai hullámokhoz hasonlóan rendelkezik a hullámok tulajdonságaival, ezért ahhoz hasonlóan két anyag határán visszaverődik és megtörik: Fény visszaverődése Egy másik anyag határára érve

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális

Részletesebben