KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára
|
|
- Brigitta Hajdu
- 6 évvel ezelőtt
- Látták:
Átírás
1 OMBINATORIA LŐADÁS osztatlan matematikatanár hallgatók számára Sorbaállítások, átrendezések lőadó: Hajnal Péter Sorbaállítások Van három plüss figuránk: egy elefánt, egy zsiráf és egy kutya. Napközben ezekkel játszunk, de este Édesanyánk azt mondja rendet kell csinálni. A plüss figurákat egy polcon tartjuk, ahol egymás mellett férnek el. ste sorba kell raknunk őket a polcon. Hány lehetőségünk van? A játékokat értelemszerűen jelöljük, és jelekkel. A lehetőségeket listázhatjuk:,,,,,. Hat lehetőségünk van. A sorbaállítás egy nyelvet is ad számunkra. Lesz első, második/középső, harmadik/utolsó játék, mondhatjuk, hogy az első és utolsó közrefogja a középsőt. gy H halmazt alkotó n elem sorbaállításánál van n pzoíció, amit az 1,2,...,n számokkal jelölhetünk. A sorbaállításnál a pozíciókat és H elemeit párosítjuk. Definíció. gy n elemű H halmaz sorbaállítása egy bijekció. Példa. Legyen H = {,,}. kkor π : [n] = {1,2,...,n} H ugyanannak a sorbaállításnak a leírása. Nyilván a legutolsó a legrövidebb, legemberibb. (Tömörsége köszönhető annak, hogy néhány megállapodáson alapul olvasata. Például a sor első eleme a bal oldali elem. Héber közösségben esetleg más olvasat lehetséges.) nnek ellenére a formális matametikai leírás az első. A bijekciót leíró táblázat oszlopai felcserélhetők, olvasata robusztus. Jelölés. Legyen σ(h) a H halmaz sorbaállításainak halmaza. Az alapkérdés: Legyen H egy n elemű halmaz. Határozzuk meg σ(h) -t. Speciálisabban: Határozzuk meg σ([n]) -t. z középiskolás nyelven : Adott n különböző tárgy. Hányféleképpen állíthatjuk sorba őket? Sorbaállítások, átrendezések-1
2 Jelölés. Legyen n egy természetes szám. kkor n! (olvasata n faktoriális) a következő értéket jelöli { 1, n = 0,1 n! = n, különben Azaz n faktoriális az elsőn pozitív egész szorzata. Ha n = 0 vagy n = 1, akkor ennek értelmezése nem világos. Mit értünk 0 tényezős/üres szorzat alatt? Mit értünk egytényezős szorzat alatt? Az üres szorzat értéke 1, az egy tényezős szorzat értéke az egyetlen tényező. Fent a szükséges megállapodásokat írtuk le. 1. Tétel. n tárgyat n!-féleképpen állíthatunk sorba. Bizonyítás. I) Az n = 0, 1 eset nyilvánvaló. A sorbaállításokra úgy kell gondolnunk mint egy-egy fénykép. Ha n = 0, akkor nincs sorbaállítandó tárgy, egyetlen egy fénykép lehetőséges: az üres polc fényképe (feltettük, hogy a sor egy polcon kerül kialakításra). Az n = 2 eset könnyen meggondolható. gy sorbaállítás kiválasztását döntések sorozataként fogjuk fel. iválasztjuk az első pozícióban álló elemet, majd a második pozícióban álló elemet, majd a harmadik pozícióban álló elemet és így tovább. Az első döntésre n lehetőségünk van. Az i-edik döntésnél vigyáznunk kell, hogy a korábban már sorbaállított emberekre vonatkozó döntésünkkel ne kerüljünk ellentmondába. Így n (i 1) tárgy közül választhatunk. Ha így teszünk, akkor ezen választásunk független a korábbiaktól. (A függést úgy oldottuk meg, hogy a már besorolt elemeket kizártuk). Az utolsó döntésünk az, hogy az egyetlen be nem sorolt tárgyból kell kiválasztanunk a sorbeli utolsót. A teljes döntéssorozat ad egy választott sorrendet. rre n (n 1) = n! lehetőség van. II) Jelölje s n az n tárgy sorbaállításainak számát, azaz az alapkérdésre adandó választ. s 0 = s 1 = 1-et tudjuk. Mi a kapcsolat s n+1 és s n között? Gondoljuk el, hogy van egy n fős osztály. A liberális tornatanáruk tetszőleges sorrendet megenged az órakezdeti tornasornak. Hány lehetőségük van? rre vezettük be az s n jelölést. Mi történik, ha egy új osztálytárs jelenik meg. Nyilván a lehetőségek száma nő. A korábbi sorok mind ott lesznek, de ezekbe be kell szúrnunk az új gyereket. gy régi sor hány új lehetőséget ad? Hányféleképpen szúrhatunk be egy új elemet egy n hosszú sorba? A már sorbaálló gyerekek meghatároznak n 1 közt és ott van az első, illetve utolsó pozíció is mint lehetőség is. Másképpen a gyarak választhat egy jobb szomszédot (n lehetőség) és dönthet úgy, hogy a sor jobb oldalára áll. A beszúrásra n+1 lehetőség van. Azaz az s n mögött álló lista mindegyik eleme n+1-szereződik az új listában. z azt jelenti az elemszám tekintetében, hogy s n+1 = (n+1)s n. A bizonyítást egy unalmas teljes indukció zárhatja. 2. Átrendezések ezdjük a következő feladattal: Sorbaállítások, átrendezések-2
3 2. Feladat. n óvodás játszik az udvaron körjátékot. Csoportokba osztódnak és minden csoport egy-egy kört alkot. gy körben mindenkinek lesz bal és jobb szomszédja. iemelünk két speciális esetet. Lehetséges, hogy egy csoportba egy gyerek kerül. Ő is alkothat kört. Bal és jobb szomszédja is önmaga. ét gyerek is alkothat kört. kkor mindkettőnek ugyanaz lesz a bal, illetve jobb szomszédja: a másik gyerek. Hány lehetőségük van a játékra? A feladat tapasztalatom szerint nehéz, a legtöbb diák nem tud vele mit kezdeni. özépiskolában ilyenről nem hallottak (szemben a sorbaállítási feladattal, amely alapfeladat). Az érdeklődő hallgató sorolja fel a lehetőségeket n = 3,4 esetén. A feladatot egyelőre hagyjuk és továbbhaladunk. Definíció. gy H halmaz átrendezésén egy bijekciót értünk. π : H H Az átrendezést is interpretálhatjuk a sorbaállítás matematikai definíciójának logikájával. Adott n tárgy egy szobában. Mindegyiknek van egy pozíciója és mindegyik egy-egy tárgy is. H = {,,} esetén ha az értelmezési tartomány akkor vehetjük helye jelentésű pozíciónak is. az olvasható úgy is, hogy a utya az lefánt helyére kerül. z megmagyarázza az elnevezést. Persze ha van egy alapsorunk, akkor minden sorbaállítás értelmezhető átrendezésnek is. Ha H elhelyezkedése egy sorban történik, akkor az átrendezés egy sorbállításhoz vezet/azzal írható le. Miért van szükség erre az új fogalomra? Látni fogjuk, hogy más nyelvezethez vezet. Másrészt van egy óriási előnye az átrendezéseknek: két átrendezés egymásután végrehajtható (fura módon (megfelelő analógiák miatt) a matematikusokaztmondjákszorozhatók). Haegyπ elsőátrendezésben ésegyρmásodik átrendezésben, azaz először utya az lefánt helyére kerül, majd a iráf az utya helyére kerül, akkor azt egy utasítással is kifejezhetjük. Azaz két átrendezés szorzata a megfelelő, őket leíró matematikai függvények/leképezések/bijekciók kompozíciója. Jó lenni látni átrendezéseket. Definíció. Legyen π : H H egy átrendezés. π diagramja a következő ábra: H elemeit egy-egy karika jelképezi. Minden h h hozzárendeléshez tartozik egy nyíl, amely h karikájából h karikájához vezet. Példa. Legye H = {,, }. Soroljuk fel összes átrendezésüket a diagramjaik lerajzolásával. Sorbaállítások, átrendezések-3
4 1. ábra. Talán meglepetés, hogy a három tárgy körökbeállításait látjuk magunk előtt. z nem véletlen. Vegyük észre diagramjaink néhány közös tulajdonságát. Ha H egy n elemű halmaz, akkor H egy tetszőleges átrendezését leíró diagram n karikát és n nyilat tartalmaz. Minden karikából egy nyíl halad ki és minden karikába egy nyíl fut ki. 3. Tétel. Ha n karika és köztük haladó n nyíl diagramja olyan, hogy minden karikából egy nyíl indul ki és minden karikába egy nyíl fut be, akkor a diagram karikái csoportosíthatók úgy, hogy minden nyíl egy csoporton belül haladjon és a csoporton belüli nyílak egy körbe rendezzék a csoport elemeit. A tételbeli csoportosítás egy csoportját és a köztük haladó nyilakat az átrendezés ciklusának nevezzük. Az ilyen átrendezéseket példaként fel is hozhattuk volna: Tárgyaink köralakú asztal mellett ülnek. Mindenki a jobb szomszédja helyéré kerül egy átrendezés. A tétel szerint ez a példa egy univerzális példa: minden átrendezés esetén felismerhetők/beleláthatók az asztaltársaságok és az asztalok melletti ülésrend. Bizonyítás. Nézzünk a diagramra mint egy térképre, ahol a karikák a csomópontok, a nyílak egyirányú utcák. gy csomópontból kezdjünk el utazni az egy irányú utcák szabályának betartásával. Mindegyik csomópontból egyetlen utca indul ki. Utunk egyértelmű és sose akad el. Valamikor csomópontot kell ismételnünk. lőször ez szükségszerűen a kiinduló pont lesz. (Miért?) zzel egy ciklust azonosítottunk. Ha ez a teljes diagram, akkor készen vagyunk. Ha nem, akkor lesznek maradék karikák. zek és a ciklusban lévő karikák között nincs nyíl. (A ciklus elszámolja a ciklus csúcspontjaiba befutó és onnan kifutó egyetlen nyílat.). Így a maradék karikák függetlenül kezelhetők a megtalált ciklustól. Ugyanezzel az eljárással újabb ciklust találhatunk meg, egészen addig míg ki nem merítjük az összes csomópontot. kkor az összes karikát besoroltuk egy-egy ciklusba, amelyek csoportosítják pontjainkat. Jelölés. Legyen S(H) egy H halmaz átrendezéseinek halmaza. Legyen H egy n elemű halmaz. S(H) =? Azaz hányféleképpen játszhat n óvodás egy körjátékot? 4. Tétel. gy n elemű halmaznak n! átrendezése van. Sorbaállítások, átrendezések-4
5 Bizonyítás. I) Láttuk, hogy sorbaállítások és átrendezések azonosíthatók/párbaállíthatók. Így a kétféle fogalomhoz tartozó alap összeszámlálási feladat ugyanahhoz az eredményhez vezet. II) Megismételhetjük a sorbaállításoknál megismert gondolatmenetet: Legyen H = {h 1,h 2,...,h n } gy átrendezés leírását n döntés meghozatalaként fogjuk fel: Mi legyen aképe h 1 -nek? Mi legyen aképeh 1 -nek? Ésígytovább. Agondolatmenet további leírása jó gyakorlás az érdeklődő hallgatónak. III) n óvodás körjátékot játszik. (Lásd bevezető feladat.) A lehetőségek száma legyen a n. Hogyan változik ez, ha egy új gyerek csatlakozik hozzájuk. Az új lehetoßégek mind felfoghatók úgy, mint egy régi körjáték,a melybe az új gyerek beszúrja magát. hányféleképpen teheti ezt meg? Választhat egy jobb szomszédot a régiek közül (n lehetőség), vagy alkothat külön kört (ekkor jobb szomszédja önmaga lesz). Végeredményben a bővített n + 1 óvodás halmazából kell egy gyereket választani: n+1 lehetőség. Azaz a n+1 = (n+1)a n. Az unalmas indukciózárja a bizonyítást. 3. Permutációk Láttuk, hogy egy π : [n] [n] bijekció felfogható sorbaálításnak és egy átrendezésnek is. A két felfogás nagyon közel van egymáshoz. Gyakran nem is kell tisztáznunk melyikre kell gondolnunk. gy közös idegen szóval illetjük őket: permuátció. Ha azt kérdezzük, hogy i és j elem a permutációban nagyságszerinti sorrendben állnak-e vagy a kisebb hátrébb került?, akkor sorbaállításra gondolunk. Ha azt kérdezzük, hogy a permutációnak hány ciklusa van?, akkor átrendezésre gondolunk. Sorbaállítások, átrendezések-5
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula
KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben
Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Diszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
Gráfelméleti alapfogalmak-1
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett
Ismétlés nélküli permutáció
Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba
1. ábra ábra
A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,
1/50. Teljes indukció 1. Back Close
1/50 Teljes indukció 1 A teljes indukció talán a legfontosabb bizonyítási módszer a számítástudományban. Teljes indukció elve. Legyen P (n) egy állítás. Tegyük fel, hogy (1) P (0) igaz, (2) minden n N
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;
24. szakkör (Csoportelméleti alapfogalmak 3.)
24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky
Leképezések. Leképezések tulajdonságai. Számosságok.
Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak
1. Kombinatorikus alapelvek
KOMBINATORIKA ElŐADÁS osztatlan matematika tanár hallgatók számára Bevezetés Előadó: Hajnal Péter 2014. A kombinatorika kurzus első fele összeszámlálásokkal foglalkozik (míg második fél a gráfelméletet
Adatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Feladatok és megoldások a 8. hétre Építőkari Matematika A3
Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Halmazelméleti alapfogalmak
Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,
4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim
Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2
FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
Amit a törtekről tudni kell Minimum követelményszint
Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Kombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció)
Kombinatorika Az első n pozitív egész szám szorzatát n faktoriálisnak nevezzük és n! jellel jelöljük: n! := 1 2 3 4... (n 1) n 0! := 1 1! := 1 I. típus: Hányféleképpen lehet sorba rendezni n különböző
ARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
Algebra es sz amelm elet 3 el oad as Permut aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Permutációk Waldhauser Tamás 2014 őszi félév 1. Definíció. Permutációnak nevezzük egy nemüres (véges) halmaz önmagára való bijektív leképezését. 2. Definíció. Az {1, 2,...,
1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.
1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k
æ A GYAKORLAT (* feladatok nem kötelezőek)
æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával
K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k
K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
Kombinatorika. Permutáció
Kombinatorika Permutáció 1. Adva van az 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegy. Hány különböző 9-jegyű szám állítható elő ezekkel a számjegyekkel, ha a számjegyek nem ismétlődhetnek? Mi van akkor, ha a szám
2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!
Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
Elemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. november 9. 1.1. Feladat. Tekintsünk egy E halmazt és annak minden A részhalmazára az A halmaz f A : E {0, 1} karakterisztikus függvényét, amelyet az { 1, x A
æ A GYAKORLAT (* feladatok nem kötelezőek)
æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával
Tétel: A háromszög belső szögeinek összege: 180
Tétel: A háromszög belső szögeinek összege: 180 Bizonyítás: legyenek az ABC háromszög belső szögei α, β, γ. Húzzunk a C csúcson át párhuzamost AB-vel. A C csúcsnál keletkezett egyenesszöget a háromszög
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz
Szerencsejátékok. Elméleti háttér
Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz
8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?
8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
SZÁMÍTÁSTUDOMÁNY ALAPJAI
SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:
1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Síkbarajzolható gráfok, duális gráf
Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve
2. gyakorlat. A polárkoordináta-rendszer
. gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel
Logika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint
Amit a törtekről tudni kell. osztály végéig Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak?
Hozzárendelési szabályok.doc 1 / 6 Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak? Mintapélda2 Karcsi nyáron 435 Ft-os órabérért dolgozott.
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban
Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja
2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább
10. előadás. Konvex halmazok
10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója
Kombinatorika - kidolgozott típuspéldák
Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
ÚJ LAKÁSBAN. Kedves Csilla!
ÚJ LAKÁSBAN Kedves Csilla! Képzeld el! Új lakásban lakom! Ez a legszebb ház a környéken! Egy mesés társasházban, gyönyörű lakásban élek! Képzeld el! Van benne egy csendes hálószoba, világos nappali szoba,
Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Kombinatorikai algoritmusok
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. II. (programozás) kategória
Oktatási Hivatal A 201/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai II. (programozás) kategória 1. feladat: Sorminta (3 pont) Fordítsuk meg: a mintából kell kitalálni
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1.
DETERMINÁNSSZÁMÍTÁS A (nxn) kvadratikus (négyzetes) mátrixhoz egyértelműen hozzárendelhetünk egy D R számot, ami a mátrix determinánsa. Már most megjegyezzük, hogy a mátrix determinánsa, illetve a determináns
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára
KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára Párosítások gráfokban Előadó: Hajnal Péter 2018 1. A párosítás alapfogalma Definíció. Egy G gráfban egy M élhalmaz párosítás, ha 2 M darab
A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző
1 SET A SET játékszabályairól röviden, már ha valaki nem ismerné: Hogy néznek ki a kártyalapok? Minden kártyán van egy ábra, aminek 4 jellemzője van. Minden kategória további három különböző lehetőséget
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
A SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer
Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
A zsebrádiótól Turán tételéig
Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:
az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!
1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
FUNKCIONÁLIS PROGRAMOZÁS
FUNKCIONÁLIS PROGRAMOZÁS A funkcionális programozás néhány jellemzője Funkcionális programozás 1-2 Funkcionális, más néven applikatív programozás Funkcionális = függvényalapú, függvényközpontú Applikatív
1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak
Egy negyedikes felvételi feladattól az egyetemi matematikáig
Egy negyedikes felvételi feladattól az egyetemi matematikáig Tassy Gergely Veres Péter Gimnázium, Budapest ELTE Matematikatanár-délután Kombinatorika és gráfelmélet a középiskolában 2015. február 18. I.
47. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
7. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Hány különböző módon lehet felírni az 102-et két pozitív négyzetszám összegeként? (Az összeadás sorrendje
Készítette: Ernyei Kitti. Halmazok
Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer
Fraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék
Fraktálok Klasszikus fraktálpéldák I Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 86 Bevezetés. 2 of 86 TARTALOMJEGYZÉK Bevezetés. Az önhasonlóságról intuitív módon Klasszikus
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Waldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni?
Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni? Kombinatorika avagy hányféleképp? Zsuzsi babájának négyféle színes blúza és kétféle