A fázismoduláció és frekvenciamoduláció közötti különbség
|
|
- Antal Farkas
- 9 évvel ezelőtt
- Látták:
Átírás
1 Fázismoduláció (PM) A fázismoduláció és frekvenciamoduláció közötti különbség A fázismoduláció, akárcsak a frekvenciamoduláció, a szögmoduláció kategóriájába sorolható. Mivel a modulációs index és a fázislöket egyenértékű fogalmak, konstans fm moduláló frekvencia esetén a F Φ = f m 1. Egyenlet összefüggés miatt közömbös, hogy egy frekvenciamodulált rezgést fázismodulációként vagy egy fázismodulált rezgést frekvenciamodulációként fogunk fel. Ha fm-et figyelmen kívül hagyjuk, akkor mindig igaz, hogy és érvényes a tétel: Φ ~ F 2. Egyenlet Frekvenciamoduláció és fázismoduláció állandó moduláló frekvencia esetén ugyanazt jelenti. Csak az fm-től való függés miatt kell különbséget tenni közöttük. Ha valamilyen áramkör segítségével FM-et hozunk létre, az annyit jelent, hogy a keletkező frekvencialöket arányos a moduláló amplitudóval. Ekkor a megfelelő fázislöket: F ~ 1 f m 3. Egyenlet és igaz a tétel: Frekvenciamodulációnál a frekvencialöket független a moduláló frekvenciától, míg a fázislöket növekvő moduláló frekvenciával csökken. Ha viszont fázismodulációt hozunk létre, akkor a keletkező fázislöket arányos a moduláló amplitúdóval. Ebben az esetben a megfelelő frekvencialöket: és igaz a tétel: F ~ fm 4. Egyenlet Fázismodulációnál a fázislöket független a moduláló frekvenciától, ezzel szemben a frekvencialöket növekvő moduláló frekvenciával nő.
2 1. ábra Összefüggés a fázislöket és a frekvencialöket között az fm moduláló frekvencia növekedésekor E tételt a 1. ábra segítségével magyarázzuk. Az a és b esetben ugyanarról a vivőről van szó, de a b esetben kétszer akkora a moduláló frekvencia. A modulációs amplitúdó a két esetben ugyanakkora fázislöketet hoz létre; a periódusokat megszámolva: 5 2π 4 2π = 2π 5. Egyenlet 3 2π 2 2π = 2π 6. Egyenlet Az, hogy b-nél a rendelkezésre álló idő felében, azaz Tm/4 alatt ugyanakkora fázislöket jön létre, mint a-nál, csak úgy lehetséges, hogy ezen a negyed perióduson belül a frekvencia a b esetben nagyobb. Figyeljük meg, hogy b-nél a sűrűsödési szakaszon a rezgések jobban összezsúfolódnak. Ez a nagyobb frekvencialöket jele. A fázismoduláció előállítása A fázismoduláció előállítására kidolgozott számtalan eljárás közül csak néhánynak az elvét mutatjuk be abból a célból, hogy a fázismodulációt megérthessük, és az FMmel szembeni különbséget érzékeltessük. 90 -kal eltolt AM-rezgések szuperpozíciója. Ez a módszer kevéssé használatos ugyan, de világosan mutatja a fázismoduláció alapelvét, nevezetesen a moduláló amplitúdó és a fázislöket közötti arányosságot (2. ábra). Két, ellenütemben AM-modulált rezgést egymásra szuperponálnak. Fontos tény, hogy a két nagyfrekvenciás rezgés egymáshoz képest 90 fáziseltérésű. Így az összegvektor modulálatlan esetben 45 -os szögben áll és 2 -es tényezővel nagyobb, mint az egyes AM-rezgések vivőamplitúdója. Az összegvektor szögmodulációval leng a 45 -os helyzet körül. 1 rajzból könnyen megállapítható, hogy (kis löketeknél) a fázislöket arányos az AMmodulációs mélységgel, tehát
3 Um-mel. Megállapíthatjuk, hogy fázismodulációval van dolgunk. Ugyanakkor nem kívánt amplitúdómoduláció is keletkezik, amely növekvő lökettel nő. 2. ábra 90 -kal eltolt amplitúdómodulált NF-rezgések szuperpoziciója A vivőhöz képest 90 -kal eltolt oldalhullámok szuperpozíciója Ennél az eljárásnál (3) is szükség van egy 90 -os fázistolóra. Egy állandó vivő (amely lehet kvarcstabilizált is), egy 90 -os fázistolón áthaladva, egy gyűrűsmodulátorban előállítja a moduláló feszültség két oldalsávját. Az ily módon 90 -kal eltolt oldalsávokra rászuperponálják az eredeti vivőt. Szögmodulált rezgés keletkezik. A szög arányos az oldalhullámok összegének amplitúdójával, ez pedig Um-mel arányos, tehát fázismoduláció jött létre! Magától értetődik, hogy ez az eljárás is csak kis fázislöketeknél felel meg, hiszen a spektrumnak csak az elsőrendű oldalhullámai adódnak a vivőhöz.
4 3. ábra Vivő és 90 -kal eltolt oldalhullámok szuperpozíciója Utánkapcsolt fázistoló 4. ábra Előállítás rezgőkörrel (Elméleti megoldás) Egy állandó frekvenciájú generátor után olyan négypólust kapcsolnak, amelynek fázisát U m -mel lehet változtatni. Ez a legegyszerűbb esetben egy rezgőkör lehet, amely az állandó frekvenciára van hangolva. Ha U m befolyásolja a kapacitást (pl. kondenzátormikrofonon keresztül), akkor a rezonanciagörbe (piros és kék görbe a 5. ábra) és vele együtt a fázisgörbe (5. ábra) eltolódik. Eltekintve attól, hogy ilyenkor az állandó frekvencia a rezonanciagörbe oldalának csillapítása következtében enyhe amplitúdó veszteséget szenved, és ezáltal nem kívánt amplitúdómoduláció is keletkezik, létrejön a kívánt szögmoduláció, mivel a kimeneti feszültség kénytelen más fázisállapotba átmenni (amely nagyobb vagy kisebb mint 0 ).
5 4. ábra. Fázismoduláció előállítása után kapcsolt fázistolóval (rezgőkörrel) A szög moduláció és a frekvenciamoduláció elválaszthatatlan kapcsolatban áll egymással, jelen esetben mégis hajlamosak vagyunk elzárkózni az új frekvenciák keletkezésének gondolatától, hiszen a rezgőkört állandó frekvenciájú generátor táplálja. Azonban egy rezgésnek egyik fázisállapotból a másikba való átmenetét úgy is tekinthetjük, mint új frekvencia keletkezését (4. ábra). Ha az átmenet lezajlik, akkor ismét az eredeti frekvenciát mérjük. A szögnövekedés átmenete frekvencianövekedést, a szög csökkenés átmenete frekvenciacsökkenést eredményez. A fázis szinuszos modulációjakor a frekvenciának 90 -kal eltolt szinuszos modulációja keletkezik (4. ábra). Ezzel a kapcsolással is csak kis fázislöketek hozhatók létre. Javulást eredményez a rezgőkör helyett alkalmazott többkörös szűrő. 5. ábra. Összefüggés a frekvencia és a fázis között A lapos áteresztőtartománybeli karakterisztika miatt ugyanis csökken a zavaró járulékos AM, és a fázisgörbe nagyobb meredeksége nagyobb fázislöketet szolgáltat. Fázismodulációnál egy rezgésnek csak a fázisát változtatják. A folyamat az állandó frekvencia előállítása után megy
6 végbe. Ez a frekvencia kvarc stabil lehet. FM-előállításnál a moduláló feszültség a visszacsatoló ágban avatkozik be; ott a frekvencia meghatározó visszacsatoló négypólus fázistolása változik. A visszacsatolt rendszernek más frekvenciára kell átállnia, hogy a visszacsatolási feltétel ismét teljesüljön (5. ábra). Fázismoduláció, mint frekvenciafüggő moduláló feszültséggel végzett FM A 7. ábra mutatja az elvet. FM-nél a fázislöket növekvő moduláló frekvencia mellett csökken. Ha ezt azzal egyenlítjük ki, hogy a moduláló feszültséget egy megfelelően frekvenciafüggő átviteli tényezőjű hálózat segítségével a moduláló feszültséggel arányosan növeljük, akkor a fázislöketcsökkenés kiegyenlíthető. Így az átviteli sávban konstans fázislöketet kapunk. Hasonló ez az eljárás az előkiemeléshez. A gyakorlatban FM-oszcillátor kapcsolásokat alkalmaznak, kiegészítve a moduláló feszültség frekvenciafüggő feszültségformálását végző négypólussal. Az eljárások előnyei és hátrányai Az első három ismertetett eljárásnak az az előnye, hogy kvarc stabil vivőgenerátorok alkalmazhatók. Hátrány viszont, hogy csak kis fázislöketek hozhatók létre, és hogy növekvő löketnél zavaró AM lép fel. Nagyobb fázislöketeket pl. frekvenciasokszorozással kell előállítani. Frekvenciakétszerezésnél a legnagyobb és legkisebb pillanatnyi frekvencia is kétszereződik, tehát a frekvencialöket és vele együtt a fázislöket is. Gyakorlati jelentősége a negyedik eljárásnak van, a nagyobb elérhető löket miatt. Hátránya, hogy nem használható kvarc stabil vivőfrekvencia. Szükség esetén frekvenciaszabályozást alkalmazhatunk. 6. ábra. Fázismoduláció előállítása előkiemeléssel Demoduláció E célra az FM demodulációs eljárások használhatók. Gondolni kell azonban arra, hogy az ott leírt frekvenciadiszkriminátorok a frekvencia- és nem a fázislökettel arányos feszültséget adnak le.
7 Mivel pedig a fázismodulációnak éppen az a tulajdonsága, hogy a frekvencialöket lineárisan emelkedik a moduláló frekvenciával, az így demodulált fázismoduláció alapsávi amplitúdója a moduláló frekvenciával növekedne. Ezt a diszkriminátor után kapcsolt négypólussal megfelelően ki kell egyenlíteni. Felismerhetjük, hogy az eljárás hasonló az utóelnyomáshoz. 7. ábra. Fázismodulált rezgés demodulációja Másfajta fázisdemoduláció elvét mutatja a 8. ábra. Mivel kis fázislöketek fordulnak elő, a mindig ugyanolyan fázissal érkező vivőt ki lehet szűrni és 90 -os eltolással kapcsolófeszültségként lehet alkalmazni. Pozitiv fázislöketnél az ábrázolt fázismodulációnak pozitív, negatívnál a negatív kék színű területei kerülnek túlsúlyba. Az aluláteresztővel végzett simítás után előáll az AF-rezgés. Zavarok fázismodulációnál - összehasonlítás az FM-mel 8. ábra A határolás hatása
8 Mint azt már a 9. ábra bemutattuk, egy zavaró jel befolyásolja a fázist és zavaró fázislöketet hoz létre. Ha meg akarjuk vizsgálni egy szögmoduláció zavarokkal szembeni védettségét, akkor a hasznos fázislöketet kell összehasonlítanunk a zavaró fázislökettel. Míg FM-nél a hasznos fázislöket növekvő modulációs frekvenciával csökken, és ezért a zavarok nagyobb modulációs frekvenciáknál erősebben érzékelhetők, fázismodulációnál a jel-zaj viszonya modulációs frekvenciától független fázislöket miatt az egész alapsávban állandó. Alapjában véve éppen ennek az eredménynek az elérése érdekében képeznek az FM-ből előkiemeléssel fázismodulációt. Matematikai összefüggések fázismodulációnál A szöget nem a frekvencián keresztül modulálják, mint FM-nél, hanem közvetlenül: ϕ = ω t t v + Φsinωm 7. Egyenlet Az itt szereplő Φ fázislöket nem függ a modu1ációs frekvenciától (a frekvencia, ill. körfrekvencia idő szerinti integráljára itt nincs szükség, mint az FM-nél!). Φ = η helyettesítéssel a fenti képletből ugyanazt az időfüggvényt lehet levezetni, mint FM-nél. Kérdések és feladatok 1. Hogyan viselkedik fázismodulációnál a fázislöket, ha nő a modulációs frekvencia? 2. Hogyan függ a frekvencialöket a modulációs frekvenciától fázismodulációnál? 3. Miért lehet a 7.2. és 7.3. ábra kapcsolásai val csak kis fázislöketeket megvalósitani? 4. Mekkora maximális fázislöketet kapunk, ha egy Uv=1V -os vivőhöz hozzáadjuk az egyenként 0,1 V amplitúdójú felső és alsó oldalhullámot? 5. Milyen járu1ékos kapcsolásra van szükség ahhoz, hogy egy FM-ből fázismodu1ációt állítsunk elő? 6. Mekkora maximális fázislöket adódna, ha a 7.4b ábra kapcsolásánál a rezgőkört a ± fél sávszélességgel hangolnánk e1? A gyakorlatban miért nem mennek el ilyen messzire? 7. Miért független a frekvenciától a szinuszos zavarfeszültségek hatása fázismodulációnál?
5. témakör. Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok
5. témakör Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok Szögmoduláció Általánosan felírva a vivőfrekvenciás jelet (AM-nél megismert módon): Amennyiben a vivő pillanatnyi amplitúdója
π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]
Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése
Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése Összefoglalás A radar rendszerekben változatos modulációs módszereket alkalmaznak, melyek közé tartozik az amplitúdó-,
4. gyakorlat: Analóg modulációs eljárások
4 gyakorlat: Analóg modulációs eljárások O4 Kétoldalsávos AM jel előállítása és demodulációja Az ideális (torzítatlan) kétoldalsávos amplitúdómodulált (AM-DSB) jel időfüggvénye U x( cos Ft (*) alakú, ahol
Elektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
9. Modulátorok. Losonczi Lajos - Analóg áramkörök kurzus - Sapientia Tudományegyetem Marosvásárhely 9-1
9. Modulátorok A modulátorok olyan elektronikus áramkörök, amelyek egy vivő jel paramétereit módosítják (modulálják), egy információt tartalmazó jel függvényében. A moduláló jel tartalmazza az információt,
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet
Széchenyi István Egyetem Távközlési Tanszék Szám: L104 Mérési útmutató
Szám: L104 Mérési útmutató Labor gyakorlat (NGB_TA009_1) laboratóriumi gyakorlathoz Készítette: Szemenyei Balázs BSc hallgató Konzulens: Vári Péter, Soós Károly Győr, 2011. szeptember 20. A laborgyakorlat
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
DIGITÁLIS KOMMUNIKÁCIÓ Oktató áramkörök
DIGITÁLIS KOMMUNIKÁCIÓ Oktató áramkörök Az elektronikus kommunikáció gyors fejlődése, és minden területen történő megjelenése, szükségessé teszi, hogy az oktatás is lépést tartson ezzel a fejlődéssel.
A rezgőkörben ilyen elektromágneses tér jön létre. A zárt rezgőkörben (2. ábra) az erőterek szóródása, így kisugárzása kicsiny. 2.
3.11. Rádió adás és rádió vétel 3.11.1. Alapfogalmak Rádióösszeköttetés A rádióösszeköttetés az adó- és a vevőállomás közötti vezeték nélküli jelátvitelt jelent. (Az átvitt jel lehet távírójel, hang, állókép,
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Elektronika alapjai. Témakörök 11. évfolyam
Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia
M ű veleti erő sítő k I.
dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt
Nagyfrekvenciás rendszerek elektronikája házi feladat
Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia
Passzív és aktív aluláteresztő szűrők
7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
3.12. Rádió vevőberendezések
3.12. Rádió vevőberendezések A rádió vevőkészülék feladata az antennában a különböző rádióadók elektromágneses hullámai által indukált feszültségekből a venni kívánt adó jeleinek kiválasztása, megfelelő
Mérési útmutató Rádiórendszerek (NGB_TA049_1) laboratóriumi gyakorlathoz FM vevő mérése
Mérési útmutató Rádiórendszerek (NGB_TA049_1) laboratóriumi gyakorlathoz FM vevő mérése Készítette: Guti András BSc hallgató Konzulens: Vári Péter Győr, 2010-09-30 FM rádió vevőkészülék mérése 1. Elméleti
19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:
9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
1. ábra a függvénygenerátorok általános blokkvázlata
A függvénygenerátorok nemszinuszos jelekből állítanak elő kváziszinuszos jelet. Nemszinuszos jel lehet pl. a négyszögjel, a háromszögjel és a fűrészjel is. Ilyen típusú jeleket az úgynevezett relaxációs
Híradástechnika I. 2.ea
} Híradástechnika I. 2.ea Dr.Varga Péter János Spektrum ábra példa Híradástechnika Intézet 2 A kommunikációban használt fontosabb fogalmak A sávszélesség A sávszélesség az a frekvenciatartomány, amelyben
Modulációk vizsgálata
Modulációk vizsgálata Mérés célja: Az ELVIS próbapanel használatának és az ELVIS műszerek, valamint függvénygenerátor használatának elsajátítása, tapasztalatszerzés, ismerkedés a frekvencia modulációs
Wien-hidas oszcillátor mérése (I. szint)
Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
Zh1 - tételsor ELEKTRONIKA_2
Zh1 - tételsor ELEKTRONIKA_2 1.a. I1 I2 jelforrás U1 erősítő U2 terhelés 1. ábra Az 1-es ábrán látható erősítő bemeneti jele egy U1= 1V amplitúdójú f=1khz frekvenciájú szinuszos jel. Ennek megfelelően
Elektronika Előadás. Modulátorok, demodulátorok, lock-in erősítők
Elektronika 2 10. Előadás Modulátorok, demodulátorok, lock-in erősítők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki
A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható
3.11. Rádió adás és rádió vétel Alapfogalmak
3.11. Rádió adás és rádió vétel 3.11.1. Alapfogalmak Rádióösszeköttetés A rádióösszeköttetés az adó- és a vevőállomás közötti vezeték nélküli jelátvitelt jelent. (Az átvitt jel lehet távírójel, hang, állókép,
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
1. ábra 1 (C 2 X C 3 ) C 1 ( R 1 + R 2 ) R 3. 2 π R C
A kettős T-tagos oszcillátorok amplitúdó- és frekvenciastabilitása hasonlóképpen kiváló, mint a Wien hidas oszcillátoroké. Széleskörű alkalmazásának egyetlen tény szabhat csak határt, miszerint a kettős
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
HÍRADÁSTECHNIKA I. Dr.Varga Péter János
HÍRADÁSTECHNIKA I. 2. Dr.Varga Péter János 2 Modulációk Miért van szükség modulációra? 3 hullámokat megfelelő hatásfokkal sugározhassuk ha minden adó ugyanazon a frekvencián sugározna, az eredmény az lenne,
ANALÓG ÉS DIGITÁLIS TECHNIKA I
ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐADÁS 2010/2011 tanév 2. félév 1 Aktív szűrőkapcsolások A
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv
Jelkondicionálás Elvezetés 2/12 a bioelektromos jelek kis amplitúdójúak extracelluláris spike: néhányszor 10 uv EEG hajas fejbőrről: max 50 uv EKG: 1 mv membránpotenciál: max. 100 mv az amplitúdó növelésére,
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
Digitális modulációk vizsgálata WinIQSIM programmal
Digitális modulációk vizsgálata WinIQSIM programmal Lódi Péter(D1WBA1) Bartha András(UKZTWZ) 2016. október 24. 1. Mérés célja Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2016.10.24.
1. ábra A Wien-hidas mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!
Pontatlanul beállított haranggörbe-erősítő gyors lefutású színátmenetekre gyakorolt torzító hatásának vizsgálata SECAM rendszerű televíziós átvitelnél
PÁLINSZKI ANTAL BME Híradástechnikai Elektronika Intézet Pontatlanul beállított haranggörbe-erősítő gyors lefutású színátmenetekre gyakorolt torzító hatásának vizsgálata SECAM rendszerű televíziós átvitelnél
1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak:
Az erősítő alapkapcsolások, de a láncbakapcsolt erősítők nem minden esetben teljesítik azokat az elvárásokat, melyeket velük szemben támasztanánk. Ilyen elvárások lehetnek a következők: nagy bemeneti ellenállás;
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS
1. ábra A Meißner-oszcillátor mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével! 1. Mi a Meißner-oszcillátor
1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó
Informatikai eszközök fizikai alapjai Lovász Béla
Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,
Versenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny
54 523 01 0000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 01 0000 00 00 SZVK rendelet száma: 15/2008 (VIII. 13.) SZMM
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
A mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
2. gyakorlat Mintavételezés, kvantálás
2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.09.18. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 11. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű PÓTMÉRÉS: Akinek elmaradása van, egy mérést pótolhat a
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
A soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.03.02. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
Elektronika Előadás. Analóg és kapcsolt kapacitású szűrők
Elektronika 2 8. Előadás Analóg és kapcsolt kapacitású szűrők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - Ron Mancini (szerk): Op Amps for Everyone, Texas Instruments, 2002 16.
Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás
Kompenzációs kör vizsgálata LabVIEW 7.1 4. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-4/1 Mágneses hiszterézis mérése előírt kimeneti jel mellett DAQ Rn Un etalon ellenállás etalon ellenállás
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus
Számítógépes gyakorlat Irányítási rendszerek szintézise
Számítógépes gyakorlat Irányítási rendszerek szintézise Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
4. témakör. Amplitúdó moduláció AM modulátorok, demodulátorok
4. témakör Amplitúdó moduláció AM modulátorok, demodulátorok A moduláció Célja: Spektrumformálás 1.) Az átviteli csatornához igazítani a jelspektrumot (átviteli rendszer áteresztő sávja, elektromágneses
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen
A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk
3.12. Rádió vevőberendezések
3.12. Rádió vevőberendezések A rádió vevőkészülék feladata az antennában a különböző rádióadók elektromágneses hullámai által indukált feszültségekből a venni kívánt adó jeleinek kiválasztása, megfelelő
Foglalkozási napló a 20 /20. tanévre
Foglalkozási napló a 20 /20. tanévre Audio- és vizuáltechnikai műszerész szakma gyakorlati oktatásához OKJ száma: 35 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből álló hálózatok
Teljesítmény-erősítők. Elektronika 2.
Teljesítmény-erősítők Elektronika 2. Az erősítés elve Erősítés: vezérelt energia-átalakítás Vezérlő teljesítmény: Fogyasztó teljesítmény-igénye: Tápforrásból felvett teljesítmény: Disszipálódott teljesítmény:
11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 12. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű 2008.05.09. PTE PMMK MIT 2 Közérdekű PÓTMÉRÉS: Akinek elmaradása
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
Történeti Áttekintés
Történeti Áttekintés Történeti Áttekintés Értesülés, Információ Érzékelő Ítéletalkotó Értesülés, Információ Anyag, Energia BE Jelformáló Módosító Termelőeszköz Folyamat Rendelkezés Beavatkozás Anyag,
LI 2 W = Induktív tekercsek és transzformátorok
Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken
Teljesítményerősítők ELEKTRONIKA_2
Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.
O S Z C I L L Á T O R O K
ELEKTRONIKAI TECHNIKUS KÉPZÉS 0 3 O S Z C I L L Á T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Oszcillátorok...3 Negatív ellenállású kétpólussal működő oszcillátorok...3 Pozitív
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye