1. ZH X A rendelkezésre álló munkaidő 90 perc.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. ZH X A rendelkezésre álló munkaidő 90 perc."

Átírás

1 . ZH 00. X A 5 fős képviselőtestület választásra 5 párt állít egy-egy 5 fős listát. A szavazást követően mindegyik párt a listája elejéről az elért eredményének megfelelő számú képviselőt küld a testülete, úgy, hogy a testület összesen 5 fős legyen. Hányféle lehet a képviselőtestület összetétele a szavazás után?. Tegyük fel, hogy az F fának sak első- és negyedfokú súsai vannak, szám szerint n ill. n. Igazoljuk, hogy n = n +.. Tegyük fel, hogy a G gráf -szorosan élösszefüggő és létezik Euler-körsétája. Mutassuk meg, hogy G -szeresen élösszefüggő.. Legyenek az F fa súsai az v, v,..., v 0, élei pedig v i v i+, ha i ill. v 5 v j, ha j 0. Tegyük fel, hogy F a G egyszerű gráf v -ől indított szélességi ejárásához tartozó fa. Legfelje hány éle lehet G-nek? 5. Baj van: átszakadt a hegytetőn a zagytározó gátja. Szerensére az iszap nem veszélyes, slaggal lemosható. Az mellékelt árán t jelzi a tározót, s pedig a szerensétlen helyen fekvő várost, amit meg kell védeni. A nyilak arra vezetnek, amerre az adott mélyedésen folyik a zagy. (Fursa errefelé a gravitáió: megtörténhet, hogy végig lejt egy a kiindulópontjáa visszatérő útvonal.) A nyíl mellett álló számok azt mutatják, hogy a katasztrófavédelemnek hány perig tart elzárni az adott nyíl mentén lezúduló folyadék útját. Az a él, hogy a lehető legrövide idő alatt minden lehetséges s-e vezető utat lezárjunk az arra áramló melléktermék elől. Mivel sak egy munkagép működik, ezért a kiválasztott útvonalakat sak egymás után zárhatjuk le. Segítsünk a katasztrófavédelemnek: határozzuk meg, mennyi a szükséges legrövide idő, ami alatt a munka elvégezhető. Bizonyítsuk e azt is, hogy kevese idő nem elég minderre.. Legyenek a G irányítatlan gráf súsai az,,..., 00 számok, az i és j sús között pedig akkor fusson él, ha j < i esetén az i j szám -gyel osztva -et ad maradékul. Páros-e a G gráf? t d 5 a 5 e f s Gyakorlatvezetők és gyakorlatok Csákány Rita (Sz-Cs, IB 0), Csönde Gergely (Cs, IB 5), Drótos Márton (Cs, IB, Sz R 50), Faller Beáta (Sz-Cs, IB ), Fejér Attila (Sz, QBF0), Fleiner Tamás (Sz, IB, Cs IB ), Karkus Péter (Cs, IB ), Kiss Gergely (Sz-CS, IB ), Vidor Sára (Sz, IB 5), Vígh Dorottya (Sz, IB )

2 . ZH A faluan n lány és n fiú él. A lányoknak akik párosával testvérek, és nem rokonai a fiúknak az a éljuk, hogy úgy házasodjanak össze a falueli fiúkkal, hogy minden lány le tudja nyomni a férjét szkanderan. Tudjuk, hogy az i-dik lánytestvérpár ármelyik tagja képes legalá i fiút szkanderan legyőzni, ráadásul minden lány le tud győzni olyan fiút is, akit a testvére nem. Mutassuk meg, hogy lehetséges a kívánt házasítás!. Határozzuk meg az. árán látható G gráf ν(g) és ρ(g) paramétereit.. Határozzuk meg az. árán látható G gráf χ(g) kromatikus számát.. Síkarajzolható-e az. árán látható gráf? 5. Határozzuk meg a. árán látható PERT feladathoz tartozó legrövide végrehajtási időt és a kritikus tevékenységeket. a f d. ára e g. ára. Igazoljuk, hogy a P és N P prolémaosztálya egyaránt eletartozik annak eldöntése, hogy egy inputként megadott G irányítatlan gráfan létezik-e két különöző kör. s h t Gyakorlatvezetők és gyakorlatok Csákány Rita (Sz-Cs, IB 0), Csönde Gergely (Cs, IB 5), Drótos Márton (Cs, IB, Sz R 50), Faller Beáta (Sz-Cs, IB ), Fejér Attila (Sz, QBF0), Fleiner Tamás (Sz, IB, Cs IB ), Karkus Péter (Cs, IB ), Kiss Gergely (Sz-CS, IB ), Vidor Sára (Sz, IB 5), Vígh Dorottya (Sz, IB )

3 ELSŐ ZH pótlása 00. XII.. 5 ( ). Bizonyítsuk e, hogy ( n ) számra. = (( n ) + ( n )) teljesül minden pozitív egész n. Legyenek a G irányítatlan gráf súsai az,,..., 00 számok, az i és j sús között pedig akkor fusson él, ha j < i estén az i j szám 5-tel osztva -et ad maradékul. Páros-e a G gráf?. Egy egység hosszú drótól szeretnénk elkészíteni egy egységkoka élvázát, úgy, hogy a koka súsainál forrasztunk. Legkevese hány darara kell felvágni ehhez az eredeti drótunkat? Mi a válasz akkor, ha a testátlóknak is enne kell lenniük az élvázan, és persze a kiindulási drótunk is testátlónyival hossza?. Legyen G a (,,,,,,, ) Prüfer-kódú F fa komplementere. Van-e G- nek Hamilton-köre? 5. Határozzuk meg az árán látható gráfan a legrövide út hosszát s-ől t-e a Dijkstra algoritmus segítségével, és adjuk meg a súsoknak azt a sorrendjét, ahogyan megállapítjuk a távolságokat.. A mellékelt árán látható hálózatan a kapaitású df él elromlott, kapaitása 0 lett. Határozzuk meg a kapott hálózatan a maximális st folyam nagyságát. Kiderült közen, hogy a kiesett élt egy p kapaitású éllel tudjuk pótolni. Határozzuk meg, hogyan függ a maximális nagyságú st folyam nagysága a p paraméter értékétől! s d 5 a e 5 t f Gyakorlatvezetők és gyakorlatok Csákány Rita (Sz-Cs, IB 0), Csönde Gergely (Cs, IB 5), Drótos Márton (Cs, IB, Sz R 50), Faller Beáta (Sz-Cs, IB ), Fejér Attila (Sz, QBF0), Fleiner Tamás (Sz, IB, Cs IB ), Karkus Péter (Cs, IB ), Kiss Gergely (Sz-CS, IB ), Vidor Sára (Sz, IB 5), Vígh Dorottya (Sz, IB )

4 MÁSODIK ZH pótlása 00. XII.. 5. Bizonyítsuk e, hogy ha G = (A, B; E) páros gráf és a A, B esetén d(a) d(), akkor van G-en A-t fedő párosítás.. Mutassuk meg, hogy ha a G gráfnak 00 súsa van, és α(g) = 00, akkor χ(g).. Igazoljuk, hogy ha G = (V, E) egyszerű gráf és minden fokszáma, akkor nem léteznek olyan G = (V, E ) és G = (V, E ) síkarajzolható gráfok, amire E = E E, azaz G nem áll elő két síkarajzolható gráf uniójaként.. Sürgősen el kell fogadni a korrupióellenes törvényt. Ennek érdekéen különféle egyeztetéseket és vitákat kell lefolytatni, amik sak izonyos sorrenden követhetik egymást. A mellékelt árán látható gráf súsai jelentik az egyes selekményeket, a nyilak pedig a koráan végrehajtandó selekményől olyanoka mutat, amik azt nem előzhetik meg, sőt, a két selekmény megkezdése között el kell telnie a nyíl mentén megadott számú napnak. A p paraméter az illetékes izottság arról való meggyőzésének a költsége, hogy adott időn elül hagyják jóvá a javaslatot. Mennyie kerül a törvény napon elüli elfogadása? 5. Legyenek az F fa súsai az v, v,..., v 0, élei a 5 p pedig v i v i+, ha i ill. v 5 v j, ha j 0. Tegyük fel, hogy F a G egyszerű, irányítatlan gráf v -ől indított mélységi (DFS) e 5 s d t ejárásához tartozó fa. Legfelje hány éle lehet G-nek? f g h. Legyen a Π döntési proléma inputja egy összefüggő G gráf, az output pedig pontosan akkor igen, ha van G-en Euler-körséta. Mutassuk meg, hogy Π o NP. Gyakorlatvezetők és gyakorlatok Csákány Rita (Sz-Cs, IB 0), Csönde Gergely (Cs, IB 5), Drótos Márton (Cs, IB, Sz R 50), Faller Beáta (Sz-Cs, IB ), Fejér Attila (Sz, QBF0), Fleiner Tamás (Sz, IB, Cs IB ), Karkus Péter (Cs, IB ), Kiss Gergely (Sz-CS, IB ), Vidor Sára (Sz, IB 5), Vígh Dorottya (Sz, IB )

5 ELSŐ ZH ismételt pótlása 00. XII A Cayley egyetem kominatorika-kertészet szakának első félévéen összesen tárgyat kell elvégezni, minden féléven hatot. Az előtanulmányi rend szerint a Fák tárgyat a Feszítőfák tárgynál elő kell felvenni, más megkötés nins. Hányféleképp lehet felvenni a tárgyakat az egyes féléveken, feltéve, hogy minden felvett tárgyat már az adott féléven sikeresen teljesítenek a hallgatók?. Mutassuk meg, hogy ármely véges G gráfnak legalá V (G) E(G) komponense van.. A G gráfot úgy kapjuk, hogy az,,... súsímkékkel ellátott teljes gráfan párhuzamos élekként megkettőzzük a (,,,, 5,, 5, ) Prüfer-kódú F feszítőfa éleit. Van-e G-nek Euler-körsétája?. Tegyük fel, hogy a G egyszerű gráfnak 0 súsa van és G 0-szeresen élösszefüggő. Mutassuk meg, hogy G-nek van Hamilton köre. 5. Adott egy G gráf, az e él hosszát jelölje l(e). a Minden él hosszát növeljük meg -vel, azaz s legyen l (e) = l(e) + minden élre. Tegyük fel, hogy u és v között P egy legrövide út d az l e élhosszokkal. Igaz-e, hogy P iztosan egy legrövide út u és v között az l élhosszokra nézve is? f t. Határozzuk meg a mellékelt hálózatan a maximális st-folyam nagyságát, és igazoljuk is, hogy ennél nagyo st-folyam nem létezik.

6 MÁSODIK ZH ismételt pótlása 00. XII Mutassunk olyan 0 pontú összefüggő, egyszerű G gráfot, amihez úgy lehet egy élt hozzáadni az egyszerűség megtartásával, hogy a ν(g) és a ρ(g) értéke is megváltozik ennek hatására.. Bizonyítsuk e, hogy ha G egyszerű, síkarajzolható gráf, akkor G ármely G duálisának van olyan tartománya, amit legfelje 5 él határol.. Tegyük fel, hogy G olyan n súsú páros gráf, aminek van teljes párosítása. Határozzuk meg a komplementergráf kromatikus számát, χ(g)-t.. Határozzuk meg az alái PERT proléma optimális ütemezése melletti kritikus tevékenységeket! 5. Mutassuk meg, hogy ha egy G gráf néhány éle úgy van irányítva, hogy nem alkotnak irányított kört, akkor G a töi éle is megirányítható úgy, hogy a kapott irányított gráf aiklikus legyen. s a 5 d e f g 5 h. A valós számokól álló a,..., a n sorozat olyan, hogy az a, a,..., a n sorozat egy daraig nő, utána sökken. Adjunk konstansszor n ĺosszehasonlítást használó algoritmust, ami rendezi az a,..., a n sorozatot. t

1. ZH X A rendelkezésre álló munkaidő 90 perc.

1. ZH X A rendelkezésre álló munkaidő 90 perc. 1. ZH 011. X. 1. 8 1 Kérjük, minden résztvevő nevét, NEPTUN kódját, gyakorlatvezetője nevét és a gyakorlatának időpontját a dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse

Részletesebben

1. Szerencsére elmúlt a veszély, pánikra semmi ok. Luke Skywalker ugyan kivont lézerkarddal ment órára a jediképzőben, de a birodalmi gárda

1. Szerencsére elmúlt a veszély, pánikra semmi ok. Luke Skywalker ugyan kivont lézerkarddal ment órára a jediképzőben, de a birodalmi gárda 1. ZH 2012. X. 11. 15 Mobiltelefon még kikapcsolt állapotban sem lehet a padon vagy a hallgató kezében. Minden egyes feladat helyes megoldása 10 pontot ér. A dolgozatok értékelése: 0-23 pont: 1, 24-32

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Gráfelméleti feladatok programozóknak

Gráfelméleti feladatok programozóknak Gráfelméleti feladatok programozóknak Nagy-György Judit 1. Lehet-e egy gráf fokszámsorozata 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? 2. Lehet-e egyszer gráf fokszámsorozata (a) 3, 3, 4, 4, 6? (b) 0, 1, 2, 2, 2,

Részletesebben

SzA X/XI. gyakorlat, november 14/19.

SzA X/XI. gyakorlat, november 14/19. SzA X/XI. gyakorlat, 2013. november 14/19. Színezünk és rajzolunk Drótos Márton drotos@cs.bme.hu 1. Mennyi a következő gráfok kromatikus száma: C 4, C 5, K 2,4, alábbi 2 gráf χ(c 4 ) = 2, páros hosszú

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

ELTE IK Esti képzés tavaszi félév. Tartalom

ELTE IK Esti képzés tavaszi félév. Tartalom Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,

Részletesebben

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y. Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

1. ZH javítókulcs ( ) felidézése nem jelenti automatikusan az adott pontszám megszerzését. Az adott részpontszám

1. ZH javítókulcs ( ) felidézése nem jelenti automatikusan az adott pontszám megszerzését. Az adott részpontszám A Számítástudomány alapjai 1. ZH javítókulcs (2015.. 22.) Az útmutató mintamegoldásokat tartalmaz. A pontszámok tájékoztató jelleggel lettek megállapítva az értékelés egységesítése céljából. Egy pontszám

Részletesebben

III. Gráfok. 1. Irányítatlan gráfok:

III. Gráfok. 1. Irányítatlan gráfok: III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy Feladatok 1. Hányféleképpen állhat sorba n fiú és n lány úgy, hogy azonos neműek ne álljanak egymás mellett?. Hány olyan hétszámjegyű telefonszám készíthető, amiben pontosan két különböző számjegy szerepel,

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II.

Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. onyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. 1. Feladat Mutassuk meg, hogy a n/-hosszú kör probléma NP-nehéz! n/-hosszú kör Input: (V, ) irányítatlan gráf Output: van-e G-ben a csúcsok felén

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Bevezetés a számításelméletbe II. 1. zh,

Bevezetés a számításelméletbe II. 1. zh, Bevezetés a számításelméletbe II. 1. zh, 2014.03.20. 1. Egy 59 csúcsú egyszer gráfban bármely két csúcs fokszámösszege 60- nál nagyobb páros szám. Igaz-e, hogy a gráfban biztosan van Eulerkörséta? 2. Egy

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Egy negyedikes felvételi feladattól az egyetemi matematikáig

Egy negyedikes felvételi feladattól az egyetemi matematikáig Egy negyedikes felvételi feladattól az egyetemi matematikáig Tassy Gergely Veres Péter Gimnázium, Budapest ELTE Matematikatanár-délután Kombinatorika és gráfelmélet a középiskolában 2015. február 18. I.

Részletesebben

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16.

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16. Bevezetés a Számításelméletbe II. 6. előadás Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tsz. I. B. 7/b sali@cs.bme.hu 004 március 6. A kritikus út

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Bevezetés a számításelméletbe II. Zárthelyi feladatok április 23.

Bevezetés a számításelméletbe II. Zárthelyi feladatok április 23. evezetés a számításelméletbe II. Zárthelyi feladatok 2018. április 23. 1. G egyszerű gráf csúcshalmaza legyen V (G) = {1, 2,..., 10}. z x, y V (G), x y csúcsok pontosan akkor legyenek szomszédosak G-ben,

Részletesebben

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető. Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The

Részletesebben

Gráfelmélet Megoldások

Gráfelmélet Megoldások Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak

Részletesebben

Gráfalgoritmusok ismétlés ősz

Gráfalgoritmusok ismétlés ősz Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf

Részletesebben

Kombinatorika és gráfelmélet

Kombinatorika és gráfelmélet Kombinatorika és gráfelmélet Pejó Balázs Tartalomjegyzék 1. leszámolási problémák 2 1.1. permutáció.............................................. 2 1.1.1. ismétlés nélküli........................................

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

Számítógép hálózatok, osztott rendszerek 2009

Számítógép hálózatok, osztott rendszerek 2009 Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Algoritmuselmélet zárthelyi (BSc képzés) április 24.

Algoritmuselmélet zárthelyi (BSc képzés) április 24. Algoritmuselmélet zárthelyi (BSc képzés) 009. április.. Tekintsük az f (n) = 009 n! és f (n) = 00 (n )! függvényeket. Igaz-e, hogy a) f = O(f ) b) f = O(f ) c) f = Ω(f ) d) f = Ω(f )?. Dijkstra-algoritmussal

Részletesebben

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa: Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)

Részletesebben

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)

Részletesebben

A = {a 1,a 2,...,a 8 } és B = {b 1,b 2,...,b 8 }. Minden i,j 8 esetén az a i akkor legyen szomszédos b j -vel,

A = {a 1,a 2,...,a 8 } és B = {b 1,b 2,...,b 8 }. Minden i,j 8 esetén az a i akkor legyen szomszédos b j -vel, Bevezetés a számításelméletbe II. Zárthelyi feladatok 2012. március 12. 1. Egy 8 csúcsú egyszerű gráfban minden csúcs foka legalább 4. Mutassuk meg, hogy a gráfban van (pontosan) 4 hosszú kör. 2. Egy képzeletbeli

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot. Hány összefüggő, illetve reguláris van közöttük? 2. Hány olyan, páronként

Részletesebben

24. tétel. Kombinatorika. A grá fok.

24. tétel. Kombinatorika. A grá fok. 2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett

Részletesebben

Dijkstra algoritmusa

Dijkstra algoritmusa Budapesti Fazekas és ELTE Operációkutatási Tanszék 201. július 1. Legrövidebb utak súlyozatlan esetben v 4 v 3 Feladat Hány élből áll a legrövidebb út ezen a gráfon az s és t csúcsok között? v v 6 v 7

Részletesebben

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László

Részletesebben

Az optimális megoldást adó algoritmusok

Az optimális megoldást adó algoritmusok Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

(6) (4) (2) (3) (11) (3) (5) (21) (9) (7) (3) (4) (4) (7) (4)

(6) (4) (2) (3) (11) (3) (5) (21) (9) (7) (3) (4) (4) (7) (4) Bevezetés a számításelméletbe II. Zárthelyi feladatok 2013. március 21. 1. Legyenek a G gráf csúcsai egy 5 5-ös sakktábla mez i és két különböz csúcs akkor legyen összekötve G-ben, ha a megfelel mez k

Részletesebben

Algoritmuselmélet 11. előadás

Algoritmuselmélet 11. előadás Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

A gráffogalom fejlődése

A gráffogalom fejlődése A gráffogalom fejlődése ELTE Informatikai Kar, Doktori Iskola, Budapest Batthyány Lajos Gimnázium, Nagykanizsa erdosne@blg.hu a prezentáció kézirata elérhető: http://people.inf.elte.hu/szlavi/infodidact16/manuscripts/ena.pdf

Részletesebben

æ A GYAKORLAT (* feladatok nem kötelezőek)

æ A GYAKORLAT (* feladatok nem kötelezőek) æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

segédlet a tavaszi előadáshoz

segédlet a tavaszi előadáshoz Bevezetés a számításelméletbe 2. A BME I. éves mérnök-informatikus hallgatói számára segédlet a 2008. tavaszi előadáshoz Összeállította: Fleiner Tamás X A N(X) B Utolsó frissítés: 20. május 23. Tartalomjegyzék

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

Javító és majdnem javító utak

Javító és majdnem javító utak Javító és majdnem javító utak deficites Hall-tétel alapján elméletileg meghatározhatjuk, hogy egy G = (, ; E) páros gráfban mekkora a legnagyobb párosítás mérete. Ehhez azonban első ránézésre az összes

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

Példa. Job shop ütemezés

Példa. Job shop ütemezés Példa Job shop ütemezés Egy üzemben négy gép működik, és ezeken 3 feladatot kell elvégezni. Az egyes feladatok sorra a következő gépeken haladnak végig (F jelöli a feladatokat, G a gépeket): Az ütemezési

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Név: EHA-kód: 1. 2. 3. 4. 5. Diszkrét matematika II. gyakorlat 1. ZH 2014. március 19. Uruk-hai csoport 1. Feladat. 4 pont) Oldja meg az 5 122 x mod 72) kongruenciát? Érdekesség: az 5 122 szám 86 számjegyű.)

Részletesebben

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: ( HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

GRÁFELMÉLET. 1. Alapfogalmak Definíciók: - irányítatlan és irányított gráf, csúcshalmaz, élhalmaz, szomszédsági reláció

GRÁFELMÉLET. 1. Alapfogalmak Definíciók: - irányítatlan és irányított gráf, csúcshalmaz, élhalmaz, szomszédsági reláció GRÁFELMÉLET ALAPVETŐ FOGALMAK ÉS TÉTELEK 1. Alapfogalmak Definíciók: - irányítatlan és irányított gráf, csúcshalmaz, élhalmaz, szomszédsági reláció - gráfok reprezentációi: szomszédsági mátrix, illeszkedési

Részletesebben