Szolgáltatásbiztonság verifikációja: Megbízhatósági analízis

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szolgáltatásbiztonság verifikációja: Megbízhatósági analízis"

Átírás

1 Szolgáltatásbiztonság verifikációja: Megbízhatósági analízis Rendszer- és szoftverellenőrzés előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

2 A szolgáltatásbiztonság jellemzői

3 A szolgáltatás használhatóságának jellemzése Jellegzetes szolgáltatásminőségi követelmények: o Megbízhatóság, rendelkezésre állás, adatintegritás,... o Ezek a használat közben előforduló hibáktól is függenek (nem elég az előállítási folyamat jó minősége) Összetett jellemző: Szolgáltatásbiztonság o Angol terminológia: Dependability o Definíció: Képesség olyan szolgáltatás nyújtására, amiben igazoltan bízni lehet Igazoltan: elemzésen, méréseken alapul Bizalom: szolgáltatás az igényeket kielégíti o Mennyire kerülhetők el illetve kezelhetők a szolgáltatásokat érintő hibahatások?

4 Szolgáltatásbiztonság alapjellemzői Rendelkezésre állás (availability): o Helyes szolgáltatás valószínűsége (közben hiba esetén javítás végezhető) Megbízhatóság (reliability): o Folyamatosan helyes szolgáltatás valószínűsége (az első hibáig tekinthető megbízhatónak) Biztonságosság (safety): o Elfogadhatatlan kockázattól való mentesség Integritás (integrity): o Hibás változás, változtatás elkerülésének lehetősége Karbantarthatóság (maintainability): o Javítás és fejlesztés lehetősége

5 Definíciók: Várható értékek Állapot particionálás s(t) rendszerállapot esetén o Hibamentes (Up) illetve Hibás (Down) állapotpartíció s(t) U D u1 d1 u2 d2 u3 d3 u4 d4 u5 d5... Várható értékek: o Első hiba bekövetkezése: (Mean Time to First Failure) o Hibamentes működési idő: (Mean Up Time, Mean Time To Failure) o Hibás működési idő: (Mean Down Time, Mean Time To Repair) o Hibák közötti idő: (Mean Time Between Failures) MTFF = E{u1} Javított rendszer esetén MUT = MTTF = E{ui} MDT = MTTR = E{di} MTBF = MUT + MDT t

6 Definíciók: Valószínűség időfüggvények Rendelkezésre állás: a(t) = P{ s(t) U } Megbízhatóság: r(t) = P{ s(t ) U, t <t } Készenlét: K=lim t a(t) (közben meghibásodhat) (t-ig nem hibásodhat meg) (rendszeresen javított) Jelölhető A-val is: K = A = MTTF / (MTTF + MTTR) 1.0 a(t) K 0 r(t) t

7 Készenlét tipikus értékei Készenlét Max. kiesés egy év alatt 99% ~ 3,5 nap 99,9% ~ 9 óra 99,99% ( 4 kilences ) ~ 1 óra 99,999% ( 5 kilences ) ~ 5 perc 99,9999% ( 6 kilences ) ~ 32 másodperc 99,99999% ~ 3 másodperc Komponensekből felépített rendszer készenléte, ahol egy komponens készenléte 95%: 2 komponensből álló rendszer: 90% 5 komponensből álló rendszer: 77% 10 komponensből álló rendszer: 60%

8 Komponens jellemző Meghibásodási tényező (gyakoriság): (t) o A komponens mekkora valószínűséggel fog éppen t időpont környezetében elromlani, feltéve, hogy t-ig jól működött (t)t = P{ s(t+t) D s(t) U }, miközben t0 o Másképp is felírható, a megbízhatóság definíciója alapján: 1 dr( t) ( t), r() t dt így r( t) e o Elektronikai alkatrészekre: Itt ( ) (t) Kezdeti hibák (gyártás utáni teszt) Használati tartomány t () t dt 0 r t e t MTFF E U r() t dt 1 0 t 1 Öregedési tartomány (elavulás)

9 Analízis módszerek Kvalitatív analízis: o Mik azok a komponens szintű hibák (hibamódok), amik rendszerszintű hibajelenséget okoznak? Egyszeres hibapontok meghatározása Kritikus hibák meghatározása o Technikák: Szisztematikus hatásanalízis Hibafa, eseményfa, ok-következmény analízis, FMEA, Kvantitatív analízis: o Megbízhatósági analízis: Hogyan számszerűsíthető a komponens meghibásodások jellemzői alapján a rendszer megbízhatósága? Rendszerszintű megbízhatóság, rendelkezésre állás, o Technikák: Megbízhatósági modell készítése és megoldása Kombinatorikus modellek Markov láncok Sztochasztikus Petri hálók

10 A kvantitatív analízis célkitűzése Komponens jellemzők o meghibásodási tényező (folyamatos üzemben) o hibázási valószínűség (igény szerinti végrehajtás esetén) o megbízhatósági időfüggvény alapján rendszerszintű jellemzők o megbízhatósági időfüggvény o rendelkezésre állás időfüggvény o készenlét o MTFF o biztonságosság számítása A számítás az architektúra és a hibamódok alapján történik

11 A kvantitatív analízis felhasználása Átadás: Szolgáltatásbiztonsági jellemzők igazolása o Service Level Agreement o Tolerable Hazard Rate (biztonságkritikus rendszerek) Tervezés: Architektúra változatok összevetése o Ugyanolyan komponensekből építkezve melyik architektúra változat rendelkezik jobb jellemzőkkel? Tervezés, módosítás: Érzékenységvizsgálat o Komponens lecserélése mennyit ront vagy javít? o Hol érdemes módosítani, ha nem megfelelőek a jellemzők? o Mennyire fontos ismerni a pontos jellemzőket komponens szinten? Kísérleti vizsgálat igénye (pl. hibainjektálás) 11

12 Kombinatorikus modellek a megbízhatósági analízisben

13 Komponensek kétféle állapota: o Hibamentes (jó) vagy hibás (rossz) Boole-modellek Nincsenek függőségek a komponensek között o sem meghibásodás, o sem javítás szempontjából Komponensek kapcsolata a megbízhatóság szempontjából: Leírja, hogy milyen az alkalmazott redundancia o Soros kapcsolat: A komponensek egyaránt szükségesek a rendszer működéséhez, azaz a komponensek nem redundánsak o Párhuzamos kapcsolat: A komponensek egymást kiválthatják hiba esetén azaz a komponensek redundánsak A kapcsolat (redundancia séma) a hibamódoktól függhet

14 Blokkok : Kapcsolás : Utak : Megbízhatósági blokkdiagram Komponensek (hibamódjai) Soros vagy párhuzamos kapcsolat Működőképes rendszerkonfigurációk o Működőképes a rendszer, ha van út a kezdőponttól a végpontig; komponens hibák ezt megszakíthatják Soros: Párhuzamos: K 1 K 1 K 2 K 3 K 2 K 3

15 Megbízhatósági blokkdiagram példák V1 V2 Átkapcsoló V3

16 Leggyakoribb rendszerek (áttekintés) Soros rendszer Párhuzamos rendszer Összetett kanonikus rendszer N-ből M hibás rendszer Ideális többségi szavazás (TMR) TMR/simplex rendszer Hidegtartalékolás

17 Soros rendszer K 1 K 2 K... N Rendszer hibátlan Megbízhatóság: N r ( t) r( t) R A rendszer megbízhatósága i1 i A komponensek megbízhatósága K 1 hibátlan... K N hibátlan MTFF: MTFF P(AB)=P(A)P(B) ha függetlenek i1 Exp. eloszlású valsz. változók minimumaként N 1 i

18 Párhuzamos rendszer K 1 K 2... K N Megbízhatóság: 1 r ( t) (1 r ( t)) R Egyforma N komponens: N i1 i Rendszer hibás r ( t) 1 (1 r ( t)) N R K K 1 hibás... K N hibás P(AB)=P(A)P(B) ha függetlenek Itt MTFF (levezetés később): MTFF 1 N 1 i1 i

19 Összetett kanonikus rendszer A rendszerstruktúra és a komponensek készenlétei ismertek: 0,7 0,75 0,95 0,99 0,7 0,9 0,7 0,75 A rendszer készenlét számítható: 3 2 K R 0,95 0, , , 75 0,9

20 N-ből M hibás komponens N egyforma komponens; M vagy több komponens hiba esetén a rendszer is hibás r R M 1 i0 P "éppen i hiba van " M 1N rr (1 r) r i0 i i N i Itt egyszerűen r jelöli a komponens r(t) megbízhatóságot

21 N-ből M hibás komponens és TMR N egyforma komponens; M vagy több komponens hiba esetén a rendszer is hibás r R M 1 i0 P "éppen i hiba van " M 1N rr (1 r) r i0 i i N i Alkalmazás: Ideális többségi szavazás (TMR): N=3, M=2 1 3 i 3 3 rr (1 r) r (1 r) r (1 r) r 3r 2r i0 i 0 1 3i R ( ) (3 2 ) 0 0 MTFF r t dt r r dt Kisebb, mintha csak 1 komponens lenne! Miért használják mégis?

22 TMR/simplex rendszer Ha a TMR egy komponense meghibásodik (ezt a szavazó logika azonosítja), akkor az egyik megmaradó hibátlan komponens működik tovább egyedül (de már hibadetektálás nélkül) MTFF rr r r 2 2 3

23 Hidegtartalékolás Meghibásodó komponens helyébe új komponens lép (ami nem volt üzemben) MTFF N i1 MTFF i Megbízhatóság általános felírása zárt alakban bonyolult (valószínűségi változók összegének sűrűségfüggvénye) o Azonos komponensek, exponenciális eloszlású komponens megbízhatósági függvény esetén: N 1 t rr () t e i! i0 i t

24 Konkrét megbízhatósági számítások Hierarchikus megközelítés (redundancia sémák alkalmazása) o Alkatrész > modul > részrendszer > rendszer Alkatrész szintű meghibásodási gyakoriság becslési módszerek o MIL-HDBK-217: The Military Handbook Reliability Prediction of Electronic Equipment (katonai alkalmazásokhoz, pesszimista) o Telcordia SR-332: Reliability Prediction Procedure for Electronic Equipment (telco alkalmazásokhoz) o IEC TR 62380: Reliability Data Handbook - Universal Model for Reliability Prediction of Electronic Components, PCBs, and Equipment (kevésbé pesszimista, korszerűbb alkatrészekhez is) Alkatrész szintű meghibásodási gyakoriság függőségei: o Hőmérséklet, időjárási kitettség, rázkódás (pl. jármű fedélzet), magasság, o Jellegzetes felhasználási profilok Ground; stationary; weather protected Ground; non stationary; moderate (pl. klimatizált teremben lévő) (pl. jármű fedélzeti rendszer)

25 Példa: Az ALD MTBF Calculator

26 Példa: Az ALD MTBF Calculator

27 Élettartam becslése Milyen élettartam figyelembe vételével használhatók az elektronikai komponensek? o Mikortól kezd nőni a meghibásodási tényező? o Ekkorra ütemezett karbantartás (csere) előírható IEC 62380: Life expectancy Elsősorban korlátoz: Elektrolit kondenzátorok (kiszáradás) o Hőmérsékletfüggő o Kezdeti bevizsgálástól is függ o Példa: ~ óra (~ 11 év)

28 Markov láncok használata a megbízhatósági analízisben

29 A modell: Folytonos idejű Markov lánc Definíció: CTMC = (S, R) o S diszkrét állapotok halmaza: s 0, s 1,..., s n o R: SSR 0 állapotátmeneti gyakoriságok Jelölések: o Állapot elhagyás összesített gyakorisága: o Q = R diag(e) infinitezimális generátormátrix o = s 0, t 0, s 1, t 1, (t i időpontban lép ki s i -ből) az állapot a t időpillanatban o Path(s) az s-ből induló útvonalak halmaza s 0 s 1 s 2 s, s' E s R s ' S, s s '

30 A modell megoldása Tranziens állapotvalószínűségek: o (s 0, s, t) = P{Path(s 0 annak valószínűsége, hogy s 0 -ből indulva a t időpillanatban s-ben tartózkodik o (s 0, t) az állapotok valószínűségei s-ből indulva t időpillanatban o CTMC tranziens megoldása: d ( s0, t) ( s0, t) Q dt Állandósult állapotbeli állapotvalószínűségek: o (s 0, s) = lim t (s 0,s,t) az állapotok valószínűsége s 0 -ból indulva o (s 0 ) az állapotok valószínűsége (sorvektorként) o CTMC állandósult állapotbeli megoldása: ( s ) Q 0 ahol ( s, s) s Állapot tartása: P ( ) s -b e n m a ra d t id e ig e 1 -ben maradás ideje E s E s t Es ()

31 A CTMC megbízhatósági modell CTMC állapotok o Rendszerszintű állapotok: A komponens állapotok (hibamentes, hibás adott hibamód szerint) kombinációi CTMC átmenetek o Komponens szintű meghibásodás: Az állapotátmeneti gyakoriság a meghibásodási tényező () o Komponens szintű javítás: Az állapotátmeneti gyakoriság a komponens javítási tényezője (, a javítási idő reciproka) OK Fail o Rendszer szintű javítás: Az állapotátmeneti gyakoriság a rendszerállapot javítási tényezője (javítási idő reciproka)

32 Példa: CTMC megbízhatósági modell Két szerverből (A, B) álló rendszer: o Bármelyik szerver meghibásodhat o A szerverek külön-külön vagy együtt is javíthatók Rendszerszintű állapotok: Szerverek állapotai (jó / hibás) alapján Állapotátmenetek és gyakoriságok: o Az A szerver meghibásodása: o A B szerver meghibásodása: o Egy szerver javítása: o Teljes rendszer javítása: A meghibásodási tényező B meghibásodási tényező 1 javítási tényező 2 javítási tényező B jó A,B jó A 1 2 B 0 jó B 1 A jó A

33 A rendszerszintű jellemzők számítása Állapotpartíciók kijelölése o Rendszerszintű hibamentes U illetve hibás D A modell megoldása: o Tranziens analízis: (s 0, s, t) időfüggvények o Állandósult állapotbeli analízis: (s 0, s) valószínűségek Rendelkezésre állás: Készenlét: Megbízhatóság: 0 a t su ( s, s, t) o Itt: A modell megoldása előtt a modell módosítása: D-ből U-ba vezető állapotátmenetek törlése i K A ( s, s ) su 0 r t su i i i 0 ( s, s, t) i i

34 Példa: CTMC megbízhatósági modell Két szerverből (A, B) álló rendszer: o Bármelyik szerver meghibásodhat A B o A szerverek külön-külön vagy 1 AB 2 együtt is javíthatók 1 Állapotpartíciók: B A o U = {s AB, s A, s B }, s 0 = s AB o D = {s N } Rendelkezésre állás: a(t) = (s 0, s AB, t) + (s 0, s A, t) + (s 0, s B, t) Készenlét: K = A = (s 0, s AB ) + (s 0, s A ) + (s 0, s B ) B A N Megbízhatóság: o Modell módosítása: D = {s N } partícióból U partícióba vezető élek törlése o Módosított modell megoldása: r(t) = (s 0, s AB, t) + (s 0, s A, t) + (s 0, s B, t) AB A 1 B 1 B A B A N

35 CTMC modellek redukálása Állapotok összevonhatók o Feltétel: Átmenetek azonos állapot(ok)ba, azonos gyakoriságokkal (kimenő átmenetek és gyakoriságok nem különböztetik meg az állapotokat) o Bejövő gyakoriságok megmaradnak (azonos állapotból: összegződnek) o Kimenő gyakoriság nem összegződik! 1 s 1 s 3 3 s s 2 s 4 3 s 5 s 2 3 s 34 2 s 5 s 1 1 s s 4 s s 1 s 34 s 5

36 Példa: Állapotok összevonása Modell: 3 redundáns komponensből álló rendszer A komponensek (a, b, c) azonos tényezőjűek a,b,c a,b a,c b 0 b,c a c jó 2 jó 1 jó 0 38

37 CTMC megbízhatósági modell példák (1) Aktív redundancia (melegtartalék), N komponens N (N-1) (N-2) N jó N-1 N Az MTTF levezetése aktív redundancia esetén o Állapot tartási ideje, ha k komponens jó: Passzív redundancia (hidegtartalék) N jó N-1 N k 0

38 CTMC megbízhatósági modell példák (2) Aktív redundancia o 2 komponens, meghibásodási gyakorisággal o Nem ideális átkapcsoló, k meghibásodási gyakorisággal o Hiba esetén teljes javítás javítási tényezővel s 0 k 2 s 1 s 2 k s 0 2 s 1 + k s 2 ' s 3 s 4 40

39 Eszközök Kombinatorikus megbízhatósági modellekhez o hibafa, o eseményfa, o megbízhatósági blokk diagram, o FME(C)A, és Markov láncokhoz is: o Relex 2009 ( o Item Toolkit ( o RAM Commander, ( o Functional Safety Suite

40 Sztochasztikus Petri-hálók a megbízhatósági analízisben

41 Modell: Sztochasztikus Petri-hálók (SPN) SPN: Stochastic Petri Net Az egyszerű Petri-hálók kiterjesztése o A tranzíciókhoz véletlen tüzelési késleltetést rendelünk o A késleltetés negatív exponenciális valószínűségi eloszlásfüggvénnyel jellemezhető A tüzelés szemantikájának módosulása o Engedélyezettség feltétele: Nem változik o Tüzelési szabály: Egy tranzíció tüzelhet t+d időpontban, ha t időpontban engedélyezetté vált d késleltetési időt sorsolt a hozzá tartozó eloszlásfüggvény szerint a [t, t+d) időtartományban folyamatosan engedélyezett volt

42 Jelölések Tranzíciók paramétere (tüzelési gyakorisága): o i egy T i tranzíció d i késleltetési idejéhez tartozó negatív exponenciális eloszlás paramétere (pozitív valós szám) Grafikus jelölés o Tranzíciók mint üres téglalapok Egy paraméterű tranzíció esetén: o A sorsolt d i késleltetési időre: P d t e i 1 t i P d t e i t i

43 Jellemzők összefoglalása az SPN-re Az új jelölés kialakulásához szükséges idő exponenciális eloszlású o Konfliktusban lévő vagy konkurens tranzíciók esetén is Az időzítéssel ellátott elérhetőségi gráf egy CTMC o Struktúrája független a tranzíciók paramétereinek értékétől o A CTMC megoldási módszerei használhatók az SPN analíziséhez Az analízis eredményei o Állandósult állapotbeli megoldás (létezik, ha az SPN korlátos és megfordítható): Jelölések valószínűsége (időfüggvény illetve aszimptotikus) Tranzíciók tüzelési gyakorisága o Tranziens megoldás: Jelölések valószínűségi időfüggvényei

44 Általánosított sztochasztikus Petri-hálók GSPN: Generalized Stochastic Petri Net Kiterjesztések SPN-hez képest o Azonnal tranzíciók: Logikai függőségek modellezésére Prioritás: > 0 Súlytényező: az azonos prioritású tranzíciók közötti konfliktusfeloldáshoz o Időzített tranzíciók: Időzített események modellezésére Prioritás: 0 Paraméter: a késleltetési idő sorsolásához a negatív exp. valószínűségi eloszlásfüggvény paramétere (jelölésfüggő paraméter is lehet) o Tiltó élek o Őrfeltételek: Predikátumok tranzíciók engedélyezettségéhez Az elérhetőségi gráf továbbra is CTMC o Eltűnő (vanishing) jelölések o Adott ideig fennálló (tangible) jelölések

45 További kiterjesztések és használatuk DSPN: Deterministic and Stochastic Petri Net o Determinisztikus késleltetéssel (konstans tüzelési idővel) ellátott tranzíciók is lehetségesek o Javítási idő modellezésére alkalmas o Az analízis hatékonyságának feltétele: Egy jelölésben csak egy determinisztikus időzítésű tranzíció engedélyezett Általános időzített Petri-hálók (TPN) o Általános eloszlásfüggvény adható a tranzíciók tüzelési idejének (késleltetésének) sorsolásához o A késleltetések újrasorsolásának többféle szemantikája egy-egy új jelölésben o Tevékenység folytatása, újrakezdése modellezhető o Általános esetben az elérhetőségi gráf nem CTMC: Szimulációval történő analízis lehetséges Közelítő analízis lehetséges

46 Reward hozzárendelések SRN: Stochastic Reward Net o Reward: Haszon (vagy költség, ha negatív) függvények megadása Ráta jellegű reward (rate reward): o Jelöléseken értelmezett, haszon/időegység értéket ad meg o Példa: Ha jó a szerver, 300 Ft/óra a haszon, egyébként 200 Ft/óra a kötbér: if (m(healthy)>0) then ra=300 o Számítható: Időintervallumra megállapítható haszon a reward ráta idő szerinti integrálásával Impulzus jellegű reward (impulse reward): o Egy-egy tranzíció tüzeléséhez rendelhető hasznot ad meg o Példa: Egy-egy javítás költsége 500 Ft: if (fire(repair)) then ri=500 o Számítható: Időintervallumra összegezhető a tüzelésekre összeadva

47 Az SPN (GSPN) megbízhatósági modell Előnyök a CTMC-hez képest o Konkurens események modellezése lehetséges o Nem kiterített rendszerszintű állapotokat kell felvenni SPN helyek o Komponens állapotok: Hibamentes, hibás adott hibamód(ok) szerint; egymástól függetlenül felvehetők SPN tranzíciók o Komponens szintű meghibásodás: A tranzíció paramétere a meghibásodási tényező o Komponens szintű javítás: A tranzíció paramétere a komponens javítási tényezője (javítási idő reciproka) o Rendszerszintű javítás (tranzíció több forrás és cél hely között): a tranzíció paramétere a rendszerállapot javítási tényezője OK Fail

48 Rendszerszintű jellemzők számítása Állapotpartíciók definiálása: Jelölések alapján o Hibamentes U illetve hibás D partíció Rendelkezésre állás számítása o Közvetlen: U állapotpartíció valószínűsége o Reward alapján: if (mu) then ra=1 else ra=0 ra várható értéke: készenlét K=E{ra}

49 Példa: Redundáns szerverek N azonos típusú szerverből álló fürt o A rendszer jó, ha legalább egy szerver jó Meghibásodás: o Egy-egy szerver meghibásodási tényezője o A szerverek függetlenül hibásodhatnak meg Javítás: o A detektált hiba javítási ideje paraméterű exp. eloszlásfüggvénnyel jellemezhető, egyszerre több szerver is javítható o A hiba detektálási ideje paraméterű exp. eloszlásfüggvénnyel jellemezhető, egyszerre több szerver hibája is detektálható Modell: o Helyek: Healthy, Faulty, Repair (jelölés: szerverek száma) o Tranzíciók: Meghibásodás, detektálás, javítás (jelölésfüggő tényezők) o U állapotpartíció: m(healthy)>0 o Rendelkezésre állás: U állapotpartíció valószínűsége 51

50 Példa: Redundáns szerverek Redukált modell jelölésfüggő paraméterekkel: Healthy N m(healthy) Faulty m(repair) m(faulty) Repair 52

51 Összefoglalás Szolgáltatásbiztonság alapjellemzői o Megbízhatóság, rendelkezésre állás: Valószínűségi időfüggvények Kombinatorikus modellezés: Megbízhatósági blokkdiagramok o Soros, párhuzamos komponensek alapképletei Állapotfüggő modellezés: Markov láncok o Számítás: Állapotpartíciók valószínűsége Konkurens modellezés: Sztochasztikus Petri hálók o Számítás: Jelölések valószínűsége 53

Megbízhatósági analízis

Megbízhatósági analízis Megbízhatósági analízis Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT Célkitűzések BME-MIT

Részletesebben

Biztonságkritikus rendszerek Gyakorlat: Megbízhatósági analízis

Biztonságkritikus rendszerek Gyakorlat: Megbízhatósági analízis Biztonságkritikus rendszerek Gyakorlat: Megbízhatósági analízis Rendszertervezés és -integráció dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

Sztochasztikus Petri-hálók

Sztochasztikus Petri-hálók Sztochasztikus Petri-hálók Teljesítmény és megbízhatóság modellezés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Áttekintés Motiváció Sztochasztikus folyamatok és modellek Folytonos

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

A szolgáltatásbiztonság alapfogalmai

A szolgáltatásbiztonság alapfogalmai A szolgáltatásbiztonság alapfogalmai Majzik István majzik@mit.bme.hu http://www.inf.mit.bme.hu/edu/courses/szbt 1 Tartalomjegyzék A szolgáltatásbiztonság fogalma A szolgáltatásbiztonságot befolyásoló tényezők

Részletesebben

A szolgáltatásbiztonság analízise

A szolgáltatásbiztonság analízise A szolgáltatásbiztonság analízise Előadásvázlat Szolgáltatásbiztonságra tervezés tárgyból Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Tartalomjegyzék: 1 Bevezetés...2 2 Kvalitatív

Részletesebben

Biztonságkritikus rendszerek

Biztonságkritikus rendszerek Biztonságkritikus rendszerek Rendszertervezés és -integráció dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT Mik azok a biztonságkritikus

Részletesebben

A szolgáltatásbiztonság alapfogalmai

A szolgáltatásbiztonság alapfogalmai A szolgáltatásbiztonság alapfogalmai Majzik István majzik@mit.bme.hu http://www.mit.bme.hu/oktatas/targyak/vimim146/ 1 Tartalomjegyzék A szolgáltatásbiztonság fogalma A szolgáltatásbiztonságot befolyásoló

Részletesebben

A szolgáltatásbiztonság alapfogalmai

A szolgáltatásbiztonság alapfogalmai A szolgáltatásbiztonság alapfogalmai Majzik István majzik@mit.bme.hu http://www.mit.bme.hu/oktatas/targyak/vimim146/ 1 Tartalomjegyzék A szolgáltatásbiztonság fogalma A szolgáltatásbiztonságot befolyásoló

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2014-15/2 (4) Szoftverminőségbiztosítás Biztonság kritikus szoftverek Hibatűrés Szoftver-diverzitás Biztonság, biztonságosság Mentesség azoktól a feltételektől, melyek halált, sérülést,

Részletesebben

A fejlesztési szabványok szerepe a szoftverellenőrzésben

A fejlesztési szabványok szerepe a szoftverellenőrzésben A fejlesztési szabványok szerepe a szoftverellenőrzésben Majzik István majzik@mit.bme.hu http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Biztonságkritikus rendszerek A biztonságintegritási szint Az ellenőrzés

Részletesebben

Biztosítóberendezések biztonságának értékelése

Biztosítóberendezések biztonságának értékelése Žilinská univerzita v Žiline Elektrotechnická fakulta Univerzitná 1, 010 26 Žilina tel: +421 41 5133301 e mail: kris@fel.uniza.sk Téma: Biztosítóberendezések ának értékelése prof. Ing. Karol Rástočný,

Részletesebben

Szoftver architektúra tervek ellenőrzése

Szoftver architektúra tervek ellenőrzése Szoftver architektúra tervek ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Tartalomjegyzék A fázis

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok

Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma

Részletesebben

Autóipari beágyazott rendszerek. Kockázatelemzés

Autóipari beágyazott rendszerek. Kockázatelemzés Autóipari beágyazott rendszerek Kockázatelemzés 1 Biztonságkritikus rendszer Beágyazott rendszer Aminek hibája Anyagi vagyont, vagy Emberéletet veszélyeztet Tipikus példák ABS, ESP, elektronikus szervokormány

Részletesebben

Az előadásdiák gyors összevágása, hogy legyen valami segítség:

Az előadásdiák gyors összevágása, hogy legyen valami segítség: Az előadásdiák gyors összevágása, hogy legyen valami segítség: Az elektronikai gyártás ellenőrző berendezései (AOI, X-RAY, ICT) 1. Ismertesse az automatikus optikai ellenőrzés alapelvét (a), megvilágítási

Részletesebben

Valószínűségi modellellenőrzés Markov döntési folyamatokkal

Valószínűségi modellellenőrzés Markov döntési folyamatokkal Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

A BIZTONSÁGINTEGRITÁS ÉS A BIZTONSÁGORIENTÁLT ALKALMAZÁSI FELTÉTELEK TELJESÍTÉSE A VASÚTI BIZTOSÍTÓBERENDEZÉSEK TERVEZÉSE ÉS LÉTREHOZÁSA SORÁN

A BIZTONSÁGINTEGRITÁS ÉS A BIZTONSÁGORIENTÁLT ALKALMAZÁSI FELTÉTELEK TELJESÍTÉSE A VASÚTI BIZTOSÍTÓBERENDEZÉSEK TERVEZÉSE ÉS LÉTREHOZÁSA SORÁN A BIZTONSÁGINTEGRITÁS ÉS A BIZTONSÁGORIENTÁLT ALKALMAZÁSI FELTÉTELEK TELJESÍTÉSE A VASÚTI BIZTOSÍTÓBERENDEZÉSEK TERVEZÉSE ÉS LÉTREHOZÁSA SORÁN Szabó Géza Bevezetés Az előadás célja, vasúti alrendszerekre

Részletesebben

Modellezés Petri hálókkal. dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék

Modellezés Petri hálókkal. dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Modellezés Petri hálókkal dr. Bartha Tamás dr. Majzik István dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Modellező eszközök: DNAnet, Snoopy, PetriDotNet A DNAnet modellező

Részletesebben

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I.

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. Dr. Kovács Zsolt egyetemi tanár Megbízhatóság-elméleti alapok A megbízhatóságelmélet az a komplex tudományág, amely a meghibásodási

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

Szoftver értékelés és karbantartás

Szoftver értékelés és karbantartás Szoftver értékelés és karbantartás Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Emlékeztető: Biztonsági követelmények

Részletesebben

Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,

Részletesebben

Diszkrét állapotú rendszerek modellezése. Petri-hálók

Diszkrét állapotú rendszerek modellezése. Petri-hálók Diszkrét állapotú rendszerek modellezése Petri-hálók Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2017-18/2 (4) Szoftverminőségbiztosítás Biztonság kritikus szoftverek Hibatűrés Szoftver-diverzitás Biztonság, biztonságosság Mentesség azoktól a feltételektől, melyek halált, sérülést,

Részletesebben

Szoftver karbantartás

Szoftver karbantartás Szoftver karbantartás Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Áttekintés Követelményspecifikálás Architektúra

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (2)

Modulzáró ellenőrző kérdések és feladatok (2) Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (2)

Modulzáró ellenőrző kérdések és feladatok (2) Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.

Részletesebben

Diszkrét állapotú rendszerek modellezése. Petri-hálók

Diszkrét állapotú rendszerek modellezése. Petri-hálók Diszkrét állapotú rendszerek modellezése Petri-hálók Diszkrét eseményű rendszerek Discret Event (Dynamic) Systems DES, DEDS állapotterük diszkrét halmaz állapotváltozásuk kizárólag az időben aszinkron

Részletesebben

MŰSZAKI MEGBÍZHATÓSÁGÁNAK VIZSGÁLATI MÓDSZEREI EXAMINATION METHODS FOR EVALUATING RELIABILITY IN COMPLEX MILITARY RECONNAISSANCE SYSTEMS.

MŰSZAKI MEGBÍZHATÓSÁGÁNAK VIZSGÁLATI MÓDSZEREI EXAMINATION METHODS FOR EVALUATING RELIABILITY IN COMPLEX MILITARY RECONNAISSANCE SYSTEMS. BÁRKÁNYI PÁL KOMPLEX KATONAI FELDERÍTŐ RENDSZEREK MŰSZAKI MEGBÍZHATÓSÁGÁNAK VIZSGÁLATI MÓDSZEREI EXAMINATION METHODS FOR EVALUATING RELIABILITY IN COMPLEX MILITARY RECONNAISSANCE SYSTEMS A cikk a komplex

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

folyamatrendszerek modellezése

folyamatrendszerek modellezése Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét

Részletesebben

Szoftver karbantartási lépések ellenőrzése

Szoftver karbantartási lépések ellenőrzése Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/

Részletesebben

Hibatűrés. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Hibatűrés. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Hibatűrés Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/ 1 Hibatűrés különféle hibák esetén Hardver tervezési hibák

Részletesebben

Alapvető karbantartási stratégiák

Alapvető karbantartási stratégiák Alapvető karbantartási stratégiák MBA képzés 2009 Erdei János 4. Tervszerű karbantartás teljesítőképess pesség 00% Teljesítm tménytartalék-diagram kiesési si ciklikus állapotfüggő teljesítménymaradék t

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

BME Járműgyártás és -javítás Tanszék. Javítási ciklusrend kialakítása

BME Járműgyártás és -javítás Tanszék. Javítási ciklusrend kialakítása BME Járműgyártás és -javítás Tanszék Javítási ciklusrend kialakítása A javítási ciklus naptári napokban, üzemórákban vagy más teljesítmény paraméterben meghatározott időtartam, amely a jármű, gép új állapotától

Részletesebben

Dr. BALOGH ALBERT: MEGBÍZHATÓSÁGI ÉS KOCKÁZATKEZELÉSI SZAKKIFEJEZÉSEK FELÜLVIZSGÁLATÁNAK HELYZETE

Dr. BALOGH ALBERT: MEGBÍZHATÓSÁGI ÉS KOCKÁZATKEZELÉSI SZAKKIFEJEZÉSEK FELÜLVIZSGÁLATÁNAK HELYZETE Dr. BALOGH ALBERT: MEGBÍZHATÓSÁGI ÉS KOCKÁZATKEZELÉSI SZAKKIFEJEZÉSEK FELÜLVIZSGÁLATÁNAK HELYZETE 1 Megbízhatósági terminológia: IEC 50(191):2007 változat (tervezet) Kockázatkezelő irányítási terminológia:

Részletesebben

SÚLYOS BALESETEK ELEMZÉSE. 3. téma: Kvalitatív módszerek - Hibafa

SÚLYOS BALESETEK ELEMZÉSE. 3. téma: Kvalitatív módszerek - Hibafa Az oktatási anyag a szerzők szellemi terméke. Az anyag kizárólag a 2014.01.22-23 23-i OKF Továbbképzés céljaira használható. Sokszorosítás, utánközlés és mindennemű egyéb felhasználás a szerzők engedélyéhez

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

biztonságkritikus rendszerek

biztonságkritikus rendszerek Kockázat, biztonság, biztonságkritikus rendszerek Dr. Sághi Balázs BME Közlekedés- és Járműirányítási Tanszék Tartalom A közlekedéssel szembeni elvárások A kockázat fogalma Kockázatcsökkentés Követelmények

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Kritikus Beágyazott Rendszerek

Kritikus Beágyazott Rendszerek Kritikus Beágyazott Rendszerek Megbízhatósági modellezés Gyakorlat Készítette: Vörös András Utolsó módosítás: 015-09- Verzió: 1.0 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Diagnosztika Petri háló modellek felhasználásával

Diagnosztika Petri háló modellek felhasználásával Diagnosztika - Ea9. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Diagnosztika Petri háló modellek felhasználásával Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika

Részletesebben

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai

Elérhetőségi analízis Petri hálók dinamikus tulajdonságai Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati

Részletesebben

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Zárthelyi mintapéldák Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Elméleti kérdések Indokolja meg, hogy az A (X Stop F Start) kifejezés szintaktikailag helyes kifejezés-e CTL illetve

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Biztonságkritikus rendszerek Gyakorlat: Architektúrák

Biztonságkritikus rendszerek Gyakorlat: Architektúrák Biztonságkritikus rendszerek Gyakorlat: Architektúrák Rendszertervezés és -integráció dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104. Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.

Részletesebben

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba Kecskeméti Fıiskola GAMF Kar Informatika Tanszék Johanyák Zsolt Csaba 003 Tartalomjegyzék. Bevezetés.... A megbízhatóság fogalmai..... A termék idıtıl függı képességei...... Használhatóság /Üzemkészség/

Részletesebben

A kockázatelemzés menete

A kockázatelemzés menete A kockázatelemzés menete 1. Üzem (folyamat) jellemzői Veszélyforrások 2. Baleseti sorok meghatározása 3a. Következmények felmérése 3b. Gyakoriság becslése 4. Kockázat meghatározás Balesetek Gyakoriság

Részletesebben

Adat és folyamat modellek

Adat és folyamat modellek Adat és folyamat modellek Előadásvázlat dr. Kovács László Folyamatmodell nyersanyag miből termék mit funkció ki munkaerő eszköz mivel Objektumok Tevékenységek Adatmodell Funkció modell Folyamat modell

Részletesebben

Modellezés és szimuláció a tervezésben

Modellezés és szimuláció a tervezésben Modellezés és szimuláció a tervezésben Szimuláció: egy másik rendszerrel - amely bizonyos vonatkozásokban hasonló az eredeti rendszerhez - utánozzuk egy rendszer viselkedését, vagyis az eredeti rendszer

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

1002D STRUKTÚRÁJÚ, KRITIKUS ÜZEMBIZTONSÁGÚ RENDSZER (SCS 1 ) ELEMZÉSE DISZKRÉT-DISZKRÉT MARKOV MODELLEL

1002D STRUKTÚRÁJÚ, KRITIKUS ÜZEMBIZTONSÁGÚ RENDSZER (SCS 1 ) ELEMZÉSE DISZKRÉT-DISZKRÉT MARKOV MODELLEL Dr. Forgon Miklós mk. ezredes ZMNE olyai János Katonai Műszaki Kar Katonai Elektronikai Tanszék forgon.miklos@zmne.hu Neszveda József főiskolai docens, irányítástechnikai szakmérnök MF Kandó Villamosmérnöki

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Autóipari beágyazott rendszerek. Funkcionális biztonságossági koncepció

Autóipari beágyazott rendszerek. Funkcionális biztonságossági koncepció Autóipari beágyazott rendszerek Funkcionális biztonságossági koncepció 1 Funkcionális biztonsági koncepció Functional safety concept Cél A funkcionális biztonsági követelmények levezetése A biztonsági

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

SZOLGÁLTATÁS BIZTOSÍTÁS

SZOLGÁLTATÁS BIZTOSÍTÁS 6. óra SZOLGÁLTATÁS BIZTOSÍTÁS Tárgy: Szolgáltatás menedzsment Kód: NIRSM1MMEM Kredit: 5 Szak: Mérnök Informatikus MSc (esti) Óraszám: Előadás: 2/hét Laborgyakorlat: 2/hét Számonkérés: Vizsga, (félévi

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Architektúra tervek ellenőrzése

Architektúra tervek ellenőrzése Szoftverellenőrzési technikák Architektúra tervek ellenőrzése Majzik István http://www.inf.mit.bme.hu/ 1 Tartalomjegyzék Motiváció Mit határoz meg az architektúra? Milyen vizsgálati módszerek vannak? Követhetőség

Részletesebben

Biztonságkritikus rendszerek architektúrája (2. rész)

Biztonságkritikus rendszerek architektúrája (2. rész) Biztonságkritikus rendszerek architektúrája (2. rész) Rendszertervezés és -integráció előadás dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Részletesebben

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver):

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): B Motiváció B Motiváció Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): Helyesség Felhasználóbarátság Hatékonyság Modern számítógép-rendszerek: Egyértelmű hatékonyság (például hálózati hatékonyság)

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

ISO A bevezetés néhány gyakorlati lépése

ISO A bevezetés néhány gyakorlati lépése ISO 9001-2015 A bevezetés néhány gyakorlati lépése 115 30 20 Fö tevékenységünk: Felületkezelés Horganyzás, ZnNi, ZnFe bevonatok Folyamatalapú szabályozás SPC bevezetése FMEA bevezetése Elsődarabos folyamat

Részletesebben

Fejlesztés kockázati alapokon

Fejlesztés kockázati alapokon Fejlesztés kockázati alapokon Az IEC61508 és az IEC61511 Szabó Géza Szabo.geza@mail.bme.hu 1 A blokk célja Áttekintő kép a 61508-ról és a 61511-ről, A filozófia megismertetése, Nem cél a követelmények

Részletesebben

Biztonságkritikus rendszerek

Biztonságkritikus rendszerek Biztonságkritikus rendszerek Biztonságkritikusnak nevezzük azon rendszereket, melyek hibás működése jelentős anyagi kárt okoz, vagy emberek testi épségét, életét veszélyezteti. Autóipari rendszerek esetében

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek

Részletesebben

Rendszermodellezés. Hibamodellezés (dr. Majzik István és Micskei Zoltán fóliái alapján) Fault Tolerant Systems Research Group

Rendszermodellezés. Hibamodellezés (dr. Majzik István és Micskei Zoltán fóliái alapján) Fault Tolerant Systems Research Group Rendszermodellezés Hibamodellezés (dr. Majzik István és Micskei Zoltán fóliái alapján) Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology

Részletesebben

Közlekedési automatika Biztonságintegritás, életciklus modellek

Közlekedési automatika Biztonságintegritás, életciklus modellek Közlekedési automatika Biztonságintegritás, életciklus modellek Dr. Sághi Balázs diasora alapján összeállította, kiegészítette: Lövétei István Ferenc BME Közlekedés- és Járműirányítási Tanszék 2019 Tartalomjegyzék

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Használati alapú és modell alapú tesztelés kombinálása szolgáltatásorientált architektúrák teszteléséhez az ipari gyakorlatban

Használati alapú és modell alapú tesztelés kombinálása szolgáltatásorientált architektúrák teszteléséhez az ipari gyakorlatban Használati alapú és modell alapú tesztelés kombinálása szolgáltatásorientált architektúrák teszteléséhez az ipari gyakorlatban Nagy Attila Mátyás 2016.12.07. Áttekintés Bevezetés Megközelítés Pilot tanulmányok

Részletesebben

Soros felépítésű folytonos PID szabályozó

Soros felépítésű folytonos PID szabályozó Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Modell alapú tesztelés mobil környezetben

Modell alapú tesztelés mobil környezetben Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

PCS100 UPS-I Ipari felhasználási célú UPS

PCS100 UPS-I Ipari felhasználási célú UPS DMPC LV Power Conditioning, 09/2015 PCS100 UPS-I Ipari felhasználási célú UPS 2UCD120000E028 rev A September 25, 2015 Slide 1 PCS100 UPS-I, Ipari felhasználási célú UPS A létesítményét tápláló energiaellátás

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

A MEGBÍZHATÓSÁGI ELEMZŐ MÓDSZEREK

A MEGBÍZHATÓSÁGI ELEMZŐ MÓDSZEREK 1. Elemző módszerek A MEGBÍZHATÓSÁGI ELEMZŐ MÓDSZEREK Ebben a fejezetben röviden összefoglaljuk azokat a módszereket, amelyekkel a technikai, technológiai és üzemeltetési rendszerek megbízhatósági elemzései

Részletesebben

Architektúra tervezési példák: Architektúrák biztonságkritikus rendszerekben

Architektúra tervezési példák: Architektúrák biztonságkritikus rendszerekben Architektúra tervezési példák: Architektúrák biztonságkritikus rendszerekben Majzik István majzik@mit.bme.hu Biztonságos állapotok Működésmód Fail-stop működés A megállás (lekapcsolás) biztonságos állapot

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

AZ APERIODIKUSAN ALKALMAZOTT KATONAI BERENDEZÉSEK ELLENŐRZŐ TESZTJEINEK HATÁSA A MEGBÍZHATÓSÁG ÁLLAPOTVEKTORRA

AZ APERIODIKUSAN ALKALMAZOTT KATONAI BERENDEZÉSEK ELLENŐRZŐ TESZTJEINEK HATÁSA A MEGBÍZHATÓSÁG ÁLLAPOTVEKTORRA V. Évfolyam. szám - 010. június Neszveda József neszveda.jozsef@bmf.kvk.hu AZ APERIODIKUAN ALKALMAZOTT KATONAI BERENDEZÉEK ELLENŐRZŐ TEZTJEINEK HATÁA A MEGBÍZHATÓÁG ÁLLAPOTVEKTORRA Absztrakt Az aperiodikusan

Részletesebben

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben