A levegő törésmutatójának mérése Michelsoninterferométerrel
|
|
- József Szekeres
- 10 évvel ezelőtt
- Látták:
Átírás
1 XI. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 008. május 3 4. A levegő törésmutatójának mérése Michelsoninterferométerrel Szerző: Kovács Anikó-Zsuzsa, Babes-Bolyai Tudoányegyetem Kolozsvár, Fizika Kar, Fizika-Informatika szak, IV. Évfolyam Témavezető: Dr. Karácsony János, egyetemi adjunktus; Babes-Bolyai Tudományegyetem Kolozsvár, Fizika Kar, Molekuláris Spektroszkópia Tanszék
2 A levegő törésmutatójának mérése Michelson-interferométerrel Bevezetés A Fizika Kar Molekuláris Spektroszkópia Tanszéke 007 őszén a PHYWE cégtől bemutató kísérletek elvégzésére egy Michelson-interferométert vásárolt. Dolgozatomban bemutatom azokat a kiegészítéséket, valamint az elméleti alapokat, amelyek lehetővé tették, hogy az interferométerrel hallgatói laboratórium körülményei között nagy pontossággal meg lehessen mérni a levegő abszolut törésmutatóját. Michelson-féle interferométer leírása 1. ábra A Michelson-féle interferométer az amplitúdóosztásos (energiaosztásos) kétsugaras interferométerek csoportjába tartozik. Elvi felépítését az 1.ábrán követhetjük, míg a kereskedelemben kapható PHYWE interferométer az 1.fényképen látható Az interferométerben az interferáló sugarakat az L1 lemezre felvitt félig áteresztő réteg választja szét. A félig áteresztő rétegen visszavert sugár a T 1(mozdítható) tükör felé halad, majd azon visszaverődve az L1 lemezen áthalad, s bejut az interferométer távcsövébe, vagy a megfigyelési ernyőre. A rétegen áthaladó sugár a T (rögzített) tükrön, illetve a félig áteresztő rétegen való visszaverődés után jut a távcsőbe, s közben kétszer áthalad az L kompenzátorlemezen. A kompenzátorlemezt azért iktatjuk a sugárnyaláb útjába, hogy kigyenlítsük azt az útkülönbséget, ami a T1 tükrön visszaverődő sugárnál lép fel az L1 lemezen való kétszeri áthaladás során. A megfigyelő
3 távcsőbe, vagy egy megfigyelő ernyőre érkező hullámok koherensek, így a interferenciára képesek. Az optikai út szempontjából a Michelson-interferométer egyenértékű avval a levegőréteggel, mely a T1 tükör és a T tükörnek a félig áteresztő réteg, mint síktükör által alkotott T képe között van. Helyes beállítás esetén, ha az egyenértékű levégőréteg síkpárhuzamos rétegként viselkedik, az egyenlő elhajlás interferencia görbéit, a Haidinger-gyűrűket figyelhetjük meg [1,]. 1.kép Az interferométer helyes beállítását a következőképpen végezzük el [3]. A nyalábosztó elé egy pontszerű kis tárgyat, például egy fején álló kis szöget helyezünk el. A megfigyelő az egyes karokban levő tükrökről visszavert két képet látja. A nyalábosztót monokromatikus fénnyel világítjuk meg, és a rögzített tükrön levő durvaállító csavarokkal a szög két képét fedésbe hozzuk. Ekkor a látótérben interferenciacsíkok jelennek meg. További finom állítással az interferenciakép középpontját a látótér közepére hozzuk. Az interferométert kiegészítve úgy, hogy egyik karjába egy mindkét végén mikroszkóp lemezzel lezárt, cm átmérőjű és 7,8 cm hosszú, levegőt tartalmazó csövet (.kép), melyhez egy orvosi fecskendő csatlakozik, míg a másikba kompenzáló lemezeket helyeztünk, átalakítottuk az eszközt, alkalmassá téve a levegő törésmutatójának mérésére. A kiegészített interferométert a 3.kép mutatja
4 .kép 3.kép A diszperzió klasszikus elmélete A mérések alapját a Lorentz Lorenz-képlet adja, melyet a diszperzió klasszikus elmélete alapján vezethetünk le [1,].
5 A szűkebb értelemben vett diszperzión az anyagok törésmutatójának hullámhossz, illetve frekvencia szerinti változását értjük. Tágabb értelemben az anyagokat jellemző különböző fizikai menyiségek hullámhossz (frekvencia) szerinti változását is diszperziónak nevezzük. A fény elektromágneses hullám lévén, a diszperzióért az anyagban végbemenő elektromágneses kölcsönhatások a felelősek. Könnyen belátható, hogy a fény elektromágneses terének hatása a viszonylag nagy tömegű atommmagokra elhanyagolható az elektronokra kifejtett hatásához képest. Így, amikor a fény-anyag kölcsönhatást vizsgáljuk az atommagokat mozdulatlanoknak tekintjük és a fény elektromágneses terének a szélső, ún. optikai elektronokra kifejtett hatását vesszük csak figyelembe. Az elektronokra ható Lorentz erő:. Mivel az elektronok v sebessége az anyagokban nem túl nagy, a Lorentz erő kifejezésében a mágneses tag elhanyagolható, és a fényhatásáért csak az elektromos térerősség felelős. A diszperzió klasszikus elmélete ezt az elektromágneses kölcsönhatást veszi figyelembe, és elég jó megközelítéssel leírja a jelenséget. Mivel a diszperzió a fény és az elektron kölcsönhatásából ered, és a kölcsönhatások során a fény korpuszkuláris jellege kerül előtérbe, a diszperzió pontosabb magyarázatát a kvantumelmélet adja, amire dolgozatomban nem térek ki. A dielektrikumok diszperziója A dielektrikumokban kötött elektronokkal kell számolnunk, melyeket kvázielasztikus erők tartanak az egyensúlyi helyezetben. A fény hatására az egyensúlyi helyzetből kimozdított elektron kényszerrezgést végez. A klasszikus elektromágneses elmélet szerint a mozgó töltés az elektron elektromágneses hullámot bocsájt ki, így energiájának elvesztése a rezgés csilllapítását vonja maga után. A csillapítást egy fékező erővel írhatjuk le. Az elektron mozgásegyenlete: (1) ahol m az elektron tömege, e a töltése, x az egyensúlyi helyzettől mért távolsága, ω körfrekvenciája, a kvázielasztikus együttható és a fékező erőt megadó együttható, a fény a légüres tér permitttivitása, P indukált elektromos polarizáció vektorának modulusza. Ha egységnyi térfogatban N elektron van () Behelyettesítve ezt az (1) mozgásegyenletbe, a tagok átrendezése után kapjuk:
6 (3) Bevezetve az, alakra hozható, ami egy jelöléseket, az elektron mozgásegyenlete: sajátfrekvenciájú oszcillátor kényszerrezgését írja le. Az egyenlet megoldását: (4) alakban keressük, így az E (5) algebrai egyenlethez jutunk, melynek megoldása: (6) ahol X a rezgés amplitudója. Ennek ismeretlben a elektron elongációjára az (7) kifejezést kapjuk. Az időtől periódikusan függő elektromos térerősséget E -tel jelölve E = a D elektromos indukció nagyságára a (8) kifejezést kapjuk, melyet átírhatunk a (9) formába, ahol felismerjük, hogy a zárójelben található kifejezés az ε relatív permittivitás, mely esetünkben komplex szám, így a törésmutató is komplex mennyiség az n~ = ε kapcsolat értelmében. Külön választva a törésmutató n valós és k képzetes részét, írhatjuk: (10) ahonnan, a valós és képzetes tagok azonosítása után, kapjuk: (11)
7 (1) Ha a fényhullám frekvenciája nagymértékben különbözik az optikai elektronnak mint oszcillátornak a sajátfrekvenciájától, a (11) kifejezésben a képzetes tag elhanyagolható a valós taghoz képest, és így jó közelítéssel (13) Behelyettesítve ω 0 kifejezését, (13) az (14) formába írható át, mely az ω 0 = k 0 m jelölés felhasználásával a következővé módosul: n 1 = Ne mε 0 1 ω 0 ω Ne 3mε 0 (15) Adjunk a (15) egyenlet mindkét oldalához 3-at, ekkor kapjuk: (16) A (15) és (16) összfüggések elosztása után az (17) képletet kapjuk. Felhasználva, hogy az egységnyi térfogatban levő részecskék száma (18) (17) átalakítható az (19) formába, ahol a jobb oldal csak a frekvenciát tartalmazza mint változót. Ezt R -rel jelölve, írhatjuk: (0) Ez a Lorentz Lorenz-képlet, ahol R a közeg fajlagos refrakciója, ami csak a frekvenciától függ, de gyakorlatilag állandó marad a halmazállapot-változások során.
8 A törésmutató meghatározása a Lorentz Lorenz-képlet használatával Jelöljük a továbbiakban f ( n ) -nel a törésmutató értékét tartalmazó törtet: (1) A sűrűség ρ kis változása a Lorentz Lorenz-képlet értelmében a törésmutató n változását eredményezi. Figyelembe véve a törésmutató változásának kicsiny értékét, fejtsük sorba az f ( n ) függvényt n0 kezdeti értékére, így írhatjuk: () Ennek felhasználásával (0) a (3) alakra hozható. Ha most a Lorentz Lorenz-képletet a kezdeti állapotra alkalmazzuk, (4) és így (3) a (5) összfüggést eredményezi. Figyelembe véve, hogy a légköri nyomáson és szobahőmérsékleten a levegőre alkalmazható az ideális gáz termikus állapotegyenlete, a levegő sűrűségét a (6) kifejezés határozza meg, melyet felhasználva n -re a (7) képlet adódik, mely azt mutatja, hogy n és p p 0 között lineáris kapcsolat áll fenn, ahol az arányossági tényezőt a törésmutató n0 értéke határoza meg: (8) Kísérletileg n és p p 0 mérhetőek, ahonnan A meghatározható, és így kiszámítható n0.
9 A mérések menete n mérésekor a következőképpen járunk el. Mint említettük az interferométer az interferencia szempontjából egyenértékű egy síkpárhuzamos levegőréteggel, így az interferáló hullámok optikai útkülönbségét a síkpárhuzamos lemezekre levezetett összefüggés határozza meg [1,]. δ = d n0 sin i1 (9) ahol d = l1 l a síkpárhuzamos lemez vastagsága, melyet esetünkben az interferométer karjai hosszúságának különbsége határoz meg, i1 a beesési szög, n0 a levegő törésmutatója a normális légköri nyomáson ésszobahőmérsékleten. Az interferenciakép közepén i1 értéke közel nulla, így érvényes a δ = n0 ( l1 l ) (30) közelítő összefüggés. A kezdeti állapotban az interferométerrel kapott interferenciakép a 4.képen látható. 4.kép A (30) útkülönbségnek az interferenciakép közepén a δ = k0λ (31) összefüggés által meghatározott k 0 interferencia rend felel meg. Kihúzva az orvosi fecskendő dugattyúját a csőben csökken a levegő nyomása, így sűrűsége és törésmutatója is. Ha a cső hossza L, az új helyzetben az optikai útkülönbséget a
10 δ = n0 l1 [ n0 ( l L ) + n1 L] λ = δ + L( n0 n1 ) = δ + L n (3) kifjezés határozza meg, ahol n1 a csökkent nyomású levegő törésmutatója. (3) és (31) értelmében az optikai útkülönbség változása δ δ = L n (33) melynek az interferenciakép középpontjában k gyűrű megjelenése felel meg. Figyelembe véve, hogy egy új gyűrű megjelenésének λ -val egyenlő plussz optikai út felel meg, írhatjuk: L n = kλ (34) ahonnan n= kλ L (35) Így követve a megjelenő gyűrűk számát és ismerve a hullámhosszt, melynek értéke He-Ne lézer használatakor 63,8 nm, megmérhető a törésmutató változás. A p p 0 arány könnyen számolható az izoterm állapotváltozás pv = p 0V0 (36) egyenletének felhasználásával. n és p p 0 ismeretében meghatározható az A arányossági tényező, melyből n0 értéke. Ennek kiszámítását azonban megnehezíti az a tény, hogy a (8) összefüggés n0 -ban negyedfokú egyenlethez vezet. Ha figyelembe vesszük, hogy a a levegő törésmutatója csak a negyedik számjegyben különbözik az egységtől, valamint azt, hogy a mérések szerint A nagyságrendje 10-4 a számítások lényegesen leegyszerűsödnek. Írjuk n0 -át a következő formában: n0 = 1 + y (37) ahol y < < 1. Ekkor (8)-ból y -ra a következő egyenletet kapjuk: ( y + y )(3 + y + y ) = 6n A 0 (38) Elhagyva az y, illetve ennél nagyobb hatványú tagokat, y -ra az y= A (39) értéket kapjuk. Így végeredményben a törésmutató kezdeti értékét az n0 = 1 + A Az így mért törésmutató érétkek nagyon jól egyeznek a szakirodalomban található értékekkel. (40)
11 Irodalmi hivatkozások 1. Kovács K., A fény elméletben és gyakorlatban, Dacia Könyvkiadó, Kolozsvár, Hecht E., Optics, Addison-Wesley Publ.Co., Massachusetts, Nussbaum A. Phillips R.A., Modern optika mérnököknek és kutatóknak, Műszaki Könyvkiadó, Budapest, 198
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Fényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
Értékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése
6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Akusztikai állóhullámok levegőben vagy egyéb gázban történő vizsgálatához és azok hullámhosszának meghatározására alkalmas
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
A fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
SZE, Fizika és Kémia Tsz. v 1.0
Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)
OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Fizika vizsgakövetelmény
Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Hullámok, hanghullámok
Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési
A fény korpuszkuláris jellegét tükröző fizikai jelenségek
A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
Lézer interferometria Michelson interferométerrel
SZÉCHENYI ISTVÁN EGYETEM FIZIKA ÉS KÉMIA TANSZÉK OPTIKAI ÉS FÉLVEZETŐFIZIKAI LABORATÓRIUMI MÉRÉSEK 3. MÉRÉS Lézer interferometria Michelson interferométerrel Hullámok találkozásakor interferencia jelenséget
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Történeti áttekintés
A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Rezgőmozgás, lengőmozgás
Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást
s levegő = 10 λ d sin α 10 = 10 λ (6.1.1)
6. gyakorlat 6.. Feladat: (HN 38B-) Kettős rést 6 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n,65) készült lemezt helyezünk
11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
Fényhullámhossz és diszperzió mérése
Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása
5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!
FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
Hullámoptika II.Két fénysugár interferenciája
Hullámoptika II. Két fénysugár interferenciája 2007. november 9. Vázlat 1 Bevezet 2 Áttekintés Két rés esetének elemzése 3 Hullámfront-osztáson alapuló interferométerek Amplitúdó-osztáson alapuló interferométerek
Mérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)
OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)
Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag
Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
XVIII. A FÉNY INTERFERENCIÁJA
XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
Bevezető fizika (VBK) zh2 tesztkérdések
Mi a nyomás mértékegysége? NY) kg m 2 /s 2 TY) kg m 2 /s GY) kg/(m s 2 ) LY) kg/(m 2 s 2 ) Mi a fajhő mértékegysége? NY) kg m 2 /(K s 2 ) GY) J/K TY) kg m/(k s 2 ) LY) m 2 /(K s 2 ) Mi a lineáris hőtágulási
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
Speciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
A gravitáció összetett erőtér
A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható
2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
Mágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató
Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
. T É M A K Ö R Ö K É S K Í S É R L E T E K
T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele