Szénhidrogén ipari technológiák Szétválasztó eljárások, Desztilláció
|
|
- István Hegedűs
- 6 évvel ezelőtt
- Látták:
Átírás
1 Szénhidrogén ipari technológiák Szétválasztó eljárások, Desztilláció Rabi István A dokumentum nem sokszorosítható semmilyen formában az előadó írásos engedélye nélkül!
2 Agenda Bevezetés Desztilláció Kőolaj desztilláció
3 A Finomítás célja
4 Agenda Bevezetés Desztilláció Kőolaj desztilláció
5 Desztilláció A desztilláció lényege, hogy valamilyen cseppfolyós anyagot felmelegítünk annyira, hogy gáz halmazállapotú legyen, majd a gőzöket elvezetve, hűtéssel újra cseppfolyósítjuk. Mivel a desztilláció során az anyag szerkezetében kémiai változás nem következik be, csupán halmazállapot-változás, a desztilláció fizikai folyamat. A rektifikáció élesebb szétválasztást eredményez. Lényege, az egymással nem egyensúlyban lévő gőz- és folyadékfázis között kétirányú anyag átbocsátás és hőátvitel megy végbe, a fázisok hőmérséklete különböző és azok egymáshoz képest áramlásban vannak. A fázisok érintkezésekor a folyadékból nagyobb mértékben párolog el az alacsonyabb forráspontú komponens, így ennek koncentrációja a gőzfázisban nő. A gőzfázisból a magasabb forráspontú komponensek részlegesen kondenzálódnak és átmennek a folyadék fázisba.
6 Lepárlás alapelvei Lepárlással olyan elegyeket választunk szét amelynek minden komponense illékony, azaz minden komponensnek meghatározott, de egymástól eltérő gőznyomása van. A desztilláció a legolcsóbb és legjobb módja folyadék elegyek komponensekre történő szétválasztásának, kivéve ha: Az illékonyság a szétválasztandó komponensek között túl kicsi Ha kis mennyiségű magas forráspontú komponenst akarunk az alapanyagból kinyerni Ha az elegy nagyon korrozív, vagy sok lerakódásra hajlamos szennyezést tartalmaz.
7 Desztilláció főbb típusai munkafolyamat szerint Batch desztilláció (Dinamikus frakcionált desztilláció) Az üzemi (batch) desztilláció célja általában a folyadékelegyek több részre bontása, vagy tisztítása. start up: A kiforraló edényt megtöltjük és fűtjük. A gőzök a rektifikáló kolonnán felfelé haladnak és a kondenzátorban kondenzálódnak. Általában teljes refluxszal indítjuk a folyamatot. Ha a fejtermék minősége elérte a kívánt specifikációt az elvételt folyamatossá tesszük gyűjtőedényekbe, egy része a kondenzátumnak visszamegy a kolonnába mint reflux. Először az illékonyabb komponensek párolognak el. A kiforraló edényben a magasabb forráspontú komponensek dúsulnak fel. Folyamatos desztilláció A leggyakrabban alkalmazott ipari alkalmazás a vegyiparban és az olajiparban. A technológiával folyamatosan történik a betáplálás feldolgozása
8 Desztillációs kolonnák főbb berendezései Köpeny amiben a folyadék komponensek elválasztása történik Kolonna belső például Tálcák és/vagy Töltetek melyeket a komponensek elválasztása érdekében használunk Reboiler mely biztosítja az elpárologtatáshoz szükséges hőmennyiséget Kondenzátor melyben kondenzáltatjuk a kolonna tetején távozó gőzöket Reflux tartály a fejtermék lekondenzálása során keletkezett folyadék gyűjtése, reflux + fejtermék
9 Desztilláló kolonna működése A folyadékelegyet a betáplálási tányérra vezetjük be. A betáplálási tányér a kolonnát két részre osztja Felső Rektifikáló oszlop rész Alsó Sztrippelő oszlop rész. Középső Evaporátor tér
10 Desztilláló kolonna működése A betáplált folyadék lefelé folyik és a kolonna alsó részében a rebilerben gyűlik össze. A reboilerbe közölt hő a folyadék egy részét elpárologtatja. A vegyipari üzemek jelentős részében a hőközlés gőzzel történik. A finomítóban a hőforrás általában másik termékáram. Az elpárologtatott gőzt a kolonna alsó tálcája alá vezetik vissza. Az elvett folyadék a fenéktermék.
11 Desztilláló kolonna működése A gőz felfelé áramlik a kolonnában, a kolonna tetején lép ki, majd a kondenzátorban lehűl és lekondenzál. A lekondenzált folyadékot tartályban gyűjtik, melynek neve reflux tartály. A lekondenzált folyadék egy részét refluxként visszavezetik a kolonnába. A maradék rész fejtermékként kerül elvételre
12 Desztillációs kolonna részei Töltetes kolonna Tányéros kolonna
13 Desztillációs kolonna belső szerkezetek Kolonna belső szerkezet Tányérok Töltetek Szelepes Rendezetlen Buborék sapkás Rendezett Szita tányér Rács
14 Desztillációs tányér elemei
15 Kolonna belső szerkezet (tányérok) Buboréksapkás tányér Szelepes tányér Fix szelepes tányér Szita tányér
16 Nagy hatékonyságú tányérok Előnyök: Kisebb fajlagos energia felhasználás Jobb termékminőség Abszorpciónál az alacsonyabb oldószer mennyiség energia megtakarítást jelent az oldószer regenerálás során ULTRA-FRAC trays SUPERFRAC trays VGPlus Trays
17 Hagyományos és Nagyhatékonyságú tányér szerkezet összehasonlítása Előnyök összehasonlítva a hagyományos tányérszerkezettel: Nagyobb kapacitás: 30% Alacsonyabb nyomásesés: 20% Azonos vagy jobb anyagátadási képesség Egyenletesebb folyadék áramlás Egyenletesebb gőz eloszlás Jobb ellenálló képesség a szennyezőanyagok lerakódásával szemben
18 Töltetes desztillációs kolonna részei Köpeny Anyaga általában fém, de lehet nemfémes anyag is pl. műanyag, kerámiai. A köpeny szükség esetén belső borítást kaphat (pl. műanyag bevonat, zománcozás, stb.) Töltet első generációs töltetek: , Rasching gyűrű, Berl nyereg második generációs töltetek: , Pall gyűrű, Intalox nyereg harmadik generáció töltetek: 1970-től, az előzőekből kifejlesztett új típusok
19 A töltetek anyaga fém: ha nem korrozív a közeg nagyobb kapacitás és hatásfok széles geometriai skála nyomásálló az ár speciális igények esetén nagymértékben növekszik (pl. rozsdamentes acél 3-5x) kerámia: kis kapacitás mechanikailag nem ellenállók alkalmazási körülményei főként magas hőmérséklet, reaktív közeg a műanyag töltetek megjelenése óta felhasználásuk limitált műanyag: polipropilén 120 C-ig alkalmazható alacsony ár oxidáló atmoszférában degradálódik alacsony hőmérsékleten rideggé válik rossz nedvesítésű
20 Rendezetlen töltetek KERÁMIA ÉS FÉM RASCHIG-GYŰRŰ TÖLTETEK KERÁMIA TÖLTETEK (BERL- ÉS INTALOX- NYEREG) KÜLÖNBÖZŐ KIALAKÍTÁSÚ PALL-GYŰRŰK (HAGYOMÁNYOS ÉS HY-PAK TÖLTET) SUPER INTALOX- NYEREG ÉS MASPAC TÖLTET TELLERETT TÖLTET ÉS PALL-GYŰRŰ IMTP és FLEXIMAX töltetek
21 Töltettartók Feladatuk: a töltetréteg tartása a gáz és a folyadék akadálymentes áramlásának biztosítása
22 Töltet leszorítók Fajlagos tömegük: kg/m 2
23 Folyadékelosztók, újraelosztók Töltettípus Drótszövet FLEXIPACK és FLEXIPACK HC strukturált töltetek Ajánlott elosztási pontok száma (minimum) 60 pont/m 2 85 pont/m pont/m 2 205Y és nagyobb 1.6Y és 1.4Y/350Y INTALOX strukturált töltetek 1.5T és nagyobb 1T és kisebb IMTP rendezetlen töltet 25 és nagyobb 15 CMR rendezetlen töltet 1.5 és nagyobb 1 BX és CY típus 1Y és kisebb
24 A töltet hatékonyságára utaló jellemzők Hatékonyság növelésének módjai töltetfelület növelése (m 2 /m 3 ) gőz- és folyadékelosztás javítása nedvesítés javítása Rendezetlen töltet hatékonysági karakterisztikája átviteli egységmagasság (HTU: Height of transfer unit) egyenértékű tányérmagasság (HETP: Height equivalent to a theoretical plate ) HETP Gőz/folyadék terhelés
25 Folyadékelosztás minőségének hatása a hatékonyságra Rossz Nagyon rossz HETP Jó Kiváló Gőz/folyadék terhelés
26 Előnyök - hátrányok Eszköz Előny Hátrány Rendezett töltet Rendezetlen töltet Alacsonyabb nyomásesés Nagy gőz kapacitás Nagy hatékonyság Alacsony cseppelhordás Jó habzó képességű anyagok esetén Könnyen beépíthető Közepes nyomásesés Alacsony cseppelhordás Korrózió álló anyagból készíthető Jó szennyezett anyagok esetén Érzékeny szennyeződésre Érzékeny korrózióra Nagy folyadékterhelés esetén nem alkalmazható Alacsonyabb mechanikai szilárdság Nagy nyomás esetén nem alkalmazható Alacsonyabb hatásfok Nehéz eltávolítani Nagy teljesítményű tányér Rács Nagy folyadék kapacitás Közepes szennyezőanyag tűrő képesség Mechanikailag szilárd Alacsony axiális keveredés Kis nyomásesés Nagy szennyezőanyag tűrőképesség Nagy gőz és folyadék kapacitás Közepesen erős cseppelhordás Habzó anyag esetén nem alkalmas Alacsonyabb hatásfok mint a rendezett töltet Nehezebb beépíteni Nagy nyomásesés Nagyon alacsony hatásfok
27 Reboilerek Kettle típusú reboiler Thermoszifon reboiler (horizontal) Thermoszifon reboiler (vertical)
28 Agenda Bevezetés Desztilláció Kőolaj desztilláció
29 Kőolaj frakciók forráspont és szénatomszám szerinti megoszlása 0 C 145 C 185 C C Fűtőgáz Propán Butánok Benzin Könnyű frakciók (2-3) benzin Nehéz benzin Petróleum frakció Könnyű gázolaj C 1, C 2 C 3 C 4 C 5 C 6 C 7 C 10, C 11 C 9, C 11 C 13, C 14 C 13, C C C Nehéz gázolaj Vákuum gázolaj + párlatok Vákuum maradék C 20, C 25 C 20, C 25 C 50 C 40 C 50 + Forráspont, [ C]
30 Kőolaj desztilláció hagyományos előszeparátor előfrakcionáló sztrippelő
31 Vákuum desztilláció
32 Kőolaj desztillációs üzemek a Dunai finomítóban AV-1 AV-2 AV-3
33 AV üzemek főbb részegységei Előlepárló Benzin stabilizáló Hőcserélő sor 106 LPG Medium Naph-2 Spec. Naphtha Vacuum Vacuum gasoil Light POD 101 Medium Naph-1 Stab. Light naph. 102 Kerosene Light gasoil Heavy gasoil oc Medium POD Heavy POD-1 Heavy POD-2 RO (MOP) Slop Wax Feed 196 I-II Steam oc Steam Steam oc Reduced Crude oil Atm. residue Sómentesítő 107 Atmoszférikus kolonna 108 Vákuum kolonna Vac. residue
34 Hőcserélő sor A sómentesítő előtt a kőolajat felmelegítjük C-ra két párhuzamos előmelegítő soron. A sómentesítés után a kőolaj C-ra melegszik elő. Mialatt a kőolaj előmelegszik, a termékek és a cirkulációs refluxok lehűlnek. A jó hőátadás (tiszta hőcserélők) energetikai szempontból fontos
35 Sómentesítő Funkció: Nyersolaj só- és vízmentesítése Miért szükséges a sómentesítés: A rosszul működő sómentesítő közvetlen hatása van az atmoszférikus kolonna működésére A kemencékben és hőcserélőkben lerakódást okoz Korrózió a fejtermék vonal berendezéseiben (páracső, kondenzátor) Atmoszférikus maradék magas Na tartalmának hatása A lerakódás nő a vákuum kemencében Rövidebb ciklusidők a VB üzemben Katalizátor méreg a katalitikus krakkolási technológiáknál Lerakódás és korrózió a túlhevítő kazánok esetén A sómentesítés kulcsfontosságú előkészítő technológia a nyersolaj desztilláció és tovább feldolgozási technológiáknál!
36 Sómentesítő-2 A kőolajban található sók főként klorid formában találhatók: NaCl wt % MgCl wt % CaCl 2 10 wt % A sók ionizált vagy kristályos formában találhatók a kőolajban oldott vízben. A sók megfelelő mennyiségű víz hozzáadásával eltávolíthatók a sómentesítő berendezésben. Általánosan elfogadott szabály, hogy a fejkondenzátor vízének klorid tartalma nem haladhatja meg a 10 ppm-et, különben súlyos korrózió léphet fel.
37 Sómentesítő Két fokozatú sómentesítő működik az AV üzemekben A kőolaj átlagos sótartalma: ppm A sótartalom két fokozatban csökken 4 ppm alá Sómentesített kőolaj Kőolaj Mosó víz Sós víz (Szennyvíz tisztító)
38 Előlepárló Kondenzátor Cél: könnyű szénhidrogén komponensek eltávolítása a kőolajból Középbenzin ~70-90 C ~40-50 C Fűtőgáz Sómentes kőolaj Gőz ~ C Stabilizálatlan Könnyűbenzin Redukált kőolaj
39 Könnyűbenzin stabilizáló ~65 C Fűtőgáz Stabilizálatlan könnyű benzin ~100 C PB Stabilizált könnyűbenzin
40 Atmoszférikus kolonna Inhibítor ~130 C Kerozin /JET Redukált kőolaj Könnyű gázolaj Atmoszférikus kemence Gőz ~280 C Nehéz gázolaj víz Nehézbenzin Pakura
41 Tipikus tányér számok atm. kolonna Frakciók Tányér szám Benzin / petróleum 8 9 Petróleum / KGO 9 11 KGO / NGO 5 9 NGO / Betáplálás 8 11 Betáplálás / Fenék 4 9 Oldal termék sztripper 4 10
42 Vákuum kolonna Gőz Vákuum kemence Pakura Gőz Vákuum gázolaj Széles párlat Sötét párlat Víz Szlop gázolaj Gudron
43 Deep- cut működés Deep - cut üzemmód célja HVGO hozam növelése a vákuum maradék hozam rovására. Deep - cut üzemmód, ha a vágáspont a HCGO és a maradék között magasabb mint 1050 F. Megvalósítás feltételei: Alacsony nyomás Kis nyomásesés Magas kemence kilépő hőmérséklet ( >400 C ) Megfelelő mennyiségű mosófolyadék
44 Gőz sugár szivattyú / Gőz ejektor Vákuum előállítására alkalmasak a vízsugár- és gőzsugár szivattyúk is. Működésük lényege, hogy egy szűkülő fúvókán beáramló víz vagy gőz sebessége, ezzel mozgási energiája, a szűk keresztmetszetben megnő. A mozgási energia növekedését a nyomási energia csökkenése fedezi, ezáltal a fúvókát körülvevő kamrában nyomáscsökkenés következik be, és a szívócsövön beáramlik az elszívandó térből a gáz. A díffúzorcsőben a közeg mozgási energiájának egy része ismét nyomási energiává alakul, és ezzel a nyomással áramlik a gáz a nyomóvezetékbe. A víz- és gőzsugár vákuumszivattyúk különösen több fokozatba kapcsolva finom- és nagyvákuum előállítására is alkalmasak. A víz- és gőzsugár vákuumszivattyúk előnyei: olcsók, üzembiztosak, mozgó alkatrészt nem tartalmaznak, zajtalanok. 1 fokozatú : 810 Hgmm 30 Hgmm 2 fokozatú: 130 Hgmm - 3 Hgmm 3 fokozatú: 25 Hgmm Hgmm
45 Vízgyűrűs (folyadékgyűrűs)- vákuumszivattyúk Fekvő hengeralakú házban excentrikusan elhelyezett csillag alakú forgó lapátrendszer centrifugális erőteret hoz létre. A hengert kb. egyharmad részéig vízzel töltik meg. A folyadék nem nyelhet el gázt, és nem léphet vele reakcióba. A víz a centrifugális erőtér hatására a hengerrel koncentrikus gyűrű alakot vesz fel. A járókerék lapátjai és a vízgyűrű között forgás közben változó térfogatú kamrák jönnek létre. Ahol a kamrák növekednek, ott vákuum, keletkezik, itt helyezkedik el a szívónyílás. A járókerék másik oldalán a kamrák térfogata csökken, itt helyezkedik el a nyomónyílás. (Térfogatkiszorítás elve.) A felesleges víz felül távozik. A víz a gáz hűtését és a tömszelence kenését is ellátja. A jó vákuum eléréséhez alacsony hőmérsékletű vízre van szükség.
46 Kemencék Oldal égők Tüzelés: AV-1: fűtőgáz AV-2, AV-3 fűtőgáz és/vagy fűtőolaj Fenék égők
47 Köszönöm a figyelmet!
Szénhidrogén ipari technológiák Szétválasztó eljárások, Desztilláció. Rabi István 2013. 09.18
Szénhidrogén ipari technológiák Szétválasztó eljárások, Desztilláció Rabi István 2013. 09.18 Agenda Bevezetés Desztilláció Kőolaj desztilláció A Finomítás célja Agenda Bevezetés Desztilláció Kőolaj desztilláció
Szénhidrogén elegy rektifikálásának modellezése
Hőmérséklet C Szénhidrogén elegy rektifikálásának modellezése 1. Elméleti összefoglalás Napjainkban a kőolaj az egyik legfontosabb bányászott és feldolgozott nyersanyag, meghatározó primer energia hordozó.
8. oldaltól folytatni
TARTÁLY ÉS TORONY JELLEGŰ KÉSZÜLÉKEK KIVÁLASZTÁSA, MEGHIBÁSODÁSA, KARBANTARTÁSA 8. oldaltól folytatni 2015.09.15. Németh János Tartály jellegű készülékek csoportosítása A készülékekben uralkodó maximális
KI TUD TÖBBET A KŐOLAJ-FELDOLGOZÁSRÓL? 2. FORDULÓ TESZT CSAPATNÉV
KI TUD TÖBBET A KŐOLAJ-FELDOLGOZÁSRÓL? 2. FORDULÓ TESZT CSAPATNÉV 1. A kőolaj egyszerű lepárlásához képest az alábbiak közül mely termék mennyisége csökken a finomítás során? (c és d választ is elfogadtuk
Desztilláció: gyakorló példák
Desztilláció: gyakorló példák 1. feladat Számítsa ki egy 40 mol% benzolt és 60 mol% toluolt tartalmazó folyadékelegy egyensúlyi gőzfázisának összetételét 60 C-on! Az adott elegyre érvényes Raoult törvénye.
Gépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés
BME Gépészeti Eljárástechnika Tanszék zakaszos rektifikálás mérés Budapest, 006 1. Elméleti összefoglaló A mérés célja: laboratóriumi rektifikáló oszlopban szakaszos rektifikálás elvégzése, etanol víz
Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor
Kiegészítő desztillációs példa D3. példa: Izopropanol propanol elegy rektifikálása tányéros oszlopon 2104 kg/h 45 tömeg% izopropanol-tartalmú propanol izopropanol elegyet folyamatos üzemű rektifikáló oszlopon,
Olefingyártás, benzin pirolízis
Olefingyártás, benzin pirolízis TECHNOLÓGIAI ÉS ÜZEMELTETÉSI KÉRDÉSEK KÖLTSÉGELEMZÉS ÉS ANALITIKAI MÓDSZEREK RABI ISTVÁN ELŐADÁSÁNAK FELHASZNÁLÁSÁVAL Termék leírása Típus: Greentech G11 - Benzin Motoros
Gőz-folyadék egyensúly
Gőz-folyadék egyensúly UNIFAC modell: csoport járulék módszer A UNIQUAC modellből kiindulva fejlesztették ki A molekulákat különböző csoportokból építi fel - csoportokra jellemző, mért paraméterek R és
Általános és szervetlen kémia Laborelıkészítı elıadás I.
Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon. 8.9.1. Bevezetés. Az egyszerű, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
8.8. Folyamatos egyensúlyi desztilláció
8.8. olyamatos egyensúlyi desztilláció 8.8.1. Elméleti összefoglalás olyamatos egyensúlyi desztillációnak vagy flash lepárlásnak nevezzük azt a desztillációs műveletet, amelynek során egy folyadék elegyet
Olefingyártás indító lépése
PIROLÍZIS Olefingyártás indító lépése A legnagyobb mennyiségben gyártott olefinek: az etilén és a propilén. Az etilén éves világtermelése mintegy 120 millió tonna. Hazánkban a TVK-nál folyik olefingyártás.
Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás
Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás 2016.10.27 Az OLAJIPAR számokban A 2. legfontosabb iparág a világon 4 milliárd t/év kőolaj felhasználás a világon 1,8 milliárd l/év benzin
Technológiai hulladékvizek kezelése fiziko-kémiai módszerekkel a körforgásos gazdaság jegyében
Technológiai hulladékvizek kezelése fiziko-kémiai módszerekkel a körforgásos gazdaság jegyében Ipari Szennyvíztisztítás Szakmai Nap Budapest, 2017. 11. 30. Mizsey Péter 1,2, Tóth András József 1, Haáz
Extrakció. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék
Extrakció Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék 1 . fázis 2. fázis Anyagátmenet iránya áz (G) Folyadék G L (L) G L L
A kőolaj-finomítás alapjai
A kőolaj-finomítás alapjai Csernik Kornél kcsernik@mol.hu 2018. Október 19. Driving forces Oil growth in the transport sector fuel quantity Driving forces Technology development fuel quality OTHER PRODUCTS
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon. 8.9.1. Bevezetés Az egyszerű, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
A kőolaj finomítás alapjai
A kőolaj finomítás alapjai Csernik Kornél kcsernik@mol.hu 2016. Október 28. Driving forces Oil growth in the transport sector fuel quantity 2 Driving forces Technology development fuel quality Driving
SZAKASZOS REKTIFIKÁLÁS
SZAKASZOS REKTIFIKÁLÁS mérési segédlet Mérés helyszíne: Stokes Laboratórium Ellenőrizte: Dr. Hégely László Készítette: Deák Gábor, Kádár Péter, Tőzsér Eszter, Verrasztó László Budapest, 2018.05.17. Budapesti
Alvin Kereskedőház Zrt. CIEMME oldószer regeneráló és eszköz mosó berendezések
Alvin Kereskedőház Zrt. CIEMME oldószer regeneráló és eszköz mosó berendezések Tartalom: Oldószer regeneráló berendezések K2 típus... 3 K16 EX típus... 3 K16 TUV típus... 4 J16 típus... 4 K30 EX típus...
Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás
Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás 2018.10.26 Az OLAJIPAR számokban A 2. legfontosabb iparág a világon 4 milliárd t/év kőolaj felhasználás a világon 1,8 milliárd l/év benzin
MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS
MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS HÍDFŐ-PLUSSZ IPARI,KERESKEDELMI ÉS SZOLGÁLTATÓ KFT. Székhely:2112.Veresegyház Ráday u.132/a Tel./Fax: 00 36 28/384-040 E-mail: laszlofulop@vnet.hu Cg.:13-09-091574
Aromás és Xilolizomerizáló Üzem bemutatása
Aromás és Xilolizomerizáló Üzem bemutatása Németh Tamás ARE Blokk Technológiai Koordinátor tamnemeth@mol.hu 2015.10.30 Az Extrakcióról röviden Az Aromás Üzem története Alapanyag vonal Extrakció Rektifikáló
Szárazjeges tisztítás hatásai hegesztő szerszámokon 2012 GESTAMP 0
Szárazjeges tisztítás hatásai hegesztő szerszámokon 2012 GESTAMP 0 Karbantartás Szárazjeges tisztítás hatásai hegesztő szerszámokon Október 2014. október 15. Készítette: Kemény Béla Gestamp Hungária Kft
Optimalizálás az olajiparban II.
Optimalizálás az olajiparban II. BME 2015/2016 II. félév Szimulációs alapok Kubovicsné Stocz Klára kkubovicsne@mol.hu Miről lesz szó? Mikor/hol/miért használunk szimulációt Milyen modellek Szimuláció általában
Fázisátalakulások. A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek.
Fázisátalakulások A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek. Fából vaskarika?? K Vizes kalapács Ha egy tartályban a folyadék fölötti térrészből
Tüzeléstan előadás Dr. Palotás Árpád Bence
Égéselméleti számítások Tüzeléstan előadás Dr. Palotás Árpád Bence Miskolci Egyetem - Tüzeléstani és Hőenergia Tanszék 2 Tüzelőanyagok Definíció Energiaforrás, melyből oxidálószer jelenlétében, exoterm
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
Food Processing Equipment. NEAEN Unicook ATMOSZFÉRIKUS NYOMÁSON SZAKASZOSAN ÜZEMELŐ FŐZŐÜST
Food Processing Equipment NEAEN Unicook ATMOSZFÉRIKUS NYOMÁSON SZAKASZOSAN ÜZEMELŐ FŐZŐÜST Az univerzális szakaszosan üzemelő NEAEN Unicook főzőüst hatékony és kedvező megoldást kínál különböző élelmiszer
Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék
Ipari vizek tisztítási lehetőségei rövid összefoglalás Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék Kezelés Fizikai, fizikai-kémiai Biológiai Kémiai Szennyezők típusai Módszerek Előnyök
1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont
1. feladat Összesen 8 pont Az ábrán egy szállítóberendezést lát. A) Nevezze meg a szállítóberendezést!... B) Milyen elven működik a berendezés?... C) Nevezze meg a szállítóberendezést számokkal jelölt
Előadó: Varga Péter Varga Péter
Abszorpciós folyadékhűtők Abszorpciós folyadékhűtők alkalmazási lehetőségei alkalmazási lehetőségei a termálvizeink világában a termálvizeink világában Előadó: Varga Péter Varga Péter ABSZORPCIÓS FOLYADÉKHŰTŐ
NEAEN VarioT KAPARTFALÚ HŐCSERÉLŐ
Food Processing Equipment NEAEN VarioT KAPARTFALÚ HŐCSERÉLŐ A NEAEN VarioT kapartfalú hőcserélő professzionális, a lehető legjobb megoldást jelenti különböző gyártási folyamatokban. A termék tulajdonságaitól,
Desztilláció. Tartalomjegyzék. A Wikipédiából, a szabad enciklopédiából.
Page 1 of 10 Desztilláció A Wikipédiából, a szabad enciklopédiából. A Desztilláció vagy lepárlás egyrészt egy régóta óta használt laboratóriumi technika, másrészt a kémiai ipar folyadékelegyeinek leggyakrabban
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Vegyipari műveletek II. Témakör: abszorpció Székely Edit BME VBK
Vegyipari műveletek II Témakör: abszorpció Székely Edit BME VBK sz-edit@mail.bme.hu Abszorpció Abszorpció esetében a komponensátadás jellemzően a gázfázisból a folyadékfázisba történik. Egyensúlyi vagy
Égéshő: Az a hőmennyiség, amely normál állapotú száraz gáz, levegő jelenlétében CO 2
Perpetuum mobile?!? Égéshő: Az a hőmennyiség, amely normál állapotú száraz gáz, levegő jelenlétében CO 2,- SO 2,-és H 2 O-vá történő tökéletes elégetésekor felszabadul, a víz cseppfolyós halmazállapotban
GÁZTURBINÁS LÉGI JÁRMÛVEK TÜZELÔANYAGAI MOL JET-A1
JET A1 fuzet OK 6.qxd 5/31/05 3:05 PM Page 1 JET A1 fuzet OK 6.qxd 5/31/05 3:05 PM Page 2 GÁZTURBINÁS LÉGI JÁRMÛVEK TÜZELÔANYAGAI MOL JET-A1 FELHASZNÁLÁSI TERÜLET A JET-A1 sugárhajtómû-tüzelôanyag a korszerû
Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház
Hőszivattyúk - kompresszor technológiák 2017. Január 25. Lurdy Ház Tartalom Hőszivattyú felhasználások Fűtős kompresszor típusok Elérhető kompresszor típusok áttekintése kompresszor hatásfoka Minél kisebb
100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F
III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete
1. feladat Összesen: 26 pont. 2. feladat Összesen: 20 pont
É 2048-06/1/ 1. feladat Összesen: 26 pont ) z alábbi táblázatban fontos vegyipari termékeket talál. dja meg a táblázat kitöltésével a helyes információkat! termék lapanyagok Előállítás megnevezése Felhasználás
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
A Raoult és Dalton- törvényeket felhasználva kapjuk az egyensúlyi görbét (lencsegörbét), amelynek egyenlete:
14. Ismertesse a desztillálási műveletek biztonságtechnikáját! - A lepárlás fogalma - A folyadékelegyek egyensúlyi viszonyainak ismertetése egy mellékelt egyensúlyi görbe használatával - Az egyensúlyi
Kazánok működtetésének szabályozása és felügyelete. Kazánok és Tüzelőberendezések
Kazánok működtetésének szabályozása és felügyelete Kazánok és Tüzelőberendezések Tartalom Meleg- és forróvizes kazánok szabályozása és védelme Fűtés és mekegvíz ellátás szabályozása Gőzfeljesztők szabályozási
MOSÓ, STERILIZÁLÓ ÉS SZÁRÍTÓ SZÁLLÍTÓSZALAG BERENDEZÉS
Food Processing Equipment NEAEN CleanJar MOSÓ, STERILIZÁLÓ ÉS SZÁRÍTÓ SZÁLLÍTÓSZALAG BERENDEZÉS A berendezést üveg, fém és műanyagkannák, üveg és más tartályok tisztítására és sterilizálására tervezték
MSc - Környezettechnika Levegőtisztaság-védelem dr. Örvös Mária
MSc - Környezettechnika Levegőtisztaság-védelem dr. Örvös Mária 1. Gáztisztítási lehetőségek 2. Gáztisztító rendszer egységei 3. Porleválasztó berendezések - kiválasztási szempontok - porleválasztó ciklon
FORGÓ DOB ELŐFŐZŐ/FŐZŐBERENDEZÉS
Food Processing Equipment NEAEN RotaBlanch FORGÓ DOB ELŐFŐZŐ/FŐZŐBERENDEZÉS A NEAEN RotaBlanch forgó dob előfőző-berendezést zöldségek, gyümölcsök, saláták, tészták és tengeri ételek konzerválás és fagyasztás
OLDÓSZEREK DUNASOL FELHASZNÁLÁSI TERÜLET. Az alacsony aromás- és kéntartalmú oldószercsalád
OLDÓSZEREK DUNASOL FELHASZNÁLÁSI TERÜLET Az alacsony aromás- és kéntartalmú oldószercsalád (60 220 C) forráspont-tartományú szénhidrogének) alkalmazási területe igen széles: foltbenzinként, növényolajiparban
8.9. Folyamatos rektifikálás vizsgálata félüzemi mérető rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi mérető rektifikáló oszlopon. 8.9.1. Bevezetés. Az egyszerő, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
Lég- és iszapleválasztás elmélete és gyakorlati megoldásai. Kötél István Flamco Kft
Lég- és iszapleválasztás elmélete és gyakorlati megoldásai Kötél István Flamco Kft Tartalom 1.Levegő és iszap mint probléma a rendszerben Gázok a rendszerben Következmények 2.Levegő leválasztás Henry törvénye
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
PiAndTECH FluidKAT katalitikus izzóterek
PiAndTECH FluidKAT katalitikus izzóterek Hő felszabadítás katalitikus izzótéren, (ULE) ultra alacsony káros anyag kibocsátáson és alacsony széndioxid kibocsátással. XIV. TÁVHŐSZOLGÁLTATÁSI KONFERENCIÁT
Energia- és Minőségügyi Intézet Tüzeléstani és Hőenergia Intézeti Tanszék. Energiahordozók
Energia- és Minőségügyi Intézet Tüzeléstani és Hőenergia Intézeti Tanszék Energiahordozók Energia - energiahordozók 2 Ø Energiának nevezzük valamely anyag, test vagy szerkezet munkavégzésre való képességét.
Vegyipari műveletek III. Kémiai reaktorok
Vegyipari műveletek III. Kémiai reaktorok Reaktorok csoportosítása I Kevert tartályreaktor Szakaszos Félfolyamatos Folyamatos Izoterm Adiabatikus Hűtött Reaktánsadagolása Termék elvétele (csak izoterm!)
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor
Napkollektorok telepítése. Előadó: Kardos Ferenc
Napkollektorok telepítése Előadó: Kardos Ferenc Napkollektor felhasználási területek Használati melegvíz-előállítás Fűtés-kiegészítés Medence fűtés Technológiai melegvíz-előállítása Napenergiahozam éves
- anyagmérlegek felírása a szakaszos üzemű berendezés teljes üzemidejére;
Szakaszos rektifikálás üveg harangtányéros kolonnán A laboratóriumi méretű, üveg harangtányérokkal ellátott rektifikáló kolonnán heptán-toluol elegy szétválasztásának vizsgálata, valamint az oszlop hatásfokának
Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás
Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás A Dunai Finomító egész területe fokozottan tűz- és robbanásveszélyes Mire koncentrálj az előadás alatt? 4 dolog Mi a kőolaj desztilláció
Többjáratú hőcserélő 3
Hőcserélők Q = k*a*δt (a szoftver U-val jelöli a hőátbocsátási tényezőt) Ideális hőátadás Egy vagy két bemenetű hőcserélő Egy bemenet: egyszerű melegítőként/hűtőként funkcionál Design mód: egy specifikáció
Nagyhatékonyságú folyadékkromatográfia (HPLC)
Nagyhatékonyságú folyadékkromatográfia (HPLC) Kromatográfiás módszerek osztályba sorolása 2 Elúciós technika A mintabevitel ún. dugószerűen történik A mozgófázis a kromatogram kifejlesztése alatt folyamatosan
Hogyan mûködik? Mi a hõcsõ?
Mi a hõcsõ? olyan berendezés, amellyel hõ közvetíthetõ egyik helyrõl a másikra részben folyadékkal telt, légmentesen lezárt csõ ugyanolyan hõmérséklet-különbség mellett 000-szer nagyobb hõmennyiség átadására
Fordított ozmózis. Az ozmózis. A fordított ozmózis. Idézet a Wikipédiából, a szabad lexikonból:
Fordított ozmózis Idézet a Wikipédiából, a szabad lexikonból: A fordított ozmózis során ha egy hígabb oldattól féligáteresztő és mechanikailag szilárd membránnal elválasztott tömény vizes oldatra az ozmózisnyomásnál
Gáztörvények tesztek
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Kromatográfiás módszerek
Kromatográfiás módszerek Mi a kromatográfia? Kromatográfia ugyanazon az elven működik, mint az extrakció, csak az egyik fázis rögzített ( állófázis ) és a másik elhalad mellette ( mozgófázis ). Az elválasztást
Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
BEPÁRLÁS. A bepárlás előkészítő művelet is lehet, pl. porlasztva szárításhoz, kristályosításhoz.
Bepárlás fogalma: Az olyan oldatok esetében amelyekben az oldott anyag gőztenziója gyakorlatilag nulla, az oldatot forrásban tartva, párologtatással az oldószer eltávolítható, az oldat besűríthető. Az
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
KŐOLAJFELDOLGOZÁSI TECHNOLÓGIÁK
KŐOLAJFELDOLGOZÁSI TECHNOLÓGIÁK Mi a kőolaj? Nyersolajnak nevezzük azokat a szerves anyagokat, amelyek folyékony halmazállapotúak az őket tartalmazó réteg körülményei között. A kőolaj összetétele: szénhidrogének
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek A talajszennyezés csökkenése/csökkentése bekövetkezhet Természetes úton Mesterséges úton (kármentesítés,
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
A kémiai energia és az elektromos áram kapcsolata a galvánelemben és az elektrolizáló cellában
. mintatétel A) Elektrokémia Ismertesse a galvánelemek és az elektrolizáló cellák felépítését és működését a Daniell-elem és a sósav elektrolízise példáján! Nevezze meg az elektrokémiának két, jellegzetesen
UniSim Design. - steady state modelling - BME Kémiai és Környezeti Folyamatmérnöki Tanszék Dr. Mizsey Péter, Dr. Benkő Tamás, Dr.
UniSim Design - steady state modelling - BME Kémiai és Környezeti Folyamatmérnöki Tanszék Dr. Mizsey Péter, Dr. Benkő Tamás, Dr. Meszéna Zsolt 1 Átteknintés A metanol gyártó folyamat bemutatása. A folyamat
zeléstechnikában elfoglalt szerepe
A földgf ldgáz z eltüzel zelésének egyetemes alapismeretei és s a modern tüzelt zeléstechnikában elfoglalt szerepe Dr. Palotás Árpád d Bence egyetemi tanár Épületenergetikai Napok - HUNGAROTHERM, Budapest,
SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS
SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS ESETFELVETÉS MUNKAHELYZET Az eredményes munka szempontjából szükség van arra, hogy a kozmetikus, a gyakorlatban használt alapanyagokat ismerje, felismerje
Lemezeshőcserélő mérés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai
Norit Filtrix LineGuard
Norit Filtrix LineGuard BEMUTATÁS A LineGuard egy ultraszűrést alkalmazó vízkezelő rendszer. Az ultraszűrő (UF) alkalmazása nagyon széleskörű ezek egyike az ivóvíz kezelés. Felhasználási területek: Az
1. feladat Összesen 25 pont
1. feladat Összesen 25 pont Centrifugál szivattyúval folyadékot szállítunk az 1 jelű, légköri nyomású tartályból a 2 jelű, ugyancsak légköri nyomású tartályba. A folyadék sűrűsége 1000 kg/m 3. A nehézségi
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
A szén-dioxid megkötése ipari gázokból
A szén-dioxid megkötése ipari gázokból KKFTsz Mizsey Péter 1,2 Nagy Tibor 1 mizsey@mail.bme.hu 1 Kémiai és Környezeti Budapesti Műszaki és Gazdaságtudományi Egyetem H-1526 2 Műszaki Kémiai Kutatóintézet
A keverés fogalma és csoportosítása
A keverés A keverés fogalma és csoportosítása olyan vegyipari művelet, melynek célja a homogenizálás (koncentráció-, hőmérséklet-, sűrűség-, viszkozitás kiegyenlítése) vagy a részecskék közvetlenebb érintkezésének
R1 Keverő-ülepítő extraktorok felépítése, működése
R1 Keverő-ülepítő extraktorok felépítése, működése Folyamatos üzemű folyadék folyadék extraktor. A berendezés sűrűségkülönbségen alapuló gravitációs szétválasztással működik. A berendezés két részből áll.
Töltött rektifikáló oszlopok vizsgálata
Töltött rektifikáló oszlopok vizsgálata Az ipari gyakorlatban rektifikálásra tányéros vagy töltött oszlopokat használnak. A töltött oszlopokban az 1960-as évekig golyókat, gyűrűket vagy nyeregtesteket
A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy
Lemezes hőcserélő XGF100-034, -035, -050, -066
Lemezes hőcserélő XGF100-034, -035, -050, -066 Leírás A Danfoss XGF lemezes hőcserélőket kifejezetten olyan távfűtési energia alkalmazásokra fejlesztették ki, mint a távfűtés és távhűtés, hogy az ön igényeit
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére Környezettudományi Doktori Iskolák Konferenciája 2012. 08. 31. Tóth András József 1 Dr. Mizsey Péter 1, 2 andras86@kkft.bme.hu 1 Kémiai
On site termikus deszorpciós technológia. _site_thermal_desorption.html
On site termikus deszorpciós technológia http://www.rlctechnologies.com/on _site_thermal_desorption.html Technológiai egységek A közvetve főtött forgó deszorber rendszer oxigénhiányos közegben végzi az
Bevezetés. 1. ábra: Az osztott terű kolonna elvi sémája. A szétválasztási feladat
Osztott terű rektifikáló kolonna modellezése Modeling of divided wall column Szabó László, Németh Sándor, Szeifert Ferenc Pannon Egyetem, Folyamatmérnöki Intézeti Tanszék 8200 Veszprém, Egyetem utca 10.
A HELIOS kémény rendszer. Leírás és összeszerelés
A HELIOS kémény rendszer Leírás és összeszerelés 1. Bemutatás: A HELIOS kémény rendszer" a legújabb kémény rendszer, amely a romániai piacon jelent meg és egy technikusokból álló csapat több éven át tartó
5kW, 6kW, 8kW, 10kW, 14kW, 16kW model. Levegő víz hőszivattyú. Waterstage
5kW, 6kW, 8kW, 10kW, 14kW, 16kW model Levegő víz hőszivattyú Waterstage 2 Waterstage Mitől lesz néhány egyformának tűnő műszaki termék közül némelyik átlagos, némelyik min. színvonal alatti vagy éppen
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ MASZESZ Ipari Szennyvíztisztítás Szakmai Nap 2017. November 30 Lakner Gábor Okleveles Környezetmérnök Témavezető: Bélafiné Dr. Bakó Katalin
Innovációs leírás. Hulladék-átalakító energiatermelő reaktor
Innovációs leírás Hulladék-átalakító energiatermelő reaktor 0 Hulladék-átalakító energiatermelő reaktor Innováció kategóriája Az innováció rövid leírása Elérhető megtakarítás %-ban Technológia költsége
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Food Processing Equipment. NEAEN Cook n chill SZAKASZOSAN ÜZEMELŐ FŐZŐ ÉS FAGYASZTÓ-BERENDEZÉS
Food Processing Equipment NEAEN Cook n chill SZAKASZOSAN ÜZEMELŐ FŐZŐ ÉS FAGYASZTÓ-BERENDEZÉS Darabos és törékeny ételek széles választékának nagy teljesítményű főzésére/előfőzésére tervezték. Az előfőzést/főzést
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc In situ és ex situ fizikai kármentesítési eljárások IV. 65.lecke Fáziselválasztás
KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:
GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT