BEVEZETÉS. Tartalom. Bevezetés. Meteorológiai Adatasszimiláció I. Bevezetés. Elméleti alapok. Adatasszimiláció a gyakorlatban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "BEVEZETÉS. Tartalom. Bevezetés. Meteorológiai Adatasszimiláció I. Bevezetés. Elméleti alapok. Adatasszimiláció a gyakorlatban"

Átírás

1 rtlm Meterlógii Atsszimiláció I. Bevezetés Elméleti lp Atsszimiláció grltbn 0 Március 0 Március Bevezetés BEVEZEÉS Numerius elırejelzés: numerius meglás hir-terminmii egenlete (E) A E meglás veges elt prciális ierenciál egenlet ezeti és peremértée megásávl Atsszimiláció: ezeti eltétele megás Léneges pntsság E renszer meglásán ezeti eltételere vló érzéensége mitt ( légör tius viseleése) 0 Március 0 Március

2 0 Március 0 Március Veriiációs nlízis Bevezetés Atsszimiláció: becslés (légör vlós állpt) Milen igéneet támsztun? Elırejelzés jó ezeti eltételbıl Elırejelzés rssz ezeti eltételbıl 0 Március sználjun el minen renelezésünre álló inrmációt (megigelése, mell, tuás légörrıl) Optimálisn ötvözzü ıet (minimális becslési hib) Vegü igelembe elhsznált inrmáció hibáját (ezeet is cs becsülni tuju) A becslés legen összhngbn E-renszerrel (inmii nzisztenci) 0 Március

3 Elméleti lp Egszerő eset: ELMÉLEI ALAOK 0 D: egetlen térbeli pnt váltzó: becslést un t -re ( vlós állptr) renelezésünre álln és megigelése ε és ε hibávl terhelve t t ε ε ( )? ˆ t, 0 Március 0 Március Elméleti lp Elméleti lp Feltesszü, hg: mérése trzíttln (nincs szisztemtius hib) ( ε ) E( ε ) 0 E mérési hibá szórásnégzete ismert Eε ( ) Eε öbb megözelítés létezi: ( )?,. Legisebb négzete mószere. Mimum lielih mószer mérési hibá rreláltln ( εε ) 0 E 0 Március 0 Március

4 Elméleti lp Elméleti lp. Megözelítés: legisebb négzete mószere t ε t ε Szeretnén, hg:?? ( ) 0 becslés trzíttln legen E t becslés négzetes hibáj minimális legen 0 Március ( ) ) min E t. Megözelítés: legisebb négzete mószere ( ) Felt: min ( ) t) E( t ε t ε t) E( ) ) ε ε E( ε) ) ( ) E( εε ) ( ) E( ε) ) ( ) min szerinti erivált 0 0 Március Elméleti lp Elméleti lp. Megözelítés: legisebb négzete mószere A becslés: A becslés megbízhtóság: 0 Március p i i Minen megigelés növeli megbízhtóságt!. Megözelítés: Mimum-lielih mószer A meterlógii váltzó jól mellezhetı Nrmális elszlású vlószínőségi váltzóént Emléeztetı: N m (, ) ep ( m) 0 Március

5 Elméleti lp Elméleti lp. Megözelítés: Mimum-lielih mószer. Mimum-lielih mószer Mint:, értéeént () eresem: ep ( ) ep nrmális elszlású megigelése A vlós állpt ( t ) becslését megigelése várhtó ( ) ( ) Becslés: mint egüttes sőrőségv-éne szerinti mimum: m ( ) ( ) m ep Π ( ) ( ) 0 Március 0 Március Elméleti lp Elméleti lp. Mimum-lielih mószer min ( ) ( ) p i 0 Március i Ezt ptu legisebb négzete mószerével is! Összegllás: Nrmális elszlású hibá esetén Legisebb Négzete mószere és Mimum-Lielih mószer evivlense Optimális Interpláció (OI) (lineáris regresszió) p i i i? i 0 Március Vriációs mószer (VAR) (veszteség üggvén) J ( ) p i i i rgminj? (Itertív minimum eresı lgritmus)

6 Elméleti lp él: 5, 0, ADAASSZIMILÁCIÓ A GYAKORLABAN 6, Március 0 Március Atsszimiláció grltbn Atsszimiláció grltbn A Numerius melle eg 3D rácsn ljá meg E renszert. A rácsn értelmezett meterlógii váltzó egüttese z ún. állptvetr (tvábbibn ) mel mi melle esetében n~0 7 ngságrenő. Atsszimiláció: z állptvetr megás ezeti iıpillntbn (nlízis), úg, hg z minél özelebb legen vlósághz Inrmációin: megigelése/mérése bcgrun/irst guess (háttér) légör inmiáján ismerete Bcgrun/irst guess: mell áltl elırejelzett állptvetr térben szbáls rács özvetlenül mell váltzó imenzió: n~0 7 Megigelése: iıben renszeres számszerő mérése térben szbáltln rács összetett összeüggés (lehet) mért és mell váltzó özött imenzió: p~0 5 0 Március 0 Március

7 Atsszimiláció grltbn Atsszimiláció grltbn Megigelése Felszíni megigelése Ráiószná 0 Március 0 Március Atsszimiláció grltbn Atsszimiláció grltbn Felszíni megigelése Ráiószná Repülıgépes megigelése 0 Március 0 Március

8 Atsszimiláció grltbn Mőhls megigelése Atsszimiláció grltbn Mőhls megigelése 0 Március 0 Március Atsszimiláció grltbn Atsszimiláció grltbn Mőhls megigelése öbb imenziós elírás vlóság: t vlós állpt z nlízis iıpntjábn nlízis: z tsszimiláció ereméne ( ezeti eltétel) háttér mezı: z nlízis iıpntjár vntzó elırejelzés megigelése: z nlízis iıpntjábn tuális megigelése t, és n~0 7 imenziós vetr, p~0 5 imenziós vetr Megigelési perátr: : (nem lineáris) A megigelési perátr linerizáltj: ( np mátri) 0 Március Win priler, Rr, GS, stb.. A megigelési perátr jungáltj: ( np mátri) 0 Március

9 0 Március Atsszimiláció grltbn öbb imenziós elírás t ε ε t t ε nlízis hib: háttér hib: megigelési hib: n~0 7 n~0 7 p~0 5 E ε ε E ε ε E ε ε hib vrinci mátri: nlízis háttér megigelés (n n) (n n) (p p) 0 Március Atsszimiláció grltbn öbb imenziós elírás: Vriációs veszteségüggvén (Mimum-Lielih) J K K öbb imenziós elírás: Optimális Interpláció (legisebb négzete mószere) Áll: Az evivlenci több imenzióbn is igz e cs lineáris esetén! J J b 0 Március Atsszimiláció grltbn Vriációs veszteségüggvén J J A bcgrun-tól vett eltérésre (inrementumr) írju el zz linerizálju: O 0 Március Atsszimiláció grltbn Vriációs veszteségüggvén griense: J A A A A A B AB J 0 K Áll

10 0 Március Atsszimiláció grltbn Áll: Biz: 3DVAR és z OI mószere evivlense e cs lineáris megigelési perátr esetén! 0 Március Atsszimiláció grltbn Best Liner Unbise Estimtin (BLUE): K I K K Az nlízis hib minig isebb háttér hibánál, zz megigelése minig jvítn háttérmezın! b b b 0 Március Atsszimiláció grltbn ezeti eltétel Atsszimilációs cilus 0 Március Atsszimiláció grltbn Atsszimilációs cilus: : M M Mell perátr (prpgátr): K K K K

11 Atsszimiláció grltbn Atsszimiláció grltbn Vriációs sszimiláció: minimum eresés J J teszt J új J ( ) ( ) iteráció J 0 Vriációs sszimiláció: minimum eresés ( 0) J J ( i ) J 0 Március 0 Március Atsszimiláció grltbn Atsszimiláció grltbn Vriációs sszimiláció: minimum eresés Vriációs sszimiláció: minimum eresés Mit vesztün z inrementális rmulávl ( linerizálásávl)? nem z ereeti J -t minimlizálju ( ) enti pnt mitt nnál ngbb hibát vétün minél inább nem lineáris z örül l. özel lineáris J() J() J() l. erıssen nem lineáris J() 0 Március 0 Március

12 Atsszimiláció grltbn Atsszimiláció grltbn Vriációs sszimiláció: minimum eresés Az inrementális rmul jvítás: ülsı iteráció (uter lps) Outer lp ( ) ( ) J J Inner lp Észrevétele: VAR mószer nem öveteli meg, hg megigelési perátr lineáris legen Outer lp ( ) ( ) ( ) J J Inner lp l. nem lineáris megigelési perátrr: mőhls sugárzási értée, rr reletivitás, GS 3 Outer lp 3 ( 3 ) Március ( ) ( ) J 3 J 3 Inner lp 3 3 Az új megigelési techniá elhsználás megöveteli VAR mószer llmzását VAR mószer glbális míg z OI lális 3 0 Március

Ensemble Transform Kalman Filter. Ensemble Transform Kalman Filter. elırejelz. rejelzés. a numerikus prognosztikában. Numerikus idıjárás s elırejelz

Ensemble Transform Kalman Filter. Ensemble Transform Kalman Filter. elırejelz. rejelzés. a numerikus prognosztikában. Numerikus idıjárás s elırejelz Ensemble rnsrm Klmn Filer numerius idıjárás elırejelz ben Országs Meerlógii Szlgál Numerius Mdellezı és Éghjl-dinmii Oszály Admcse Edi dmcse.e@me.hu Kálmán Rudl Emil 930- Kálmán Rudl óber 7-én vee á legrngsbb

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Emelt szintő érettségi tételek. 10. tétel Számsorozatok Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.

Részletesebben

Á É Í ő ő ő ó ő ó ő í ü ó í ó í Í ő í ó í í í ö ő ő ű í ő ö ő ő ó ó ő í ő ő ó í ő ó ő í ü ü ó ú ő í ő ó ö ö ő ü ö ő í ő ő í í ő ö ő ü ö ő ő ő í ó ő ő í ő í ő ü ü ö ö ü ó ő í í Í í í Ó ö ö ő ő ó ö í ö ö

Részletesebben

ő ő ö ő ü ö ő ő ö Ö ő ü ő ő ő ö ő ü ő ö í ö ő ő ö ö ö ő ő ő ü ő ő ü í ő ő ö ő ü ő ö ő ü ö ő ü ö ő ü ü í Ő ü ö ö ö í Ő ü ö ő ö ö í ö ü í í ö í ő í ö ö ö ő ő ü ö ő ü ő ü ú í ü ö ő ö í ö í ö ö í őí ü í ü

Részletesebben

ú ő ú ú í ö ú ö ű ű ö ő í í Ú ó í ö í ő ő ü ű ö ő í ü ü ű ö ő ű ó í ö ö ü ú ö ö ő ó ü ú ő ű í ő ű í ü ö ú ó ő ü ő ü ö ö ő í ő ü ö ú ö ö ő í ü í ő ú ő í ö ö ú í í í ú ő í ö ú ő ő Á Á ó ö ú í ó ö ó ó őí

Részletesebben

ő ő ő ü É Á Á É ő ő ő ü í ő ű í í í í í í í í Í Í ű Í ü Í ű í ü í ő ő ü ő í í í ő ű í ő ő ü ő ő ü í ő í í ő ü í ő ő őí í í ő í ő í Ü ü í ő ü í í í ő í ő í ü ú í ő ü Í ő ő ő ő É Ó Ó É Í É í Í Í őí ő ő Ó

Részletesebben

ö ú Á ő ö í ő ú í ő ö Ö ő ü ö Ö ő í ő ü ő ő í ő ő ü ü í í ő ü ű í ö ú í ö ö Ö ü ű ő ő í ö ő ű ő ö ő ü ö í Í ü ö ő ö ö ő í ű ö ö ű ö ü ö ő í ú ű ű ű ö ő ü ő ü ö ő í í í ő ö í ő Í Ö Ö Ü ő ő í ő Ő ő ő í ü

Részletesebben

ü í í ű ű í ü ü í ő ú ü í ő ú í í ü í ü í ő ü í í ő ő ü í í ú ú ő ő ü ú ü ű ű í ű í ü ű ú ü í ü í ő ő ű ő ő í ű í ő í ő ü ő ű ű í ű ú ű í ú í ő ü ú ú ő ő í ü ú ü ő ő ő ü í ú ő ő í í ő ú ú ő ú ő ü ő í ő

Részletesebben

Á í Á í ó í í ó ö ö ő ő ő ö í í ó É Á í ó í ó ó ü ű ö í ó í ő ö ö ö ü í ó ü ü ü ö í í ő í ő í í Á í í í í ő ő í í ú í ó ö ö ö í ó í í ő ó í ű ö ö ó í ö ő ö ú ö ö ű ő ő ő ö ö ó í ő ó í ű ű ö ő ű ó í ű ő

Részletesebben

ó ü Á Ó Ó ó ó ú ó ú í ó ű ü í ú í ő í ú í ó ö ó ó ő ő ö É í ú í ű ő ű í ü í ó ö í í í ő ó ö í ú ó ó ö í ó í ó í ü í ó í í í ű í ú ű í ö ő í í í í í í ő ö ö í í í í í í ó ö ő í ü ü ö í í ó ó ó í ö ű ű ó

Részletesebben

ő Ú Ú ú ó ú Ó í ő ő ű ú ó ő ú ü ü ő ő ő ó í ó ü ó ő í ű ő ű í ó ü ű ő Ü ő ő ű ő ó í í ű ű ó í ű Ü ó ű Ü ű ű ó Ü ő ű ő í ó ó í ó ó Ü ó ó ó ó í ő ú ű ó ó ő ő ő ő ó í ő ó ó ó í ó í Ü ő ó ú í ó ő ü ú ő ű í

Részletesebben

Ü Á í É Ü Ó Ü Ü ú ú Ó í Ű Ó ö ű Ö Ó Ó Ú ű Ü í ö Ó Ó ö Ü ü ő Ó Ó í í Ú í Ú Ü Ö ő Ő ő ú Ó Ó ü ö ö ö ö ú í ő ő ő ú í ü ő ő ő ő ő Á Ő ú í í ő ü ö ö ö ü ü ü ő í ő ű ö Í ú ü ú ú ö ü ö ő ü ü Ó Ó ö ö ö ú ő ő

Részletesebben

ű ö ö ő ő ő ö í ő ö ö Ö Ö ő ő ö ő ö ű í ő ö ö í ő ö ü í ő ö í ű ő ö ő ő ő ö ő ü ü Í ő ö í ő í ö ö í ö ö ű ö ő ő ő ő í ü ö ö ő ü ő ő ő ö ő í ö ö ö í ő ű ő í í ö ü í ő ő ö ű Á í ö ö ö ü í ő ö ü ő ő ö ő í

Részletesebben

í ő í ü í í í ú ű í í í ü í ő í Í í í ő í ő Í ü Ó ő í ő í Ü í í í ú ű í í í í Ó í Ö ő ü í ü Ö Ö ő í ő í ü ő í ő ü ő ü ü í í ü í ü í ő ő őí í í í í ü í ő ú ű í í ő ü ü í Ö Ú ú í Á É Ö Ö ű Ü í Ö í Ö ő ő

Részletesebben

ő ö ő ő ö ő ő ö ö ő ő ü ő ö ő í ő í ö ő ö ö ü í ő ö ö ü ö Í ő ö ő ú ő ü ü ő ő ű í ö ö í ü Ö ő í ö ő ő ö ű ö ű ö ö ü ő ö ő ő ö ö ű ú ö ű ő ő í ő í ő ú ő ő ö í ő ú í ő ő ö ű í ö ő ú í ü ö ű í ú ö ű í ő í

Részletesebben

ó ó É Á É ü ű ő ő ó í ő ő ő í ó ó ő í ő ő ő Í ő ő í ü ü Í í ő ó í ő ő ó ű ü ő ó í ő ó ó í ó í ű ő ő ő í í ő ő ó ő í ü ű ó í ő í ú ő ó ő ű í ő ő ú ő ó í ő ű ó í ő ő í ő ó í ő ő Í ű í ó ő ó ő ő í ű ó í ó

Részletesebben

Á É É Í Ü É É Á Ú É É É É Í Ü Ü ő É Ü Ü Ú ő í í ő í ü Á í Í ü ű í í í í í ő ö í ü í ú í í í ő ü ő Ü í ö ő ű ó ű ü ú í í ú ő ő ő í ó ő ő ő í ő í í í ő í ő ű ő ő ö ü ő ő ú í Ü ő ü Í ő ö ö í ó ó ó í í í ú

Részletesebben

Á Ü Ü ó É ű ö ő Á ű ö ó í Á í ó ó ö ő Á ö ó í ó ö í ó ó ó Á í ó ő ő ü ó í ó ü ü ő ó í ü ű ö ó í ó ő ű ö ó ű ö ő ő ó ű ö ó ű ö ő ű ő í ü ó í í ó ó ó ü í í ő í ö ő ü ü ü ü ó ó ö ő ö ö ü ü ő ő ű ö í Á ű ö

Részletesebben

ö Ö ő ö ó ö Ö ő ö ó ö ő ő ó ó ö ö ó ó ó ö ö Á ó ö ű ő ű ő ő ö Ö ö É ő ő Á ű ő ú Ú ő ó ö ő ó ö ú ő ő ó ó ó ó ő ó ö ö ö ö ö ú ő ö ö ű ó ó ö ő ó ó ó ő ő ó ó ó ö ő ó ó ó ó ö ő ó ö ő ő ö Á ő ó ó ó ó ó ö ő ő

Részletesebben

ö ő ü Ö ö ő ö ó ö Ö ő ü ö ő ő ő ö ö ö ö ő í ő ő ő í ő ö ü ö ö ü ő ó ö ü ő Ö ö ü ó í ő ő ő ő ő ő ő í ő ö ó ö ó ó ó í í í ó ő ő ö ő ő ú ó í ö ü í í ő í ő ő ó ó ü í ő ő ö ű ó ó ö ő ő í ó í í ő ú ö ö í í ü

Részletesebben

Ü ű ő Á Í ü ű ő ő ő ő ó ó ü ü ő ű í ő ó ü ű ő ó ó ü í ó ó ő ő ő ű ő í í í í ó ő ú ó í ű ü í ü ő ő í í ó ó ó ó ő ő ő ő ü ő í ő ó ó ő ő ó ó ü ú ó ő ő í ó ü ó í ő ó ü ű ő í ő ü ő í ő í ő ő ó ü í ü Í í ü í

Részletesebben

ó ó ó ű ó í ő í Á ő ű ő ő í í ű ó ú ő ű ő ő ú ő ő ó í ő ű í ű ű ő ó ó ő ő ó ó í ű ú ű í ű ű ű í ó í ó ó í ő ó ű ű í ő ű ő ó ű ű í ű í í í ó ű ő í í ó ű ő ő í ű ű ű í ú í ó ó í ű ó ú ű ó ő ó ő ő ó ó ó ó

Részletesebben

ö í ü ü ö ö í ú í ö ö ű ö ö ö í ö ö í í ü ö ö ü í ö ö ú ö ö ö ö í í í ü ö ű í í ü ö ö í ö ö í ú ü ö ü ö ö í ö í ü í ö ü ö ö ű ö ö ü ö í ö ö ö ö ü ö ű ü í ö ö ű í í í ú ű ö í ö ö í í ö ö ö ö ü É í ö ű ö

Részletesebben

Ú Ö Ú Ü ú í í ú í ú í í ú ő í í ő ú í ű í ő í ő ő ő ő í í Ö í Ü í Ö í Í Í í Ö Ö Í ő Ö Ö Ö ú í ű í í ő ő ő ő í ő Ő Ó Ö Ö í Ú Ú Ö Ú Ö í í Í í ő ú Í ű í í ő ő ő ő í í í í ű í ű í í í ű ű í í Í í í Ó Ó ú Ü

Részletesebben

Í Ö ő ő ó Í ü ü ü ó ű ő ó ű ű ü ü ü ó ó ü ó ó ü ú ó ó ü ó ó ó É ó Ö Í ó ü ó ű ó ó ü ő ó ü ü ó Í ó Í ó ó ó ó ó ű ó É ó ű ő ó ő ó ű Í ó ó ő ü ő ó ó Í ő ó ő ő Á Ö ő ő ü ő ú ó ú ü ő ü ő ó Í ú ő ő ű Á ü ü ó

Részletesebben

ú í ő ö ö ö ö ö ő í ö ö ö ő ő ö ő ö ú ö ő ö ú í ő ö ö ő őí ü ú ő ü ő ö ü í ő ü ü í ő ö ő ü í ő ö ö í ű ú ö ö ö ő ő í ő Ű ő ü ő ő ö ö ő í í ö ö ü ö ű ö ö ö ü ő ö ö ü Á í ő ö í ü ő ő ü ö ű ö ö ö ű ö ö ö

Részletesebben

Ó ó ű ő ű ő Ó ő É ő ő ó ű ő ó ó ű ü í ü ű í ü ő ő ő ű ó ő ó ü ő ő ő ó í í ő ó ű ő ó ű ő ó ü ó ő ő ó ő í ü ő ó ó Á ó ő ó í ű ú ő ő ó ő ó ü ő ő Á í ó ó í ő í ó ő ő ő É ő ü ó ü ő í Á ó ó ő ü ő ó ű ű ó í ü

Részletesebben

ű í í ű í őí ő ű í í ő í í í í ő í í í ő ő ő ő í í í ú ő í ő ú ő í ú í í í ű í Á í ő ő í ő í ő ű ő ű í ő ú í ú í ű ő ű ú í í í ő í ő í ő ő ű ú ő í ő ő ő ű ő Ö ő ű ő í ő ú í ő í í ú ú É ő Ö ú ő ú ú Ő ő

Részletesebben

ü ű í Í íí ü ü ű í ú Ó í Ó ú ő ü ü őí ű í í ő Í ő ő ü í Ő í ő ü ü ü í ü ú ő ú ü ő í í ú ú í í ű í ő í ő ű Ü ü Ü ü ü ü ú Í í í ű ü ő ü í ű ő ü ü ü í ü ü Í í ü ü ű í í ő ő ü ü ü ü ü ő ő ű Í ü ü ü ú ú ü ü

Részletesebben

Á Á Ü Ö Ú Á É í Ú Á Ö Á Ü É ó ü ó ó ó őí ő ű í ó í ő ü ő ú ó í ő ő ő í ü ü í í ő ú ő ú ő ő ó í ú í ü ő ő ú ő ü í ó ó ü ó ő ü ő í ú ú ő ő ú ő ő ü ú ő ó í ü ű í í í ü ú ó ő ő ő ő ő ő ű í ó í í ó ő í ó ő

Részletesebben

Á Á Á í ő Ö Ö Á Á Ó Ö Á Ő ő ü ő ő ő Ö Í ő ő ő ő Ö ú Ö ő í ő Ö ü ű ú ő í Ü Ö Í Ö Ö ő ő ű Ő ű ő ü ű ő í ő í ő ü Ö Ü Ö ő Ö ő Ő ő í ű É Ű Ö ő ő í ő ü ő í ű ü ő ő ü ő Ü ő ő ü ű ő ú ü í ő ü ü Ö ő í Ü ő í ü ő

Részletesebben

Ö Ő Ő Ő Ő Ö Ö Ő Í Í Á Ö Ő Ö Ú ŐÍ Ú Í Ő É É Í Í Í É Ő ö Ú Í Ő ö É É É Í É Ő Í Í Í Í ö Í Í Ö Í Ö É Í É É É Í Í ö É Ö Ö Í Í É É Ő Í É Ő Ö É ÖÍ Í Í Ő Í Í Ö Í É Ő Í Í ü É É É ö É É É ö Í É ö Í Ő Ő Ö É É Í Í

Részletesebben

Ú Ó í ó ú ú ó ő ü ó ő ó ó ü ú ó ő ü í ó ó ó ő ó ő ő ú ó ú ó ú ú ó ú ó ú ó ó ó ó őí ő ú í ó í ő ő ü ő ú ó ó ó ó ó í ő ő í ú ü ó í ő ő ű ü ű ü ó í ü ő ű ü ü ű ő ő ó ú ü ó ú ó ú í ü ő ő ő ó í ó ó ő ű ó ő

Részletesebben

ö ű é ö é é é é é ő Ö é ö é í ű ö é é é é é é é ö é é é ű ö é í ű ö é é í é í é é é é é é ő ö é é é ő é ö ő ő Ü ő ö é Ü ő é í é ö ö é é Ü ő é Ü é ö ű é í ö é é ü ű ö é é ö Ü ö ű é é Ü Ü ö í é ö é ö ű é

Részletesebben

ö Ö ö ő ö ü ö Ö ő í ü ő ü Ö ő ő ő ő ő ő ó ő ő ü ő ő Á í ó ő ö ö ü ö ö ö í ü ü ő ö ö ő ő ö í ő ő ő ő ü í ő ő ő ü ő ü í ő ö ő ö ő Á ó ü ó ö í ó ö Ö ö ő Ö ű ö ő ö í ó ó ó ö í í ó í ü ő ő í ó í í í í ö ő ü

Részletesebben

É É ó í í ö ö Í ö ó ó ó ó ó Á ö ú í ó Ö ó ö ö ó ó ö ö í ö É ö Á ú Á ö ú ö ú ű ú ú í ö ö í Ü í í Ó ö ú Ü í Ü í í Ú ö ö í Í ü Ó ö Ü ú ü ü í Ó í ö í ó Ó ó ö ó ö ó ű ö ú Í í ü ö í í Í í ü í ó Ó í ó Ó Ó Í Ó

Részletesebben

í ő ü ö ú ü ö í ő ü í ó í í ü í ó ő ű ö ö ó ü ö Á ü ö ű ő ö ü ö ű ü ü ó ő ő ö ö ű ő Í ö ő ö ü ü ö ő ó ő ő ő ó ú ó ü Í ó ó ó ó ó ö ű ó őí ő ü ö ú ű í ő ő ő ö ő ö ú ű í ó ő ö ő ö ú ű í ó ü ó ő ö ö ö í í

Részletesebben

Ó É É ö É ö É Ó ó Í ő í ó í Ó í í Ó í Ö í ó Ó Í í Ó ő í í ó Ö í ö í ó í ó ö í Í ö ö í Ő ó ó ó Í í ó ö ó í ö í í ó ó í ó Ö ó ó í Ó Í Í ó í í í í ö í óí óí í í í ö íí íí ó Ő í Ó í Ő Ö í ó í í í ó í í Ó í

Részletesebben

Ó Ü ö ö ö ö ö ű ö ü ü ö í ö ö Ü ö í ű ö í ö Ö í ü ö ö ö ü ü ü í ú ö ú ú í ö ö í ö ö ö ö í í ú ö í ö í ö ü ú í í í í ú í ü ö ö í í í ö í ú í í í í ö ö ö ö í ú ö ö ü ö ö ö ö ö ö Ö ú ü í ü ü ü ö ö í ü í ö

Részletesebben

Ü Íí É Ü Í É É Á ü ü ű ő í ó ó ó ő ó ó Í É É É É Á É ó ő í ó í ü ó ó ő ő í ű í í ó í í ő ő í ó ő ó í ü í ő ü ő í í ő ő ú ű ü ó í ő ő ó ú ó ó ő í ü ő ű ő ő ú ő í í ő ü í ő É É É Á Ó É Á Á ó í ő ó ó ó ü

Részletesebben

Ö ó Ö í ó ú ő ö ó Ö ő ü ú ü ő ü ő ő ő ö Ö ö ó ő ü Ö ö ó ó ó í ő ő ó Ö ö ö ő ó í ő ó ó ö Ö ő ú ö ő ó ó ó ő ú í ö ó ú ö ü ü í í Ö ü ü ö ő í ó ő í ö ő ü ö ő ö ü ö í ö ö ö ú í ö ő ö ő ó ö Ö ü í ö í ő ő ű ö

Részletesebben

ő ú Á Á É ö ő ő ő É í ő ő ő ő ö ö ő ö ö í ő ő í í ő ű ö ű ő ű í ő í ő ö ü ü í ű í ő ü ö ü í ü ü í ő ő í ű í ő ö Á ö ö í í ő ő ő í ő ö ő ű ú ö ü ö ö ö ö ö ő ü ö ö ő í ü ö ú ö ü ő í ö ö ő ő ő í ö Á ö í ű

Részletesebben

ö ő ü É Ü É ö ö ő ö Ö ő ü ó Í ö ő ő ő ö ö ö ő ó ó ö í ö ó ö ő ö ő Á ö ó ü ő ő ó ö ő Í í ö ű ó ö ű í ó ö ő Í ü ö ö ó ü ő ü ü ó ü ő ó ü ö ü ö ü í ö í ó ő ó ó ö ü ö ő ö ü ú ö ü í ó í í í ö ü ő ö ö ő í ő ö

Részletesebben

ö ü ö ú ü Ó ö ú ü ö ó ö ü ö ö ö ö ö í í ó ó ó ö ú ó ö ó ö ö ö ö í ö ú ó ö ó ü ö í ó ű ö ó í ó ö ü ü ű ö í ú í ó ó ú í ó ö ü ö ö í ö ö ö í í ü ó Ó ö ö ó í í ö ö ó ó ö ó í í ó ö í í í ö í ü í ű ö ó í ö í

Részletesebben

Ü Ú ö ö ö ö ö ö ö Ó Ó Ó ö Í Ó ö Ó ö ö Ó ö ö Ó ű Ó ő Ó Í ű ö Ó ú ő Í ö Ó ű ö ö Ó ő ő ő ű Í ő ö ö ű Ű ú ő ö ö ú ö ű ő Í ő Ó Í Ú ő Ó ő ö ő ö ü Ó Ó ö Í Ú ő ű ű ő ő Ó Í ú Ú ú ú Ó Ó Ó Ó ö ú ö ü ö Í ö Ü ö Í Í

Részletesebben

ö ő ő ő ó ő ő ü ó ü ö ö ó í ö ö ü ő ű ö ő ő ö ő Ó ő ó ó ü ű ö ó í ö ő ő ü í ú ö ú ü ó ó ő í ú ó ö ö ü í ő ő í ő í í ó ő ő í ő ű ő ó ü ű ő í ő ü ő í ő í ű ő í ű ő ű ű ű ó ü ő í ü ő ó ó ó ó í ő ő ö ó ó ü

Részletesebben

ö ó ü ö ö ű ö ű ű ó ö ó ö Ö ü ö Ö Ű ö ű ű ó ö ó Ö Ö ó ó ó ö ö ö ó ó ó ö ó ö ö ó ü ö ö ü ö ű ö ű ö ö ö ö ö ü Ó ö ű ó ö Ö Ö ö ó ö ö ó ó ö ö ü ö ű ö ű ö ö ö ö ö ó ö ö ö ü ö ű Ö ö ű ó ö ó ö ö ö ö ö ö ö ö ö

Részletesebben

í É É í É ő É ő ö É Á É Á Á Ó ö ő ő ö É ó ő ó ő ó ő ú ó ó ö ő ö ö ő ő ö í ő ő íí ö Ő É í ő ú ó ű ö í ó ő ú ó ű ú ő ő ő í ü ő ö ő ű ö í ő ü ő í ó ó ó ó Ü É Ü Ü ő ó í ő ó ó ó ő í ó ó ő ő í Á Á ő É É ő Í

Részletesebben

í ű ü ű ó í Ü ö ö ó ó í ü ü Í ú ő ő ő í ó ő í ő ó ó ú ő ó ó ö ő ó ö Ü ö ú ő ö ó ő ó ó ó ű ó ó ü Ü ó ó í ő ó í ő í ő ó őí ü ő ó ő ő í Í ö ő ó ö ő ő í ó Ü ö ö ő ó í ó ő ó ó í ö ü ö ő ö ü ő í Ü ő í ü ö ő

Részletesebben

É í Í Í ő ö í ű ö í í ö öí í ö ő ő ő ő ő ő í ő ő í í ő í ő ü í Ő ő Á Á É Á Ö Ö Á Á Á É Á É É Ö É É Á Ö ö Á Ő É Í É Á Ö Ö Á Ó ö ö ö í ö őí ő í ú ö ő ö ö ő ö ö Ö ő ő ő ő ő ő ő ö ő í ő ö ö ö ő í í ű ő ö ü

Részletesebben

ó ő ő í ó ó í í ő ó ő ő Á ü ó Á Á Á Á Ö Á É Ó ó Á É í É Á É É í ó É ó É ü É Á í í ő ó ü í ú í í ó ő ő ü ü ó ó ü ű ó ő ő ő í ű ő ú ő í í í ü ő ű ő í í ű ő ő í ő ó ő ő í ó í ő ü í ó ő ű ó ű ő ó őí ü í őí

Részletesebben

ó É ő ö ü ö ú ü ö ű ő ú ú ő í ö ü ü ó ó ö ű ü ő ö ö ö ö ő í ö íí ü ó í ó ö ő ő ü ó ö ű ü ó ö í ó ö ő ö ű ö í ú ó í ü ő ú ő í ó ú í ó ö ó ö ö ű ö ó ö ó ö ő ö í ó ő ő ú ő ő ű ú ó ö ú ó Ó ó ú ü í ó ő í í

Részletesebben

Ü Ú ő É É í ü íí ő ö ö Ö Á É ő ö ö ö ö ő ú ő ó ö í ó ő ú ö ó í í ó ö ö ö ü ö ó ö ö ő ö ő í ú ő ü ö ö ö ö ó ó í ű ő ö ö í ö ö ő ö ö ö ö ö ö ű ö ö ű ő ö ő í ö ő ú ö ö ö ó ű ö ő ű ö ő ú ü ő í ü ü ü ü ő ó

Részletesebben

Ü Í ö ő Í í ö ű ő ú ó ő í ó Ö í ü ő ó ó ő í í ö ö ő í ó ö í Í ú í ő Á ő ö ő ő ö ö ó ö ö Í ő í ó í ő ö ú ö ö ő í ö ú í ó ö ö ő í í ő ő ő ő ö ő í ő ő Ó í ü ú ú ő í ö ö ö ő ü ű ö í ő ö ó í ő ő ú í ó ő í ó

Részletesebben

Á Á É ö ú Ö ó ú ó ó É ó ó ö öí ú Ö ö ú ú ó ü ö Í ó ö ú Í ö ó ó Ú Ö ö Ö ö ú ö Ó ú ú ú ö ó Í ó É ú ú ü ö ö ó ü ö ó ü ö ö ű ó ó ó ö ö ö ű ú Á ó ö ö ü ó ó ó ó ó ö ű ö ö Á ó ö Á ó ö ó ó Á Ö Í ó ü ű ó ó ó ó

Részletesebben

ö Ö ö Ö ő ü ö ö ő ö Ö ő í ó ó ó ö ö ő ő ő ö ö Á ü ö ö ü ö ö ü ő ü ű í ő ü ó ő ó ö ó ő ü ü í ő ö ö ö ö í ö ő í ő ö í ő ó ö ü ö ű ö ü ő ó ó ö ő ö í ö í ö ü ö ő ö í í í ó ö ö ő í ő í ö ő ű ö í ő ő í ó ö í

Részletesebben

ü Í Á É ö ő Í í ö ű ő ú ó í ő í í Í í ű Í ő ü ő ó í í ö ö í í ő í ó ö í ó Í ú í Í ő Á ő ö ő ő ő ö ü ó ö ö ő í ó í ő ö ö ö ő í ö ü ú í ó ö ö ő í í ő ő ő ő ö ő í ő ő ö í ü ő í ö ö ö ő ü ű ö í ő ó í ő ő ú

Részletesebben

í Ó ú Ö í ó ó ó í ú ő ó ű ö ö ő ó ó ö ó ó ó ö ö ú ó ó ö í ő ó ű ö Ú ő ű í í ő ű ű ö í ű í Á ó í ó ú Ö ó í í ó í í í í ú ó í ű í ú í ű ö ó í í Í ű Ó ő ő ű ó ö ö ű í í ö ö ö ö ő ó ó ó í ú í ő í í í ú ó ó

Részletesebben

Ü ő ö ő í ö Ö ó ó ö Í ó ő ő ő Á Ú í í ő ú ó ö ü ő ó ő ó ő ó ü ö ö ö Ö ő ö ő ő ő ö ö í í ú ú í ü ö í ó í É ö É í ő ö ő ő Á Ú í í ő ő ü í ö ö ő í ó í ő ó í ő ő ö Ő É Á ő í ú í í í ö ö ő ő ó ő í ó ő ó ő í

Részletesebben

ő ő ő ő Í Ó Á Ó Á Ó Ő Ü ű ő ő ó Á ő ú Ö Ó Á Á ő í ű ó ó ő ó ó ó ü í ű Ö Á ő őí í ő ő í ő í ü ó ő ő ó ő ő ő ő ő ő ő ő Ö ő í ű ő ő í ű ó ó Ö ű ő ő í ő ü í ű ó ó ó ő í ő ő Ü ű ó ó ó ő ő ő ó ő ó ő ő ó ó ő

Részletesebben

Á Ő í ö ő ő ő ő ő ő ő ó ó ő ó ő ő ó ő ö í í ő ő ő ö ő ó ő ő ő ő ő ö ö ő ő ő ó í í ő ó ó ő ő ő í ó ó ő í ó ű ő ó ö ő ő őí ő őí ő ő ű í ó í ő ő í ő ő ó ű ö ő ó Á ó ő ö ö ö í ő ó ő őí ó ő í ö ő ö ő őí ó ő

Részletesebben

Á Á ö Á ö ö ö ő őí ö ö ö ő ö ö ő ü ö ó ő ő ö í Ö ö ő í ó ö ő ő ö ö ö ő í í ó ó ö ö ő ó ő ö í ő ö ö ő ő ö ő ö ü ü Ö Ö Ö Ö ö ó ő í ő ő ő ö ö ő őí ő ő ö ö ú ö ő í ő í í ó ó ö ö í Á Á ó ö ó ö ó ö ő ö ö ó ö

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6 9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető

Részletesebben

1. Hibaszámítás Hibaforrások A gépi számok

1. Hibaszámítás Hibaforrások A gépi számok Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

A vezeték legmélyebb pontjának meghatározása

A vezeték legmélyebb pontjának meghatározása A ezeték legméle pontjánk megtározás Elődó: Htiois Alen E 58. Vándorgűlés Szeged,. szeptemer 5. Vízszintes és ferde felfüggesztés - ezeték legméle pontj m / > < B Trtlom. Lángöre és prol függének A C m

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

Kvadratikus alakok gyakorlás.

Kvadratikus alakok gyakorlás. Kvadratikus alakok gakorlás Kúpszeletek: Adott eg kvadratikus alak a következő formában: ax 2 + 2bx + c 2 + k 1 x + k 2 + d = 0, a, b, c, k 1, k 2, d R (1) Ezt felírhatjuk a x T A x + K x + d = 0 alakban,

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van.

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van. 19. tétel: Vektrk. Szkszk krdinátsíkn. Vektr: Iráníttt szksz, melnek állás, irán és hssz vn. Jele: v = AB Vektr bszlút értéke: A vektrt meghtárzó iráníttt szksz ngság. Jele: v = AB Vektrk kölcsönös helzete:

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

S ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1)

S ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1) INE o egye [ ] IR I [ ] ( : és < < < z tervllum egy elosztás Deíó: Az :[ ] IR üggvéyt l eoú sple- evezzü C ( l I l Iterpoláós sple- evezzü egy ( : [ ] IR üggvéyre ( ( egjegyzés: Cs terpoláós sple-l ogu

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

ü ű ű Á É É Á Á Ó ü ú Á É É ó ü ű É ó ó ü ü ó ó ü ű ü ú í ü ú í ü í ú ü ű óí í ü ü ű í ó ó ó ü ű ü ü ű ú í ó ü ó ü ű í ü ű ó í ü ű ü ű ü ű í ű ű ó ó í ü ű ü í ó í ó ó í ó ü í í í í ű ü í ó ó ó ú ó í ú

Részletesebben

ö ö í ü ü ő Í í Ü ő í ü ő ő ő ü ő ú ö í ü ő í ő ú ü ő ü ö ö ö Á Á Í Ü ö í ö í ő ű ü ő Á Ü ü í ö ő ü ő ü ő ő ü ő ü ő ű ő ö ő í í ö ő Á ő ő ő ö ú ű ő ü ő í ő ő ő ö ö ö ő ő ú ö ű í ö ő ú ű ű í ű í ö ű ú í

Részletesebben

ó ö ö é ő í ó ö ö í é ó ó í é é í é ó ó ó ő ó ö é ő í ó ö ö Í é ó ő í é é í é ú Ö é ö é é ő Ú ö é É ú é í ö ö ö ö ő ö é é é ő ó ó ó ó é Ő í ó ö ő é íő í ó ö í é ó ó Í í é í é í é ú ö é é é Ú í ö é ö é

Részletesebben

Meteorológiai Adatasszimiláció

Meteorológiai Adatasszimiláció Meteorológiai Adatasszimiláció 2017 November 17 összeállította: Bölöni Gergely Tartalom 1 2 3 4 Numerikus el rejelzés: a hidro-termodinamikai egyenletek (HTE) numerikus megoldása a HTE megoldása vegyes

Részletesebben

ő ő í í ó ó ó ú ő ő ő ú ő Í ű ö ő ő ó ó ü ú ó í ő Ö Ö ö ó ő ő í ó ó ó ó ö ú ó ó ű ő ó ó ú ó í ó ő ó ó ő É ó í í í í í ó í í ő ó ó ő ü É É Á Á É É ó ő ö ő ó í í Ó ő ő Í ő í ő ö ő ő ő ö ő í í ő ő ő ö ő ő

Részletesebben

ú ú ö ű ú Á Á Á ö ú ó ú ó ö ú ö ö ó ó ő ö ó ö ú ú ú ó Ó ő Ö ö ü ő ő Ö Ö ó Á ó Ó ó ö ó Á ú ú ö ű ü ű ö ö ü ű ö ö ö ó Ó ó ö Á ő ó ó ö ő ó ó ü Ú ö ó Ü ű ö Í ö Ö ö Ó ő ö ó ú í Ö ű ű ö ó ö Ü ö ö ö ö ö ü ű ö

Részletesebben

Ó ö ó í Á Á Ő ö ő í ő í ó Ó Ö Ó ü ő ő í ő í ő ő ő ő ü ő ó í ő ő ó ö ö ő ő ő ű ö í ő í ő ö ő ő ő í ö í ó ő Ó ö í ó ő ö ő ú í ő ó ő ő ö í ő ö ő ő ő ö ő ő ó ö í í ó í ó ő ő ő ő ó ö ő ő Ó ö í í ó ű ő ű ö ű

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

É ü ó Ö ő ü ó ó ó ó ó ó ü í í ő ó ó Ö Ö ü ű ó ő ú ü ü ő ó í ó ő ő ü ü ü ü ő ó ő ü ő ű í ő ő ő ó ó ű ű ó ő ó ő ó ő í ő ó ó ó ő ő ő ő ő ó ű ű ő í ü ü í ó ü ó ü í ő ü ő ó ü ő ó í í ő ő ő ü í ó ü í ő ő í ó

Részletesebben

ő Ö ő ú ő ó ó ő ú Ö ő ő ő Ő ő ő ő ő Ő Ö ő ő ő ó ő ő Ó ó ő ő í Ö í ó ó ő Ö ú ő ú í í Ö Ó í Ó í ő í í ő í ő ű Í í ő ű Ö í ő í í ó ó Ó ő őí ő ő őí í ő Ö ő ú ú í í ő ú í őí ó ó ő ó őí ő ú ú ő ú ó ő í ó ő ő

Részletesebben

ú í ó ú ó ó Ó ó ó ü í ó ó ó ó ö í ó ö ó ő ö í ö ö í ó ó ó ö ü ü ú ó ő ó ó ó ó ó ó ó í ő ő ö ü í ó í ó ó ó í ő ű ő ó ő ő őí ű ő ü ü ó í í ű ő ő ű ö ő ó ó ó í ű Ö í ő í ó í ú ő í ó ő í ő ó ó ö ű ű ő ü Ó

Részletesebben

ó ó í ú ó ó ő ö ü Ó ö ú ü ö ű ó ú í ö ü ő ö ö ö ü ő ó ő ü Í í ó ó ő ő ű ó ö ű ü ő ö ö ö ö ű ő í ő ö ű ó ü ó ó ü ó ó ó ö ö ű í ó ó ö í ö ú ó ó ö ő ü ö ű ó ú í ö ö í ő ö ú ü ö ő ő í ü ó ó ó ö í ó ő í ó í

Részletesebben

ó ö Ö ő ü ú ő ö ő ó ö ö ö ü ú Ö ö ó ő ö Ö ő ü Ó Ó Ó ö ö ő ő ő Ö ú ö ő ő ő ö ő ö ő ő ü ö ö ö ó ó í ó ü í ö í ö ó ő ö ú ö ó ü ö ú ö í ö í í ö ó í ö ö ő Í í ü ö ü ö í ö ő ü ő í í ú ö ü í ö í óö í ö ü Í í

Részletesebben

ü ú ú Ú ú ő ö ó Ö ö ü ö ú ő í ö ö ű ó őí ö ó ö ö í ú ú Ö ö ö ü ü ü ó í Ö Ö ü ú ö ű ú ö ö ö ö ő ü ő ü ü ő ó ó ú ó ű ú ü ő ó í ó ó í ö ö ö ö ú ő ú ö ő ű ö Í ö ö ő Ö ő í ü ű ö ő ö ű ű ü ó ö ő í ű ü í ü í

Részletesebben

ö ö ö ú ö ő ú Ö Ö ö ö í ő ő í ö ö ő í ö í Ö ú Ö Ö ü í ő ü í ő ö ő ö ö ő í ő ő ő ő Ö ö ö ö ö ö ü ö ü ö ő ö í ö ő ö ö ö ő í ő ü ő ő ú í ő Ö í ö ö ö ő úő í ö ő ö ő ö ö ő ö í Ö ö í í Ö ő ö ő ö ü ö í ő ö ö

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Á É í Á ö É Á Á í Á ő ő ő É ö Ö É ő ö ú í ö í ő ő ó ö ő ó ő ó ó í ő ő ó ö ő í ő ó Ó ó ú ö ő ó ö ö í ó ő ő ó ű ó ő ó ó ú í Ő ú í Ö ő ó í í ú ű ő ű í í ó ű ő í ú ö ó í ó í ó ó ű ó ű í ú ú ó ű ö ű í ó í ő

Részletesebben

Á ó ú Á Í Ú Ó Á É ö É Á ó ó ó ö ö ö ö ö ö ö ö ö ö ö ű ö í ó ú ö ö ű ö Á Á ó ú í ó ú ő ó Í ö ö É É Á Á Ö É Á ö ö ö í ö ö ö ö ö ö ó í ü ö ő ö ö ü ö ü ö Í ü ű ü ú ó ö ű ü ö ő ó í ó ű ö ő ó ö ö ü ó ó í ő ü

Részletesebben

Á Ő ö Ó Ö Ó ó ő ü ó ő ó Ó í í ú Ó ú ó ő í ó ó ó ü ö ü ö ü ö ö Ó ö ő Ó í ó ó ú í í ő ó í ö í Ü ö ő ö ü ó ü ö í Ó í ó í ú ö ő ő ő ő ö í ő ő ő ó ó Ó Ö ő í ó í í ú ő í í í ó ö ú í ó ó í ú í ü ő í ö ú ó í ö

Részletesebben

í í ő ő ü í í í őí ő ő í ű í ő ö ö ő ö ö í í í í í í í ő í ö ő ő í ö őí Í ő í ö ü ő í ő ő ő ő ő í ő ö ő í í í Í í í Í ú ö ú ő ő í ő í ő Í í í ú í í ő í í ö ö ő ö ö ú ő ö í ö í ú í ü í í ú ő í Í Ő ö ö ő

Részletesebben