A jövő számítógépei. Dr. Kovács Lehel István
|
|
- Oszkár Kocsis
- 9 évvel ezelőtt
- Látták:
Átírás
1 A jövő számítógépei Dr. Kovács Lehel István
2 2004-ben a gépek... El fognak férni egy szobában Írógéppel lehet adatokat bevinni Írógépre nyomtatni is tudnak TV képernyőn látni lehet mindent A könnyebb vezérlést egy kormánykerék is segíti majd A FORTRAN mindent megold (RAND Corporation, 1954)
3
4 A valóság 2004-ben... PC-k, Laptopok, NoteBookok, PalmTopok A félvezető technika kezd csődöt mondani Új architektúrákra van szükség
5 A maximum 2004-ben
6 A HP becslése A Hewlett-Packard kutatói a számítógépek várható fejlődését 2047-ig prognosztizálják. Az új számítógépek a már kísérletekkel is igazolt elméletekre és megoldásokra épülnek, de természetesen az elkövetkező közel 40 év alatt olyan elméletek is napvilágot láthatnak, amelyek ma még teljesen ismeretlenek, és újabb forradalom elindítói lehetnek.
7 És még eltelt 10 év őszén Okostelefonok Tablett gépek... És alternatív irányzatok, mert itt a VÉG Miért?
8 Moore-törvény Gordon Moore volt az, aki 1965-ben felfedezte az elektronikai ipar egyik törvényszerűségét: megállapítása szerint minden hónapban megduplázódik az egységnyi integrált áramköri felületre ültethető" tranzisztorok száma.
9 Félvezetők (1) Középiskola, kémia: vezetők, szigetelők, félvezetők (periódusos rendszer) Egy Z rendszámú atom magja kb m sugarú gömbben összpontosul, amelyet m sugarú elektronfelhő vesz körül (Z db. elektron) -> energiasávok
10 Félvezetők (2) Az energiasávok között üres sávok is vannak (félvezetőknél) Processzor -> félvezető (szilícium) Tranzisztorok vannak integrálva a processzoron (lyukak) Ma már tudunk kisebb távolságokra lyukakat fúrni, mint az elektron ívtávolsága (felhőn belül) - > nem fog vezetni -> VÉG
11 Gyors fejlődés (1.) A tároló chipek kapacitása 34 évenként szeresre, míg a logikai (processzor) chipek teljesítménye szeresre nő (tranzisztorok száma, órajel). A becslések szerint 2047-ben egy tároló chip kapacitása - Moore törvényét alkalmazva - 2x10 a 16.-on bit lesz. Ez a tároló kapacitás megegyezik 100 ezer emberi agyéval, míg egy processzorchip teljesítménye 500 millió Pentium Pro processzor teljesítményével lesz egyenlő. A memória és a processzor elfér majd egy 1 cm 3 térfogatban.
12 Gyors fejlődés (2.) 2010-ben az integrált áramkörben egy tranzisztor be- vagy kikapcsoláskor nyolc elektront mozgatott meg egy kapuáramkörben, szemben egy 2000-es tranzisztor 1000 elektronjával. Még 2020 előtt kevesebb mint egy elektron kell egy tranzisztor kapcsolásához. Itt van a CMOS tranzisztorok alapvető fizikai határa, mivel ezek az eszközök nem képesek működni egy elektron törtrészével.
13 Félvezetős processzorok
14 Alternatív irányzatok Elektro-molekuláris számítógépek Molekuláris számítógépek Bio-elektro-molekuláris számítógépek Sejtautomaták DNS-számítógépek Kvantum-számítógépek Optikai vagy fotonikus számítógépek
15 Elektro-molekuláris számítógépek 1970 elején F. L. Carter kezdeményezésére molekulákból álló logikai áramköröket hoztak létre.
16 Moletronika (1) a szilícium méretéből adódó problémák felszámolása (2010 előtt már gyártható) IBM Watson Kutatóközpont: 2001 augusztusában egy szem molekulából álló, működőképes logikai áramkört hoztak létre. Szénalapú nanocsöveket és rács alakú atomi szerkezeteket használva, csupán tíz atom szélességű, egy szilíciumáramkörnél ötszázszor kisebb áramkör lett a végeredmény.
17 Moletronika (2) 2001 októberében Zhenan Bao, Hong Meng, Hendrik Schon, a Bell Labs kutatói nanocsőnél is kisebb, milliomod homokszem-méretű molekuláris tranzisztort állítottak elő. Gyakorlati alkalmazásai: biomedicina: a szervezetbe juttatott miniatűr gépek az inzulinszintet mérik, vagy szívrohamveszélykor adnak le figyelmeztető jelzéseket
18 Hendrik Schon, Zhenan Bao és a molekula
19 Moletronika (3)
20 Molekuláris számítógépek K. Eric Drexler a makromolekulák mechanikai mozgását próbálja kihasználni.
21 Bio-elektro-molekuláris számítógépek Michael Conrad 1985-beli ötlete alapján a biológiai molekulák közötti kölcsönhatásokat fel lehet használni számítási folyamatok elvégzésére.
22 BEM (1) természetes neuronok áramkör
23 BEM (2) Agyműködés megértése Betegségek gyógyítása : a Dél-kaliforniai Egyetem Neurális Technikai Központjának kutatói az agyi hippocampus működését utánzó szilikon csipeket teszteltek.
24 Sejtautomaták A sejtautomaták szervezési, önszervezési képességének felhasználása. Neumann János Roska Tamás (CNN Cellular Neural Network)
25 Roska Tamás
26 Sejt (1) Sejtautomata: az azonos szomszédsági mintázat szerint összekapcsolt, szinkronizáltan működő sejtek (cellák) olyan összessége, ahol az egyes sejtek állapota csak saját és szomszédainak állapotától függ
27 Sejt (2) A legegyszerűbb szabály három sejtre vonatkozik: a második sor tetszőleges elemét a közvetlenül felette lévőtől, az attól jobbra és balra található példányok alakítják. A három sejt nyolcféleképpen fordulhat elő: 000, 001, 010, 011, 100, 101, 110, 111.
28 Sejt (3)
29 Sejt (4) John Horton Conway a sejtautomata-tervét a minimumig igyekezett egyszerűsíteni. Két állapotot, négy egyszerű szabályt használt, sejtenként nyolc szomszédos cellával, cellánként maximum egy sejttel:
30 Sejt (5) ha egy élő sejtnek kettőnél kevesebb szomszédja van, akkor meghal, ha háromnál több szomszédja van, akkor is meghal, ha egy halott sejtnek (üres cellának) pontosan három szomszédja van, akkor életre kel; máskülönben, az összes többi sejt eredeti állapotában marad.
31 DNS-számítógépek Leonard Adleman 1994-es ötlete alapján a számítási folyamatokat DNS molekulák szintézise és reakciói által is el lehet végezni novemberében készült el az első prototípus.
32 DNS DNS - az élőlények öröklési anyaga, a természet által működésbe hozott, adatfelhalmozásra, és az életet lehetővé tevő mechanizmusok beindítására alkalmas, rendkívül hatékony eszköz.
33 A DNS-spirál Hatalmas mennyiségű információt tárol
34 A DNS-spirál Nukleinsavak, aminósavak, fehérjék
35 Leonard Adleman
36 DNS-szg (1) A DNS dupla spirálja - molekuláris szinten - nagy mennyiségű kódolt információt tartalmaz. A DNS-kombinációk módja kiszámítható, előre jelezhető. Egy kávéskanál milliárd DNS-darabkát tartalmazhat -> processzorok, többmilliárd művelet szimultán elvégzésére képes nanocomputer.
37 DNS-szg (2) Első feladat: utazó ügynök problémája (miként jutunk el a leggyorsabban meghatározott számú városokba, úgy, hogy egy várost csak egyszer érinthetünk? ) DNS: néhány másodperc leforgása alatt generálta az összes lehetséges megoldást (a jó és rossz válaszok elkülönítése egy hétig tartott).
38 DNS-szg (3) HIBA - A természetben a hibák mutációt eredményeznek, az állandó javítások pedig az élő sejtekben történnek. Ezzel szemben, a DNS-alapú számítógépek (egyelőre) képtelenek a hibák korrigálására. A válaszok elemzése rendkívül sok időt vesz igénybe.
39 DNS-szg (4) 2002 márciusában: össze kell állítani egy bulira a meghívottak húszas listáját, azzal a megkötéssel, hogy az összes potenciális vendég kijelenti, csak akkor jelenik meg, ha y nem lesz ott, z viszont igen. A megoldáshoz milliónál több kombinációt kellett átvizsgálni. A DNSszámítógép négy nap kémiai reakció és kódrostálás után - egymást kölcsönösen vonzó/taszító nukleinsavakkal ábrázolva a résztvevőket - adta meg a vendéglistát.
40 DNS-szg (5) 2003 augusztusa: MAYA 3x3 kamra enzimek különböző kombinációival megoldja az X-0 játékot. Ember: egy kamrába rövid DNS szekvenciát tartalmazó oldatot tesz. A gép elemzi, majd válaszol: fluoreszkálással jelez. VERHETETLEN!
41 Kvantum-számítógépek 1978-ban David Deutch (Oxfordi Egyetem) megadta a kvantum számítógépek első modelljét. Richard P. Feynman és Peter Shor munkássága nyomán születtek meg azok az elméleti számítási modellek, amelyek a kvantumfizika lehetőségeit, energiaszintjeit használják ki ban készült el az első prototípus (IBM, MIT, oxfordi egyetem).
42 Kvantum (1) Egy bit: 0 vagy 1 (nem lehet mindkettő) Kvantum-számítógépeknél: a 0 és 1 állapotok két ortogonális vektornak felelnek meg: az egyik 0>, a másik 1> (Dirac-féle jelölés bra - ket. Létezik <0 és <1, így <x y> a skalár szorzat lesz.) qubit (quantum bit) a kvantum-bit
43 Kvantum (2) Egy qubit a 0> vagy 1> állapotban lehet vagy a kvantum-mechanika elvei alapján ezek koherens szuperpozíciójában. Ez a szuperpozíció egy kétdimenziós vektor, a 0> és 1> lineáris kombinációja a c 0 0> + c 1 1> ortogonális bázis fölött, ahol c 0 és c 1 komplex számok (Neumann nyomán): valószínűségi amplitudók, és c c 1 2 = 1.
44 Kvantum (3) A kvantum-folyamatok számításai determinisztikusak, a valószínűségek csak az eredmény kiolvasásakor jönnek be. Ha egy c 0 0> + c 1 1> állapotban lévő qubit egy számítás eredménye, ezt úgy kell értelmezni, hogy a 0> és 1> állapotok is eredmények, amelyeket ugyanabban az időben kaptunk meg.
45 Kvantum (4) Az eredményt kétféleképpen értelmezhetjük: c 0 2 valószínűséggel irreverzibilisen visszavezetjük a 0> vektorra, figyelmen kívül hagyva, hogy 1 is eredmény volt c 1 2 valószínűséggel irreverzibilisen visszavezetjük az 1> vektorra, elfelejtve, hogy 0 is eredmény volt.
46 Példa (1) Legyen egy három qubitből álló regiszterünk, mindegyik qubit egy két dimenziós térben van a { 0> 1>} bázis fölött: c 10 0> + c 11 1> c 20 0> + c 21 1> c 30 0> + c 31 1>
47 Példa (1) folyt. A regiszter egy 8 dimenziós térben van (a 3 d terek tenzoriális szorzata). A tér bázisa 8 állapotvektorból áll: 000>, 001>, 010>, 011>, 100>, 101>, 110>, 111>. A regiszter állapota a fenti vektorok szuperpozíciója:
48 Példa (1) folyt. c > + c > c > + c > c > + c > c > + c >
49 Kvantum (5) A számításokban unitér operátorokat használunk, amelyek komplex elemű mátrixokkal vannak ábrázolva. U-U* = U*-U = I (U* az U konjugáltjának transzponáltja, I az egységmátrix)
50 Példa (2) A regiszterünk a következő állapotok szuperpzíciójában van: i
51 Példa (2) folyt. Alkalmazzuk az utolsó két bitre a köv. operátort: U i i i i
52 Példa (2) folyt. A regiszter a következő szuperpozícióba kerül: 2 i 2 ( )
53 Kvantum (6) A kvantum-számítási folyamatok komplexitása különbözik a hagyományos számítási folyamatokétól. A kvantum-számítógépek az ismert komplexitási hierarchiát eggyel csökkentik. Pl. A faktorizáció exponenciális algoritmus kvantum-gépeken polinomiális lesz. Feltörhető lesz az RSA titkosítás.
54 Kvantum-processzor
55 Processzor (1.) 2009 júliusában a Yale University kutatóinak egy csoportja megalkotta az első elemi szilárd félvezető kvantumprocesszort, ami egy újabb lépést jelent a végső cél, a kvantumszámítógép megépítése felé.
56 Processzor (2.) A Steven Girvin professzor által vezetett csoport két mesterséges atomot avagy qubit-et (kvantum bitet) készített. Bár mindegyik qubit egymilliárd alumínium-atomból áll, úgy működnek, mint egyetlen atom, melynek két különböző energiaállapota van.
57 Optikai vagy fotonikus számítógép Yurii Vlasov fizikus 2007-ben (IBM Watson Research Center, New York) olyan mikroáramkörbe építhető, optikai fénykésleltetőt készített, amely 0,5 nanoszekundumnyi ideig csapdába ejti a fényt. Az átmeneti adattárolónak is használható eszköz kifejlesztésével fontos akadályt hárítottak el az elektronok helyett fotonokkal működő optikai számítógépek megszületéséhez vezető úton.
58 Yurii Vlasov
59 Optikai processzor (1.) Az optikai vagy fotonikus számítógépek a látható fényt vagy infravörös sugarakat használnak majd jeltovábbításra, a manapság alkalmazott elektromosság helyett. Az optikai számítógépek két kategóriáját fejlesztik: a hibrid elektronikus/optikai és a teljesen optikai számítógéprendszereket.
60 Optikai processzor (2.) Az optikai logikai kapu optikai kapcsolóelemei kevesebb mint 1 picosec (pikoszekundum, azaz 10 a 12.-en) kapcsolási idővel dolgoznak. Ezek kb szer gyorsabbak, mint a mai elektronikus számítógépekben használt elektronikus kapcsolók. Az optikai számítógép kutatásokban femtoszekundumos (10 a 15.-en) lézert használnak, amely már kereskedelmi termék.
61 Következtetések A kvantumszámítógépek kínálják elméletileg a legnagyobb számítási teljesítményt, de ezek általános célú számítógépként történő megvalósítása és alkalmazása talán az összes bemutatott változat közül a legtávolabb van. Ennél hamarabb kerülhetnek bevezetésre a biológiai és az optikai számítógépek. Az elkövetkező 50 évben a kutatóknak és fejlesztőknek még rengeteg tanulásra és munkára lesz szükségük, hogy az új elméleteket továbbfejlesszék, és ezeket átültessék a gyakorlatba.
62 Könyvészet omputers.html ml o.htm
Kvantumszámítógép a munkára fogott kvantummechanika
Kvantumszámítógép a munkára fogott kvantummechanika Széchenyi Gábor ELTE, Anyagfizikai Tanszék Atomoktól a csillagokig, 2019. április 25. Kvantumszámítógép a hírekben Egy új technológia 1940-es 1980-as
Példa sejtautomatákra. Homokdomb modellek.
Példa sejtautomatákra. Homokdomb modellek. Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet
Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor
Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC)
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC) 1 A korszerű digitális tervezés itt ismertetendő (harmadik) irányára az a jellemző, hogy az adott alkalmazásra céleszközt (ASIC - application
Moore & more than Moore
1 Moore & more than Moore Fürjes Péter E-mail:, www.mems.hu 2 A SZILÍCIUM (silex) 3 A SZILÍCIUM Felfedező: Jons Berzelius 1823, Svédország Természetes előfordulás: gránit, kvarc, agyag, homok 2. leggyakoribb
Számítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
Shor kvantum-algoritmusa diszkrét logaritmusra
Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció
Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró
12. előadás Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet új állapotba megy át kóla
Laptop: a fekete doboz
Laptop: a fekete doboz Dankházi Zoltán ELTE Anyagfizikai Tanszék Lássuk a fekete doboz -t NÉZZÜK MEG! És hány GB-os??? SZEDJÜK SZÉT!!!.2.2. AtomCsill 2 ... hát akkor... SZEDJÜK SZÉT!!!.2.2. AtomCsill 3
1. Generáció( ):
Generációk: 1. Generáció(1943-1958): Az elektroncsövet 1904-ben találták fel. Felfedezték azt is, hogy nemcsak erősítőként, hanem kapcsolóként is alkalmazható. A csövek drágák, megbízhatatlanok és rövid
Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise
Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Gyöngyösi László gyongyosi@hit.bme.hu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Motiváció A kvantuminformatikáról
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
elektronikus adattárolást memóriacím
MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása
A jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24.
Az atomoktól a csillagokig 2011. február 24. Pavelka Tibor, Tallián Miklós 2/24/2011 Szilícium: mindennapjaink alapvető anyaga A szilícium-alapú technológiák mindenütt jelen vannak Mikroelektronika Számítástechnika,
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
Ahol a kvantum mechanika és az Internet találkozik
Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to
Informatikai eszközök fizikai alapjai Lovász Béla
Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,
2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés
. Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve
Mi van a számítógépben? Hardver
Mi van a számítógépben? Hardver A Hardver (angol nyelven: hardware) a számítógép azon alkatrészeit / részeit jelenti, amiket kézzel meg tudunk fogni. Ezen alkatrészek közül 5 fontos alkatésszel kell megismerkedni.
SCHRÖDINGER mi is az élet? Rausch Péter ELTE TTK kémia-környezettan
Rausch Péter ELTE TTK kémia-környezettan A természettudományok nem véletlenül képeznek szerves egységet, hiszen a körülöttünk lévő világ a természet működését igyekeznek tudományos igényességgel leírni.
2011. Május 4. Önök Dr. Keresztes Péter Mikrochip-rendszerek ütemei, metronóm nélkül A digitális hálózatok új generációja. előadását hallhatják!
2011. Május 4. Önök Dr. Keresztes Péter Mikrochip-rendszerek ütemei, metronóm nélkül A digitális hálózatok új generációja. előadását hallhatják! MIKROCSIP RENDSZEREK ÜTEMEI, METRONÓM NÉLKÜL Mikrocsipek
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok október 18. 16:00 ELTE Kémiai Intézet 065-ös terem Észbontogató (www.chem.elte.hu/pr)
Zárthelyi dolgozat I. /A.
Zárthelyi dolgozat I. /A. 1. Az FCC rács és reciprokrácsa (és tudjuk, hogy: V W.S. * V B.z. /() 3 = 1 / mindig!/) a 1 = ½ a (0,1,1) ; a = ½ a (1,0,1) ; a 3 = ½ a (1,1,0) b 1 = (/a) (-1,1,1); b = (/a) (1,-1,1);
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
Kvantum informatika és kommunikáció:
Kvantum informatika és kommunikáció: múlt jelen A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT IMRE SÁNDOR imre@hit.bme.hu BME Villamosmérnöki
TDK lehetőségek az MTA TTK Enzimológiai Intézetben
TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK
Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem)
65-67 A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) Két fő része: a vezérlőegység, ami a memóriában tárolt program dekódolását és végrehajtását végzi, az
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
Kémiai reakciók mechanizmusa számítógépes szimulációval
Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.
NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag
NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
Bepillantás a gépházba
Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
Kvantumkriptográfia III.
LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia
Informatika kvantum elveken: a kvantum bittől a kvantum számítógépig
Informatika kvantum elveken: a kvantum bittől a kvantum számítógépig A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT Egy egyszerű kérdés
DNS-számítógép. Balló Gábor
DNS-számítógép Balló Gábor Bevezetés A nukleinsavak az élő szervezetek egyik legfontosabb alkotórészei. Ezekben tárolódnak ugyanis az öröklődéshez, és a fehérjeszintézishez szükséges információk. Bár a
6000 Kecskemét Nyíri út 11. Telefon: 76/481-474; Fax: 76/486-942 bjg@pr.hu www.banyai-kkt.sulinet.hu. Gyakorló feladatok
BÁNYAI JÚLIA GIMNÁZIUM 6000 Kecskemét Nyíri út 11. Telefon: 76/481-474; Fax: 76/486-942 bjg@pr.hu www.banyai-kkt.sulinet.hu Gyakorló feladatok I. LEGO Robotprogramozó országos csapatversenyre A következő
Nanotudományok vívmányai a mindennapokban Lagzi István László Eötvös Loránd Tudományegyetem Meteorológiai Tanszék
Nanotudományok vívmányai a mindennapokban Lagzi István László Eötvös Loránd Tudományegyetem Meteorológiai Tanszék 2011. szeptember 22. Mi az a nano? 1 nm = 10 9 m = 0.000000001 m Nanotudományok: 1-100
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása
Az Informatika Elméleti Alapjai Dr. Kutor László A számolás korai segédeszközei A korszerű számítógépek kialakulása http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1
Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása
Az Informatika Elméleti Alapjai Dr. Kutor László Számolás az ujjakon 2. (Kína- India) A számolás korai segédeszközei A korszerű számítógépek kialakulása http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév:
Jegyzetelési segédlet 8.
Jegyzetelési segédlet 8. Informatikai rendszerelemek tárgyhoz 2009 Szerkesztett változat Géczy László Billentyűzet, billentyűk szabványos elrendezése funkció billentyűk ISO nemzetközi írógép alap billentyűk
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
A kvantumos összefonódás
A kvantumos összefonódás Asbóth János MTA Wigner Fizikai Kutatóközpont, Kvantumoptikai és Kvantuminformatikai Osztály Supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences Budapest,
A számítógépek felépítése. A számítógép felépítése
A számítógépek felépítése A számítógépek felépítése A számítógépek felépítése a mai napig is megfelel a Neumann elvnek, vagyis rendelkezik számoló egységgel, tárolóval, perifériákkal. Tápegység 1. Tápegység:
Az összefonódás elemi tárgyalása Benedict Mihály
Az összefonódás elemi tárgyalása Benedict Mihály Elméleti Fizikai Iskola Tihany 2010, augusztus 31 Kétrészű rendszerek, tiszta állapotok, Schmidt fölbontás és az összefonódási mértékek Példák a kvantumoptikából
NP-teljesség röviden
NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel
1.1. Vektorok és operátorok mátrix formában
1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Tematika. Az atomok elrendeződése Kristályok, rácshibák
Anyagtudomány 2013/14 Kristályok, rácshibák Dr. Szabó Péter János szpj@eik.bme.hu Tematika 1. hét: Bevezetés. 2. hét: Kristályok, rácshibák. 3. hét: Ötvözetek. 4. hét: Mágneses és elektromos anyagok. 5.
Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze
Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei
Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Dr. Gingl Zoltán SZTE, Kísérleti Fizikai Tanszék Szeged, 2000 Február e-mail : gingl@physx.u-szeged.hu 1 Az ember kapcsolata
I. Bevezető, az elektronikai tervezés során felmerülő megoldandó problémák rövid összefoglalása
I. Bevezető, az elektronikai tervezés során felmerülő megoldandó problémák rövid összefoglalása 1 A egy új tervezési módszertan bevezetését az alábbi tényezők indokolják Az elektronikus eszközök bonyolultságának,
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
8.3. AZ ASIC TESZTELÉSE
8.3. AZ ASIC ELÉSE Az eddigiekben a terv helyességének vizsgálatára szimulációkat javasoltunk. A VLSI eszközök (közöttük az ASIC) tesztelése egy sokrétűbb feladat. Az ASIC modellezése és a terv vizsgálata
Algoritmusok tervezése
Az ember legfontosabb energiaforrására a cukorra is ugyanez érvényes, csak fordítva, hiszen az él szervezet csak jobbra forgató cukrokat gyárt és képes felhasználni, míg a balra forgatók az él szervezetben
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
Kvantum infokommunikáció, a titkosítás új lehetőségei
Kvantum infokommunikáció, a titkosítás új lehetőségei A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT 2016.10.06. 2 Ki tudja, hogy mi ez?
Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI
Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
Kvantum-hibajavítás I.
LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5
Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0
Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy
Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.
Koherens lézerspektroszkópia adalékolt optikai egykristályokban
Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD)
1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1 1.1. AZ INTEGRÁLT ÁRAMKÖRÖK GYÁRTÁSTECHNOLÓGIÁI A digitális berendezések tervezésekor számos technológia szerint gyártott áramkörök közül
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Konferencia a tapasztalatok jegyében
Konferencia a tapasztalatok jegyében 2010. november Dornbach Ildikó szakmai igazgató Új biológia, új fizika, régi beidegzések Edzőink felbecsülhetetlen értékű tevékenysége Köztársasági Érdemrendet minden
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 Bevezetés http://www.eet.bme.hu/~poppe/miel/hu/01-bevez.ppt http://www.eet.bme.hu Alapfogalmak IC-k egy felületszerelt panelon
Az élő sejt fizikai Biológiája:
Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri
Searching in an Unsorted Database
Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching
Természettudományi és Technológiai Kar
Üdvözlés, Bemutatkozás Természettudományi és Technológiai Kar Dr. Szabó István intézetigazgató Munka tudomány ipar egészségügy itthon külföldön Karrier Bsc Fizika Képzések Villamosmérnök osztatlan...
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok
Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék
Bio-nanorendszerek Vonderviszt Ferenc Pannon Egyetem Nanotechnológia Tanszék Technológia: képesség az anyag szerkezetének, az anyagot felépítő részecskék elrendeződésének befolyásolására. A technológiai
TestLine - zsoltix83tesztje-01 Minta feladatsor
lkalom: n/a átum: 2017.02.09 18:08:51 Oktató: n/a soport: n/a Kérdések száma: 35 kérdés Kitöltési idő: 1:03:48 Pont egység: +1-0 Szélsőséges pontok: 0 pont +63 pont Értékelés: Pozitív szemléletű értékelés
10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.
Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Nano cink-oxid toxicitása stimulált UV sugárzás alatt és az N-acetilcisztein toxicitás csökkentő hatása a Panagrellus redivivus fonálféreg fajra
Nano cink-oxid toxicitása stimulált UV sugárzás alatt és az N-acetilcisztein toxicitás csökkentő hatása a Panagrellus redivivus fonálféreg fajra KISS LOLA VIRÁG, SERES ANIKÓ ÉS NAGY PÉTER ISTVÁN Szent
Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai
Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése Kereskedelmi forgalomban kapható készülékek 1 Fogalmak